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ABSTRACT 

Four methods for reviewing a body of research literature – narrative review, descriptive review, 
vote-counting, and meta-analysis – are compared. Meta-analysis as a formalized, systematic 
review method is discussed in detail in terms of its history, current status, advantages, common 
analytic methods, and recent developments.  

Meta-analysis is found to be underutilized in IS. Suggestions on encouraging the use of meta-
analysis in IS research and procedures recommended for meta-analysis are also provided. 

Keywords: literature reviews, narrative review, descriptive review, vote counting, meta-analysis 

I. INTRODUCTION 

Compared with many other disciplines in business and the social sciences, Information Systems 
(IS) is a relatively young field. In its initial development stage, IS was perceived as an applied 
discipline that almost exclusively drew on other, more fundamental, reference disciplines [Keen, 
1980]; its progress and maturation became a preoccupation to some researchers [Banville and 
Landry, 1989]. Now, IS “fully emerged as a discipline in its own right” [Baskerville et al., 2002; p. 
1].  

The development of IS as a scientific field is evidenced by the building of solid research tradition. 
In an empirical study of the disciplines cited in IS journals, Vessey et al. [2002] found a 
substantial volume of IS research used IS itself as the reference discipline (27% in their analysis). 
A survey [Palvia et al., 2004] of the use of different research methodologies in IS showed that 
about 6.6% of studies published in seven IS journals during the years 1993-2003 used literature 
reviews as the primary research methodology.  

IS is also emerging as an important reference discipline for other fields [Baskerville et al., 2002]. 
A search of the Social Science Citation Index (SSCI) showed that it is common for many fields to 
conduct research based on IS theories or models. A search with the keyword of “information 
systems or information technology” resulted in a total of 719 articles published in 329 refereed 
journals in 2004. Of these journals, 26 are IS-focused, while the other 303 journals are from 
various fields covering almost all the research areas of business and social sciences. A good 
example of this use of IS theory in other areas is the technology acceptance model (TAM), which 
was tested and applied in psychology [e.g., Gentry et al., 2002], education [e.g., Liaw 2002; 
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Selim, 2003], marketing [e.g.,Keen et al., 2004], operations management [e.g., Olson et al., 
2003], and many other management fields [King and He, 2005]. 

However, IS research inevitably displays one problem that is common in many mature fields: 
inconsistent empirical findings on essentially the same question. Knowledge accumulation 
increasingly relies on the integration of previous studies and findings. As Glass [1976] suggested, 
when the literature on a topic grows and knowledge lies untapped in completed research studies,  

“this endeavor (of research synthesis) deserves higher priority .... than adding a 
new experiment or survey to the pile” [Glass, 1976; p. 4]. 

A recent trend in research synthesis is to integrate, quantitatively, knowledge garnered from 
empirical studies on a topic by using meta-analysis. Meta-analysis is the most commonly used 
quantitative research synthesis method in the social and behavioral sciences [Hedges and Olkin, 
1985]. It won recognition as a better way to conduct reviews of a body of completed research 
than the traditional narrative fashion [Wolf, 1986; Hunter and Schmidt, 1990; Rosenthal, 1991; 
Cooper and Hedges, 1994; Rosenthal and DiMatteo, 2001]. Some journals revised their review 
policy to encourage the use of this methodology [e.g., From the Editors of Academy of 
Management Journal, 2002]. In IS, however, meta-analysis is extremely underutilized [Hwang, 
1996]. Moreover, some of the meta-analytic practices used in meta-analysis in IS are 
conceptually or methodologically flawed [King and He, 2005].  

The objective of this paper is to provide guidelines for IS researchers who are interested in 
synthesizing a body of literature in a rigorous and quantitative fashion. After reviewing and 
comparing different literature synthesis methods (Section II), we turn our attention to meta-
analysis. We describe the history, common methods, and recent developments of meta-analysis 
(Sections III and IV). We also provide a discussion of some major concerns with existing meta-
analysis applications (Section V) and the great potential of applying meta-analysis in IS (Section 
VI).  

II. LITERATURE REVIEW METHODS AND META-ANALYSIS 

The refinement and accumulation of information and knowledge are an essential condition for a 
field to “be scientific” and to progress [Hunter et al., 1982; Pillemer and Light, 1980]. Researchers 
can use a number of techniques for making sense out of existing research literature, all with the 
purpose of casting current research findings into historical contexts or explaining contradictions 
that might exist among a set of primary research studies conducted on the same topic [Rumrill 
and Fitzgerald, 2001]. Many researchers dichotomize literature review methods as qualitative 
versus quantitative reviews [e.g., Wolf, 1986; Aldag and Stearns, 1988; Hunter and Schmidt, 
1990; Rosenthal and DiMatteo, 2001; and Palvia et al., 2003]. This approach may be overly 
simplistic in that different review techniques vary in the extent of systematically synthesizing an 
existing literature body, ranging from purely qualitative (e.g., verbal description) to moderately 
quantitative (e.g., counting a number or calculating a percentage of certain research 
characteristic) to purely quantitative (e.g., meta-analysis).  

Following Guzzo et al.’s [1987] approach, we categorize the most commonly employed review 
techniques in IS along a continuum of quantification as narrative reviews, descriptive reviews, 
vote counting, and meta-analysis (Figure 1). 

Qualitative Quantitative 
Narrative 
Review 

Descriptive 
Review 

Vote 
Counting 

Meta 
Analysis 

Figure1. Review Methods on a Qualitative-Quantitative Continuum 
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NARRATIVE REVIEWS  

Narrative reviews present verbal descriptions of past studies focusing on theories and 
frameworks, elementary factors and their roles (predictor, moderator, or mediator), and/or 
research outcomes, (e.g., supported vs. unsupported) regarding a hypothesized relationship. 
Narrative reviews are of great heuristic value, and serve to postulate or advance new theories 
and models, to examine important and/or controversial topics, and to direct further development 
in a research domain.  

No commonly accepted or standardized procedure for conducting a narrative review exists. This 
lack is a key weakness of narrative reviews as a means of arriving at a firm understanding of a 
research tradition [Green and Hall, 1984; Hunter and Schmidt, 1990; Rosenthal and DiMatteo, 
2001]. Researchers are relatively free to design their review strategy in terms of selecting 
relevant papers, categorizing research characteristics, and framing outcomes.  

When conducting a narrative review, researchers tend to consciously or subconsciously make 
judgments that support their own background, understanding, or established point-of-view. Often 
their goal is to come to some conclusions through classifications of the research methods and 
categorizations of results. One commonly-used strategy is to create a classification or a typology 
to organize the results. Researchers adopting this approach should be cautious that the creation 
of categories may result in less information since quantitative scales may be reduced to 
qualitative ones. Of course, this approach can result in greater understanding and lead to greater 
insight, but such a result is certainly not assured. 

Ives and Olson’s [1984] study on user involvement may serve as a representative narrative 
review in IS. Ives and Olson proposed a model of user involvement prior to their review of the 
literature; and this model framed their discussions of the selected papers. Ives and Olson’s [1984] 
work is considered influential in the field of user involvement. 

DESCRIPTIVE REVIEWS  
Descriptive reviews introduce some quantification, often a frequency analysis of a body of 
research. The purpose is to find out to what extent the existing literature supports a particular 
proposition or reveals an interpretable pattern [Guzzo et al., 1987].  

To assure the generalizability of the results, a descriptive review often involves a systematic 
search of as many as relevant papers in an investigated area, and codes each selected paper on 
certain research characteristics, such as publication time, research methodology, main approach, 
grounded theory, and symbolic research outcomes (e.g., positive, negative, or non-significant). A 
frequency analysis (including its derivatives of trend analysis and cluster analysis) treats an 
individual study as one data record and identifies distinct patterns among the papers surveyed. In 
doing so, a descriptive review may claim its findings to represent the fact or state of a research 
domain. 

Palvia et al.’s [2003; 2004] analyses of the use of research methodologies in IS are typical 
descriptive reviews. In the two studies, Palvia and colleagues surveyed articles in seven IS 
journals (communications of the ACM, Decision Sciences, Information & Management, 
Information Systems Research, Journal of Management Information Systems, and Management 
Science) in the years 1993 to 2003. They coded each article for up to two methodologies (primary 
methodology and secondary methodology), and calculated the frequency and analyzed the trend 
of each of thirteen research methodologies as used in these papers. The results “provide the 
current state of research methodologies in use” [Palvia et al., 2004; p. 306]. 

VOTE COUNTING 
Vote counting, also called “combining probabilities” [Rosenthal, 1991] and “box score review” 
[Guzzo et al., 1987], is commonly used for drawing qualitative inferences about a focal 
relationship (e.g., a correlation is significantly different from 0 or not) by combining individual 
research outcomes [Pickard et al., 1998]. Some researchers consider vote counting a meta-
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analytic technology [e.g., Rosenthal, 1978; 1991]; and other researchers separate vote counting 
as an alternative quantitative review method mostly because this method does not analyze effect 
sizes. It uses the outcomes of tests of hypothesis reported in individual studies, such as 
probabilities, p-levels, or results falling into three categories: significantly positive effect, 
significantly negative effect, and non-significant effect. The philosophy is that repeated results in 
the same direction across multiple studies, even when some are non-significant, may be more 
powerful evidence than a single significant result [Rosenthal and DiMatteo, 2001].  

Rosenthal [1991] provided a comprehensive review of nine different vote counting methods, and 
discussed the advantages and limitations of each. For illustrative purposes, in Appendix 1 we 
provide the computational formulas of two most popular vote counting methods: Fisher’s 
procedure of combining p’s and Stouffer’s procedure of combining Z’s.  

Vote counting does not require other statistics such as effect sizes and construct reliabilities. 
Thus, it is a conceptually simple and practically convenient method. Under certain circumstances 
(i.e., small number of sampled studies, when investigated effects are in the same direction) this 
method could produce statistically powerful results. In one extreme example, Cohen [1993] 
reported on two studies that dealt with the results of vaccinating monkeys. Because laboratory 
animals are difficult to obtain and expensive to maintain, the studies involved only six and eleven 
monkeys respectively (both experimental subjects and control animals). Neither study produced 
statistical significance. However, when the data were combined in a vote counting analysis, the p-
level was considerably smaller and the effect was shown to be large. 

Vote counting contains some inherent limitations. In particular, it allows a weak test of a 
hypothesis (e.g., correlation is 0 or not 0) with little consideration of the magnitude of the effect, 
such as an estimated effect size and associated confidence intervals. In addition, vote-counting 
assumes homogeneity in the sample population investigated. In case of heterogeneity, which is 
most common in research, vote-counting cannot detect moderator effects, and the combined 
significance could be meaningless. Therefore, vote-counting is often suggested as a supplement 
to meta-analysis in the case of missing effect sizes [Bushman and Wang, 1995; Pickard et al., 
1998].  

In IS, vote counting is applied to produce a single quantitatively synthesized conclusion from a 
series experiments. In some fields within IS, such as software engineering, where much research 
involves modest experimental effects, small sample sizes, and hypothesis testing fails to 
conclude significant results due to low statistic power, vote counting is found to be particularly 
useful. For example, in a study of reading techniques for defect detection of software codes, 
Laitenberger et al. [2001] found that perspective-based reading (PBR) was statistically more 
effective than checklist-based reading (CBR) in one out of three experiments; the other two were 
in the same direction but not significant (p-value (one side) = 0.16 and 0.13). When applying 
Fisher’s procedure, Laitenberger and colleagues concluded that PBR was a significantly more 
effective reading technique for defect detection than CBR, with a combined p-value = 0.000016 
(p. 403). Similarly, Pfahl et al. [2004] applied vote counting to analyze results from a series of 
three experiments to assess the learning effectiveness of using a process simulation model for 
educating computer science students in software project management. The results supported that 
simulation involves more learning interests of students than that of without-simulation students (p-
values from the 3 experiments were 0.04, 0.21, and 0.28; the combined p-value were 0.06 
(Fisher’s procedure) and 0.03 (Stouffer’s Z procedure) (p. 137-138). 

META-ANALYSIS   
Meta-analysis is a statistical synthesis method that provides the opportunity to view the “whole 
picture” in a research context by combining and analyzing the quantitative results of many 
empirical studies [Glass, 1976]. It connotes a rigorous alternative to the narrative discussion of 
research studies which typify our attempts to make sense of the rapidly expanding research 
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literature [Wolf, 1986]. Since we believe that meta-analysis is of great potential significance and 
find that it is often inadequately applied in IS, we devote the remainder of this paper to it.  

III. OVERVIEW OF META-ANALYSIS 

The history of the use of statistical methods to synthesize research findings is as long as most 
commonly-used statistical procedures [Cooper, 1979]. Hedges [1992] credited Legendre, who 
invented the principle of least squares to solve regression problems, as an innovator in this area 
because his original purpose was to combine information across studies. Another often-cited 
example is Pearson’s [1904] study of enteric fever inoculation, in which Pearson presented sets 
of data collected under different conditions, calculated individual effect sizes that were 
comparable across data sets, examined homogeneity, and computed an average of the effect 
sizes to determine the effectiveness of the treatment (inoculation).  

However, applications of this quantitative research synthesis method were rare before the 1970s 
[Cooper and Hedges, 1994]. It seems that the method grew in popularity since Glass coined the 
phrase “meta-analysis” in 1976.  

Meta-analysis refers to the analysis of analyses . . . the statistical analysis of a 
large collection of analysis results from individual studies for the purpose of 
integrating the findings. It connotes a rigorous alternative to the casual, narrative 
discussions of research studies which typify our attempts to make sense of the 
rapidly expanding research literature [Glass, 1976, p.3] 

Meta-analysis is now a legitimate research review tool accepted by, and dominant in, many fields 
in the social and behavioral sciences [Field, 2001]. We searched a comprehensive social science 
database – Social Science Citation Index (SSCI) – with the keyword “meta-analysis”. The search 
resulted in 4407 articles published in refereed journals in all covered fields for the period 1992-
2004, with an average annual increase of 20 articles (p-value < 0.0001). 

In IS, some researchers argued that meta-analysis is a rarely applied research methodology [e.g., 
Hwang, 1996; Palvia et al., 2003], mostly because of the small number of applications. For 
example, Hwang (1996) reviewed the use of meta-analysis in IS prior to 1996 and found 6 
applications, including one conference paper. We searched SSCI with the restriction of IS as the 
research domain. The search resulted in 34 published meta-analyses in 1992-2004, with an 
average annual increase of 0.3 article (p-value = 0.013). The numbers of published meta-
analyses in social science in general and in IS in particular are presented in Figure 2.  
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Figure 2. Number of Meta-analyses Published in Refereed Journals  

 

As evidenced in Figure 2b, the use of meta-analysis increased steadily in IS, although the 
numbers of applications are still small. We believe this trend will be maintained, given the 
maturating of the field and the growing number of research topics that would benefit from 
conclusive answers.  

ADVANTAGES OF META-ANALYSIS 
Meta-analysis is much less judgmental and subjective than other literature review methods, 
particularly narrative review, and therefore much more in tune with positivist tradition. The major 
difference between narrative reviews and quantitative meta-analyses may well be that narrative 
reviews primarily focus on the conclusions reached in various studies, whereas meta-analyses 
focus on data, as reflected by the operationalization of variables, the magnitude of effect sizes, 
and the sample sizes. 

Qualitative assessments involved in a narrative reviews usually do not take account of both the 
relative sizes of samples and the significance of the effects measured. For example, a small-
sample study with significant results may be equally weighted with a similar large-sample study in 
such assessments, while an insignificant result may be ignored when it does, in fact, contribute to 
a body of research that overall, may show significant effects. 

To synthesize a research literature, statistical meta-analysis uses final results collected from a 
collection of similar studies [Glass, 1976]. The final results are effect sizes, or the magnitude of 
the effects. The focus on effect sizes rather than significances of these empirical findings is an 
advantage over traditional literature review methods.  

Meta-analysis enables the combining of various results, taking into account the relative sample 
and effect sizes, thereby permitting studies showing insignificant effects to be analyzed along with 
others that may show significant effects. The overall result may be either significant or 
insignificant, but it is undoubtedly more accurate and more credible because of the overarching 
span of such an analysis. 

y = 0.31x - 612 

R2 = 0.44 

p-value = 0.013 
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Meta-analysis can focus attention on the cumulative impact of insignificant results that can be 
significant. For example, two studies showing sgnificance at the 0.06 level are much stronger 
evidence against the null hypothesis that is a single study at the 0.05 level, all else being equal. 
Yet, in some fields, the former two studies may not ever be published. Meta-analysis, by 
combining such results, enables us to see the big picture of the landscape of research results.   

In other fields, meta-analysis has provided answersto questions that were in great dispute 
because of conflicts in the results of various studies. For example, the viewing of violence on 
television was shown to be associated with a greater tendency toward aggressive and anti-social 
acts through a meta-analysis of more than 200 studies, many of which were individually 
inconclusive or had reached contrary conclusions [Comstock et al., 1991].  

In business research, perhaps the area which made the greatest use of meta-analysis is 
organizational behavior. There, meta-analyses seem to have been conducted primarily in the 
source of job performance ratings involving combinations of ratings by supervisor, subordinates, 
peers and self-ratings [Conway and Huffcutt, 1997; Harris et al., 1988]. 

While meta-analysis is basically confirmatory in nature, it can also involve exploratory aspects. 
For example, when high variability exists in the effects that are reflected in various studies, meta-
analysis promotes a search for moderator variables. While this use of meta-analysis introduces 
greater subjectivity on the part of the researchers, the subjectivity is certainly less than that 
involved in performing a non-quantitative literature review. 

CONCERNS WITH META –ANALYSIS 

Numerous researchers advocated the use of meta-analysis as a better way to conduct research 
reviews [e.g., Glass, 1976; Hedges and Olkin, 1985; Wolf, 1986; Hunter and Schmidt, 1990; 
Rosenthal, 1991; Rosenthal and DiMatteo, 2001]. However, as with other research methods, 
meta-analysis is not free from limitations. In this subsection, we discuss some major concerns 
with meta-analysis as a research review method. 

Sampling Bias toward Empirical Studies 
By its statistic analysis nature, meta-analysis contains an inherent sampling bias toward 
quantitative studies that report effect sizes. Using Palvia et al.’s [2003; 2004] typology, the types 
of research that may provide data to a meta-analysis include survey, laboratory experiment, field 
study, and field experiment. Other types of research, such as frameworks and conceptual 
models, case studies, speculation/commentary, mathematical models, secondary data, interview, 
and qualitative research, are unlikely to be sampled in a meta-analysis. This limitation suggests 
that a significant number of studies (according to Palvia et al. [2004], these studies add up to 
50.3% of all IS publications in seven leading IS journals) will be ignored when conducting a meta-
analysis. 

In addition, some researchers may combine quantitative and qualitative research methods in their 
studies of the same phenomenon, called triangulation [Gable, 1994; Kaplan and Duchon, 1988; 
Lee, 1991; Mingers, 2001]. Triangulation may help deepen and widen our understanding on a 
certain phenomenon. One example is Markus’ [1994] study of the use of e-mail in organizations. 
Markus conducted a field survey and data did not provide much support to the hypotheses 
developed from information richness theory; Markus also interviewed some respondents, whose 
answers and comments provided insight on factors affecting their use of email. If a meta-analysis 
on communication effectiveness were to be conducted, only the empirical part of Markus’s [1994] 
study would be included and the qualitative part, which provides more value to media use 
research, would be ignored. 

The sampling bias toward empirical studies, a limitation of meta-analysis, is rarely addressed in 
discussions of this research method. We believe that it is important to call to the attention of meta 
analysts and researchers that the results from a meta-analysis are not necessarily more 
creditable or representative of a research population than those from a narrative review. 
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Garbage In and Garbage Out 
Meta-analysis does not generally differentiate studies by their quality. This issue is often referred 
to as “garbage in and garbage out” [Hunt, 1997]. Research studies vary considerably in their 
research designs and approaches, sampling units, methods of measuring variables, data analysis 
methods, and presentations of research findings. The inclusion of the results from poorly-
conducted studies with flawed designs into a meta-analysis could confuse the full understanding 
of the literature body investigated or even lead to unfounded conclusions. The judgment of quality 
is rather subjective, although some techniques have been suggested to correct this error [e.g., 
Rosenthal, 1991]. However, these techniques introduce other biases about the selection and 
weighting of quality criteria.  

Publication Bias 
Publication bias [Begg and Berlin, 1988], also known as the file-drawer problem [Rosenthal, 
1979; Iyengar and Greenhouse, 1988], refers to the observation that significant results are more 
likely to be published while non-significant results tend to be relegated to file drawers. Thus, the 
meta-analysis result will focus on an unrepresentative proportion of a total research population. 
Of course, publication bias applies to all review methods. It is “particularly problematic for a meta-
analysis whose data come solely from the published scientific literature” [Duval and Tweedie, 
2000]. Using an unrepresentative set of data may result in conclusions biased toward significance 
or positivity.  

Although some correction techniques have been developed [e.g., Duval and Tweedie, 2000], the 
best solution to avoid this bias is to search multiple databases in a systematic way and sample 
studies from various sources [Rosenthal and DiMatteo, 2001]. For example, in their study of the 
effects of management support and task interdependence on IS implementation, Sharma and 
Yetton [2003] searched the literature in various ways, including bibliographic databases, manual 
searches, and the bibliographies of existing works. They located 22 empirical studies, of which 11 
are from journal publications, 9 from dissertations, and 2 from book chapters. The comprehensive 
search resulted in a diverse sample that “both increases the power of the meta-analysis by 
maximizing the number of studies and reduces (publication) source bias” (p. 542). 

Apples And Oranges 
One criticism of meta-analysis is that it may compare “apples and oranges,” aggregating results 
derived from studies with incommensurable research goals, measures, and procedures. It is 
argued, therefore, that meta-analysis may sometimes be analogous to taking apples and oranges 
and averaging such measures as their weights, sizes, flavors, and shelf lives [Hunt, 1997]. This 
problem exists for all review methods, qualitative or quantitative, in that “exact replications 
probably cannot occur” [Hall et al., 1994; p. 20], “(studies) ... are rarely precisely the same” 
[Rosenthal and DiMatteo, 2001; p. 68]. This problem is not of dominant significance, especially 
when we want results that are generalizable to fruits, or to a broad research domain. On the other 
hand, synthesists must be sensitive to the problem of attempting aggregation of too diverse a 
sampling of studies. 

Small Sample Size 
The statistical power of detecting a genuine effect size depends on both the number of studies 
and the total cumulated sample sizes included in a meta-analysis. The more studies that are 
included in the meta-analysis, the more creditable are the results at representing the investigated 
research domain. Using a Monte Carlo simulation, Field [2001] found that a meta-analysis should 
include at least 15 studies, otherwise the type I error (accepting a false null hypothesis) could be 
severely inflated.  

If the investigator cannot identify enough empirical studies on a common topic, it may indicate 
that the research domain is too immature for a conclusive study such as meta-analysis.  
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“when meta-analytical results have less evidential value because the number of 
individual studies in the meta-analysis is small … the alternative is neither 
reversion to reliance on the single study nor a return to the narrative review 
method of integrating study findings: both are vastly inferior to meta-analysis in 
the information yield” [Hunter and Schmidt, 1990; p. 420]. 

Reviewers should base analyses on the largest number of studies available [Matt and Cook, 
1994]. If the collection of studies is largely incomplete, then conclusions drawn from analysis are 
limited in scope. 

An exception will be meta analyzing a series of experimental studies. Here a researcher is 
interested in concluding generalizability of a proposition within, rather than beyond, a defined set 
of studies. For example, Laitenberger et al. [2001] and Phafl et al. [2004] meta analyzed a series 
of three experiments (an initial experiment and two replications). The combined results were 
stronger in statistical power than results calculated from any individual experiment.  

Methodological Errors 
Comparatively, meta-analysis is a straightforward or “formalized systematic review” procedure 
that is more standardized than other review methods [Hunter and Schmidt, 1990]. Given the 
same set of data or sampled effect sizes from a literature body, different researchers should 
arrive at the same conclusion via meta-analysis. In other words, a typical meta-analysis is often 
based on the procedures and analytic methods that are commonly accepted. Thus, the results 
from a meta-analysis are often treated as reliable and objective [Rosenthal and DiMatteo, 2001]. 
However, a particular meta-analysis may contain methodological errors that lead to a false 
conclusion. 

We observed serious methodological errors in some IS meta-analyses. For example, in the two 
meta-analyses conducted by Mahmood and colleagues [2000, 2001], some combined effect sizes 
were larger than any sampled individual effect size. In their meta-analysis of the correlations 
between perceived ease of use and Information technology usage (Table 1 of Mahmood et al. 
[2001], p. 116), Mahmood and colleagues concluded a combined effect size as large as 0.678, 
while the sampled correlation coefficients ranged from 0.059 to 0.375. If the result is used by a 
researcher who performs statistical power analysis at the 80% level to guide a research design 
(suggested by Cohen [1988, 1992]), the researcher will conclude that a sample size of 28 may be 
adequate to detect a significant relationship (at α=0.05 level) between the two variables. In fact, 
the sampled studies in Mahmood et al. [2001] involved much larger sample sizes, ranging from 
61 to 786, with a mean of 185.   

Statistics Used in a Meta-Analysis. To meta-analyze an issue, the researcher should extract the 
following statistics and information from the studies:  

• effect sizes • possible moderators • other measurement error 
indexes 

• sample sizes • construct reliabilities  
 

Most IS studies report these statistics in their presentations.  

In the literature, effect sizes are of various forms and can be categorized into two main families, 
the r family and the d family. The r family effect sizes report correlations between variables; the 
specific type depends on whether the variables are in continuous (Pearson’s r), dichotomous 
(phi), or ranked form (rho). In IS research, the most popularly reported effect size is the Pearson’s 
r. The d family are used mostly in laboratory experiments and measure the standardized 
difference between an experimental group and a control group. (There are three main members 
in this family: Cohen’s d, Hedges’ g, and Glass’s ∆. The three are calculated in a similar way: the 
difference between two means is divided by some variance. They differ in the denominator: the 
square root of the pooled variance of the two groups for Cohen’s d, the square root of the pooled 



 674                       Communications of the Association for Information Systems (Volume 16, 2005) 665-686                   

           

 

Understanding the Role and Methods of Meta-Analysis in IS Research by W. R. King and J. He 

variance for Hedges’ g, and the square root of the control group variance for Glass’s ∆.) These 
effect sizes can be readily converted to one another. Effect sizes can also be calculated from 
various testing statistics, such as t, F, χ2, or Z, or their associated p levels. Detailed 
computational formulas to calculate and convert these statistics are beyond the purpose and 
scope of this study. Interested readers can refer to Wolf [1986], Hunter and Schmidt [1990], 
Rosenthal [1991], and Rosenthal and DiMatteo [2001].  

Other statistics, including the descriptive statistics of investigated variables, cannot be directly 
used as effect sizes. As pointed out by Rosenthal and Dimatteo [2001], “an r effect size cannot be 
computed from kappa, percent agreement, relative risk, risk difference, or the odds ratio unless 
all the raw data are available so the meta-analyst can compute the proper index” (p.72). 

Fixed vs. Random Effects Models, Similar to other statistical methods, meta-analysis methods 
are developed based on assumptions about the population from which studies are taken. The two 
common assumptions lead to two different analysis methods: fixed-effects and random-effects 
models.  

The fixed-effects model assumes that studies in the meta-analysis are sampled from one 
population with a fixed “true” effect size. In other words, the true effect size is assumed to be the 
same for all studies included in the analysis, and the observed variance among effect sizes is 
dominated by sampling errors, which are unsystematic and can be estimated [Hunter and 
Schmidt, 1990]. The assumption of one population underlying a meta-analysis restricts the 
conclusions from being generalized to a study not included in the analysis unless the study shows 
independent evidence of belonging to the population; i.e., unless it is a close replication of the 
studies included in the meta-analysis.  

In contrast, the random effects model assumes that population effect sizes vary from study to 
study. As such, a study included in such a meta-analysis can be viewed as being sampled from a 
universe of possible effects in a research domain [Field, 2001]. As long as the meta-analysis 
covers the literature comprehensively, the conclusions are generalizable to the research domain 
as a whole and can be applied to studies not included in the analysis.  

In statistical terms the two models differ in the calculation of the weights used in the analysis, 
which in turn affects the standard errors associated with the combined effect size. Fixed-effects 
models use only within-study variability in their weights because all other “unknowns” in the 
model are assumed to be constant. In contrast, random-effects models account for the errors 
associated with sampling from populations that themselves were sampled from a 
superpopulation. The error term, therefore, contains variability arising from differences between 
studies in addition to within-study variability. Standard errors in the random-effects model are, 
therefore, larger than in the fixed case, which makes significance tests of combined effects more 
conservative [Field, 2003; p. 107]. 

Although random-effects models generally appear to be superior, fixed-effects models are in 
common use. If the fixed-effects model is employed for a meta-analysis, the assumption of one 
“true” effect size across studies should be tested before combining effect sizes [Hedges and 
Olkin, 1985]. The test of this assumption, labeled as a homogeneity test, is a chi-square test of 
the null hypothesis that all effect sizes are the same after controlling for sampling errors. The test 
result indicates whether the null hypothesis can be rejected at a certain level. Only when the test 
result is insignificant can the sampled studies be combined (e.g., calculating the combined effect 
sizes and their confidence intervals). In many cases, the test indicates a violation of the 
assumption and there is a need to switch to the random-effects model; however, in practice 
sometimes the fixed-effects model is chosen and the test is not performed.   

In contrast, the random-effects model assumes variation between the populations underlying the 
various studies that are incorporated into the meta-analysis. The homogeneity test in this case 
examines whether the interaction between sampling error and between-study variance is zero or 
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not. An insignificant test result (which occurs much of the time) justifies the techniques that are 
used under this model. As suggested by many meta-analysts [e.g., Field, 2001; Field, 2003; 
Hedges and Vevea, 1998; Rosenthal and DiMatteo, 2001], homogeneity is rare and the random-
effects model should be applied in most research domains.  

PRIMARY META-ANALYSIS METHODS 
Over the past 20 years, three methods of meta-analysis emerged to be widely used [Field, 2001; 
Johnson et al., 1995]: the method devised  

• by Hedges and Olkin [1985];  
• by Rosenthal and Rubin [Rosenthal, 1991], and  
• by Hunter and Schmidt [1990].   

In IS, a fourth method ─ that devised by Glass and his associates [Glass et al., 1981] is also 
used. The four methods are briefly discussed subsection. Interested readers may examine the 
references for more detailed discussion on the methodologies. In addition,  

• Johnson et al. [1995] and Field [2001] compared the first three methods basing on 
Monte Carlo simulation tests;  

• Cooper and Hedges [1994] provided integrative reviews of the commonly-adopted 
meta-analytic approaches as well as computational formulas;  

• Lipsey and Wilson [2001] described well the bolts and nuts of the whole process.  

These studies will serve as good resources for potential meta-analysts.  

Hedges-Olkin Method  
This approach to meta-analysis is based on a weighted least squares technique [Hedges, 1987]. 
In this approach, study outcomes (i.e., effect sizes r) are transformed into a standard normal 
metric (using Fisher’s r-to-Z transformation). Then, the transformed effect sizes are weighted by 
the inverse variances of each study. For the fixed-effects model, the variance is within-study 
variance, which is determined by sample sizes only. For the random-effects model, the variance 
is composed of within-study variance and between-study variance, the latter of which is from a 
chi-square test (Q test under the fixed-effects model). The combined effect size is the average of 
the weighted effect sizes, and its variance is the reciprocal of the sum of the weights. A 
significance test (Z-test) and confidence intervals of the combined effect size are then calculated.  

Rosenthal-Rubin Method  
Under a fixed-effects model, the Rosenthal-Rubin method employs essentially the same 
techniques as the Hedges-Olkin method, except for the significance test of combined effect size 
[Field, 2001]. Rosenthal and Rubin [Rosenthal, 1991] advocate the use of significance metrics 
(i.e., Zs associated with one-tailed probabilities) from sampled studies and examining the 
combined Z for the overall significance of the mean effect size. 

Rosenthal [1991] did not present a random-effects version of his meta-analysis procedures in his 
original work. In a later study, Rosenthal and DiMatteo [2001] suggested “un-weighting” the effect 
sizes when meta-analytically integrating them as an approach based on a random-effects model. 
The basic logic is to treat studies as the unit of analysis in observing of the between-study 
variance. Consistent with the random effects model, the combined effect size of the unweighted-
effect approach is less statistically powerful and has larger confidence intervals as contrasted 
with that calculated from the weighted-effect approach, and can be generalized to studies not yet 
in the sample. “If only one approach were to be used, it would be the one we prefer” [Rosenthal 
and DiMatteo, 2001; p. 70]. 
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Hunter-Schmidt Method  
This method is distinct for its efforts to correct effect size indices for potential sources of errors 
before meta-analytically integrating the effect sizes across studies [Johnson et al., 1995]. Besides 
the sampling error, other sources of errors include measurement error, range variation, construct 
validity, and variance due to extraneous factors. Errors other than sampling are labeled as 
“Attenuation Factors” in Hunter and Schmidt [1990], because they impact lower the observed 
correlations between investigated variables systematically, which can be corrected if assessed. 
Therefore, when information about these sources of error is available, this feature of Hunter-
Schmidt method may recommend its use [Johnson et al., 1995]. In IS, at least one source of 
error, measurement error, is routinely assessed and reported by construct reliability (e.g., 
Cronbach α) [Chau 1999]. However, of the IS meta-analyses that we identified as using this 
method, none study explored this feature and corrected measurement error or other sources of 
error.  

To test moderator variables, Hunter and Schmidt [1990] suggested a partitioning approach; that 
is, to break the set of studies into subsets using the moderator variable and to do separate meta-
analyses within each subset of studies. Then, the difference between subsets is tested to 
conclude the magnitude and significance of this moderator variable.   

Glass Method  

Glass’s approach to meta-analysis focuses on the detection of moderator variables. This method 
can be summarized as:  

1. simulation of descriptive statistics across studies;  
2. the coding of perhaps 50 to 100 study characteristics, such as date of study and 

number of threats to internal validity, and  
3. regression of study outcome onto the coded study characteristics.  

The characteristics that show significant effects on the study outcome are considered to be 
moderators. 

Using a Monte Carlo test, Hunter and Schmidt [1990, p. 86-89] illustrated that this method has a 
severe problem of capitalization on (chance) sampling errors. Sampling errors are large because 
the sample size for looking at study characteristics is not the total number of subjects in the 
studies, but the number of studies. Correlating various study characteristics with study outcome 
leads to massive capitalization on chance when the correlations that are large enough to be 
statistically significant are identified ex post facto. A general suggestion for this approach is to 
derive few moderators basing on logical reasoning and existing theory before conducting the 
meta-analysis. 

IV. RECENT DEVELOPMENTS IN META-ANALYSIS 

After the term was coined by Glass in 1976, meta-analysis received much research attention. In 
early 1980s, many discussions of meta-analysis were centered on the legitimacy of this research 
method, i.e., comparing with other review methods, and identifying the advantages, limitations, 
and statistically soundness of meta-analysis [e.g., Glass, 1976; Hunter et al., 1982; Chow, 1987; 
Hedges, 1987]. The discussions of meta-analysis progressed to more advanced methodological 
topics, such as its application to structural equation modeling [Hom et al., 1992], and levels of 
analysis [Ostroff and Harrison, 1999]. This section reviews recent developments of meta-analysis 
in the analysis of moderator effects and mediator effects, the two issues that are most relevant to 
theory testing/building in IS.  

 



Communications of the Association for Information Systems (Volume 16, 2005) 665-686                         677 

 

           Understanding the Role and Methods of Meta-Analysis in IS Research by W. R. King and J. He                                   
   

ANALYSIS OF MODERATOR EFFECTS 

In the context of meta-analysis, a moderator variable is a systematic difference among studies 
under review that might explain differences in the magnitudes or signs of observed effect sizes. 
The study of moderator effects often involves two stages: the detection, or exploratory analysis, 
of possible moderators, and the assessment, or confirmatory analysis, of theoretically suggested 
moderators.  

The various moderator identification and assessment methods are shown in  

Table 1. Common Methods of Detecting/Assessing Moderator Effects 

Technology Detecting moderator effects 
(exploratory) 

Assessing moderator effects 
(confirmatory) 

Graphing X  
Q statistics (χ2 test) X  
Variance analysis X  
Outlier test X  
OLS regression  X, not suggested X 
WLS regression X, not suggested X 
Partition test  X, not suggested for continuous 

moderator factors 
 

Graphing. As sample size increases, the effect size would theoretically approach the population 
effect size. Sample effects sizes have greater variability with smaller samples than with larger 
samples. Simple and intuitive, graphing is suggested for preliminarily detecting naturally occurring 
groupings and possible moderator effects in a meta-analytic data set [Rosenthal and DiMatteo, 
2001].  

 
Q Statistics or Chi-Square Test [Hedges and Olkin, 1985]. This test generates a decision rule 
specifying whether the variability in standardized effect sizes is statistically significant. The test is 
based on a chi-square assessment of the level of variance across study results relative to the 
sampling error variance across studies. This test is often referred to as homogeneity test, and can 
serve as a criterion for selecting a fixed effects model vs. a random effects model for a meta-
analysis.  

Variance Analysis [Hunter et al., 1982]: The variance of sampled effect sizes is corrected for 
statistical artifacts, such as sampling error, differential reliability, and restriction of range. When 
artifacts fail to account for 75% of the variance, a search for moderator variables is indicated 
[Hunter and Schmidt, 1990].  

Outlier Test. Studies that contain effect sizes more than two or three standard deviations from the 
mean may be examined. Differences and similarities between the studies in the tails may suggest 
possible moderator variables. Traditional outlier detection techniques include box-plot analysis for 
univariate data [Mosteller and Hoaglin, 1991] and studentized residuals for bivariate data [Freund 
and Littell, 1991]. An advance in this area is Huffcutt and Auther’s [1995] Sample Adjusted Meta-
Analytic Deviancy (SAMD) statistic, which takes into the account the sample sizes in a meta-
analytic data set. It is based on the principle of sampling error that effect sizes based on a small 
sample size are more likely to be deviant than those from a large sample size [Hunter and 
Schmidt, 1990]. Beal et al. [2002] further discussed possible refinements of this technique by 
adjusting the inherent skewed distribution of effect sizes. 

Ordinary Least Squares (OLS) [Glass, 1977]. Regress the effect size on the potential moderator 
variable, using individual study effect size as the dependent variable and the moderator variable 
as the independent variable [Wolf, 1986; Glass et al., 1981]. If the coefficient is significant, then 
the effect of the moderator variable may be significant. This method is criticized for risk of 
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capitalization on chance [Hunter and Schmidt, 1990], and is suggested for assessing moderator 
effects only on a confirmatory basis.  

Weighted Least Squares or WLS [Hedges and Olkin, 1985]. OLS assumes constant variance 
across observations or moderator variables retrieved from individual studies. This assumption is 
violated because sample error (main component of variance after controlling for moderator 
effects) is a function of effect size and sample size. Hedges and Olkin [1985] suggested using 
WLS and weight the multiple regression according the inverse of the sampling error variance. 
This method, although less popular than OLS, gives a more accurate assessment of moderator 
effects in most conditions [Steel and Kammeyer-Muller, 2002].  

Partition Test [Hunter and Schmidt, 1990]. This test divides sampled effect sizes into subgroups 
by moderator factors, and compares subgroup means and variance, to assess if the means are 
significantly different. This method is particularly suggested for categorical moderator factors 
(e.g., gender, research methods, analysis levels, technology contexts). When applied to 
continuous moderator factors, such as by dividing data set into subgroups along a continuous 
moderator variable, this method performs poorly and underestimates moderator effects in most 
conditions [Steel and Kammeyer-Muller, 2002]. 

MEDIATOR ASSESSMENT METHODS  
Meta-analysis was initially developed to examine first-order effects, such as treatment effects (the 
“d” group effect sizes) or correlation effects (the “r” group effect sizes). Other effects, such as 
mediator effects or partial correlation coefficients, were not addressed. Such relations can often 
form the basis of a theory and help establish a mediator mechanism or explain a causal 
relationship.  

Assessing mediator effects in structural relationships as an important meta-analytic topic received 
much attention. Becker [1995] developed a technique to address structural relationships, 
analyzing whether a common population correlation matrix underlies a set of sampled empirical 
results. The analysis unit is correlation matrix instead of correlations. As few studies report the 
correlation matrix, application of the technique is limited in practice. One illustrative, but 
unsuccessful, example in IS is Legris et al.’s [2003] meta-analysis of the technology acceptance 
model (TAM). After an extensive search of empirical TAM studies, Legris and colleagues found 
usable matrices in only three out of 22 studies. Therefore, the small sample size resulted in “a 
statistic shortfall” and “limit(ed) the presentation of the findings to the general conclusion” (p. 
202).  

Two alternative approaches to study mediator effects are:  

1. combining and analyzing meta-analytically-developed correlations; and  
2. directly studying coefficients of interest as the effect sizes [Rosenthal and DiMatteo, 

2001].  

Taking TAM as an example, the core model (figure 3) suggests that perceived ease of use (EU) 
and perceived usefulness (U) are two important predictors of an individual’s behavioral intention 
to adopt a technology (BI); in addition,  perceived usefulness partially mediates the effect of 
perceived ease of use on behavioral intention. The correlation coefficients (r’s) and  
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Figure 3. Technology Acceptance Model 
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The three equations hold for linear-regression-based analyses; they may differ a bit for structural-
equation-modeling-based analyses (e.g., PLS, LISREL) because of different algorithms. But the 
differences are minor. In other words, we can infer the magnitude and the strength of path 
coefficients based on a set of meta-analytically-developed correlation coefficients. When applying 
the second approach – combining β’s as the effect sizes, special caution should be taken that the 
sampled coefficients represent the relationship between the independent and the dependent 
variable controlling for other factors.  

Both approaches were applied in another TAM meta-analysis conducted by King and He [2005]. 
This study meta-analyzed 88 TAM empirical studies, and the results from the two approaches 
were almost identical.  

V. SUMMARY AND SUGGESTIONS 

In this article, we first compare different review methods, then focus our discussion on meta-
analysis, an important quantitative literature review method that is underutilized but which 
appears to offer great potential in IS literature synthesis research.  

The benefits from meta-analysis changed the course of research in several fields, and it is 
possible that these benefits can be achieved in IS as well. One distinct feature of IS is the rapid 
changes that occurred in both the technologies and the applications. The dynamic nature of IS 
requires accurate assessments of newly developed technologies and business practices in a 
timely fashion. By synthesizing existing empirical studies, meta-analysis can serve as an efficient 
tool to satisfy the needs for overall conclusions about phenomena, without the burden of 
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conducting new research in a particular situation, or the dilemma of selecting from competing 
theories or different perspectives.  

Some researchers already work in this direction. For example, the development of various group 
support systems (GSS) in academia encouraged the use of teams, especially virtual teams, in 
organizational settings. However, the effectiveness of GSS was questioned by some inconsistent 
empirical findings in the literature [Fjermestad and Hiltz, 1999]. To address the concern, Dennis 
and Wixom [2003] meta-analyzed previous empirical studies. Their results not only validated GSS 
on improving group performance, but also explained conditions (i.e., the moderator effects of 
task, tool, the type of group, the size of the group, and facilitation) under which GSS would be 
most effective. Similar studies were done on computer-mediated-communication [Baltes et al., 
2002], computer graphics [Hwang and Wu, 1990], and distance education [Allen et al., 2004]. 
Great potential exists for meta-analyzing other emerging or changing technologies and business 
practices, such as virtual teams and virtual organizations, knowledge acquisition technology (e.g., 
different interview techniques), system development practices (e.g., prototyping, user-centered 
system design, and rapid application development), IT governance, and knowledge management 
systems and practices, to name a few. A few empirical studies addressed these issues, and 
overall conclusive results will warrant the advance of the areas.  

We expect meta-analysis will help direct future research in other IS issues. For example, the 
study of IT productivity (or payoff of IT investment) generated discussions of pros and cons of IT 
investment by both academicians and practitioners, a debate commonly known as the 
“productivity paradox” [Roach, 1987; Stassmann, 1985]. Kohli and Devaraj [2003] meta-analyzed 
existing literature on this issue. Their study not only validated the relationship between IT 
investment and firm performance, but also identified various factors that influence the likelihood 
for an investigation to find such a relationship. A future study in this area may benefit from Kohli 
and Devaraj [2003] by following their design strategy. 

In addition, meta-analysis may help improve the publication practice in the IS field. Many studies 
that are performed with small sample sizes are never reported and many studies that produce 
non-significant results are rejected by journals. The development of a tradition of meta-analysis in 
IS would encourage the “publication” of such studies ─ perhaps on web sites and in electronic 
journals.  

Various techniques are used to conduct meta-analysis; However, while no single technique is 
universally-agreed-upon as a way to perform such a study [Hall et al., 1995], the basic 
procedures for conducting a meta-analysis are well-understood [Rosenthal and DiMatteo, 2001].  

Based on a review of the commonly-used meta-analysis methods, we suggest the following 
procedures for conducting a meta-analysis in IS. The procedure is illustrative and is designed to 
ensure that readers share a common understanding of statistical meta-analysis.  

1. Define the research domain and the relationships of interest. 

2. Collect studies in a systematic way. Try multiple databases with the same selection 
criterion not only to enlarge the data pool, but also to avoid bias toward certain 
journals.  

3. Extract effect sizes ─ the strength of a relationship or the magnitude of a difference1. 
If the researchers did not reported the desired effect sizes, scour the articles for the 

                                                      
1 In IS, the most popular form of effects is the Pearson product-moment correlation r ; 
standardized path coefficients can also be used, if all other factors are well controlled in a specific 
nomological network. 
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information necessary to calculate these effects. It is also recommended contacting 
the authors for the needed information2.  

4. Select either the random effects (suggested for most cases) or the fixed-effect model, 
and a specific analysis method to combine the effect sizes.  

5. Examine the variability among the obtained effect sizes. Perform a homogeneity test, 
or plot effect sizes graphically to judge the range of effect sizes and the existence of 
possible moderating effects.  

6. Examine the signs and magnitudes of the combined effect sizes (the means). 
Although t-tests are commonly employed for the significance level of an effect size, it 
is more useful to calculate confidence intervals around the mean to indicate the 
range of the effect size [Rosenthal and DiMatteo, 2001]. This approach is especially 
appropriate for the random-effects model, because this model assumes variations 
among effect sizes. A combined effect size implies no more than an average of a set 
of possible population effect sizes.  

7. If the objective of the research is to find or test moderating effects, studies should be 
coded for characteristics of their contexts. Code the characteristics of individual 
articles in an unbiased way. Coders (often Ph.D. students or colleagues) should be 
“blind” to the research, and the internal consistency of the coding results should be 
tested.  

8. To test the moderating effects, two methods are commonly used: 

a. Subgroup comparison: group studies according to their coded research contexts, 
then compare the combined effect sizes that are calculated within each 
subgroup.  

b. Regression: regress the research study characteristics on the effect sizes, the 
significant factors indicate the significant moderators.  

9. Summarize and discuss the findings.  

Editor’s Note:  This article was fully peer reviewed. It was received on July 7, 2005 and was published on 
October 17, 2005. 
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APPENDIX I.  VOTE COUNTING TECHNIQUES 

Combining the p-values for the case with very small sample sizes can be performed either with 
the Fisher procedure, i.e. testing the statistic  
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which under H0, corresponding to ip ; is χ2-distributed with 2k degrees of freedom, or via 
calculating the p-value out of Stouffer’s Z statistic: 
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