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Understanding the Role of Recovery in Default Risk Models:

Empirical Comparisons and Implied Recovery Rates

Abstract

This article presents a framework for studying the role of recovery on defaultable debt prices

(for a wide class of processes describing recovery rates and default probability). These debt

models have the ability to di�erentiate the impact of recovery rates and default probability,

and can be utilized to invert the market expectation of recovery rates implicit in bond prices.

Empirical implementation of these models suggests two central �ndings. First, the recovery

concept that speci�es recovery as a fraction of the discounted par value has broader empirical

support. Second, parametric debt valuation models can provide a useful assessment of recovery

rates embedded in bond prices. This article has attempted to model recovery and comprehend

their impact on debt values.
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This article analyzes the e�ect of recovery on the price of defaultable debt. We speci�cally

pose two empirical questions using defaultable debt models:

� Which concept of recovery is supported in market price of corporate coupon bonds? and,

� When Does recovery (in default) have an identi�able impact on debt prices? If so, what can

be learned about recovery rates embedded in market debt prices?

Our next central purpose is to theoretically investigate whether recovery risk is priced: Are risk-

neutral expected recovery rates lower or higher than its physical counterpart? These issues are

potentially crucial for understanding the role of recovery in default risk modeling.

Our theoretical analysis reveals that cross-sectional variations in risk-neutral expected recovery

rates are possibly impacted by di�erences in counterparty risk aversion and �rm-speci�c moments

of the physical recovery density. We derive two principal results. First, our developments suggest

that the risk-neutral default probabilities are not only higher than physical default probabilities

but also inversely related to the level of recovery. Second, the derived risk-neutral recovery density

is such that the risk-neutralized expected recovery rates are lower than their physical counterpart.

Firms with more volatile or left-skewed (physical) recovery densities may incur further reductions

in risk-neutral expected recoveries. These features are possibly reected in the term structure of

credit spreads.

For the empirical application involving parametric debt models and stochastic recovery, we

appeal to the framework presented in DuÆe and Singleton (1999), Jarrow and Turnbull (1995)

and Lando (1998). We explicitly derive defaultable coupon bond prices under the assumption

that (1) the bondholders recover a fraction of the face value of the bond (the \Recovery of Face

Value" model), or (2) the bondholders recover a fraction of the present value of face (the \Recovery

of Treasury" model), and (3) the bondholders recover a fraction proportional to the pre-default

market value (the \Recovery of Market Value" model). In so doing, our set-up possibly provides

two incremental contributions. First, the approach allows for a exible correlation structure

between the risk-free interest rate, the default probability and the recovery rate. Second, in our

model, the recovery rate can be functionally linked to default probability or to other fundamental

factors that proxy default risk. The debt model can therefore be utilized to separate credit spreads

into their default probability and recovery related components. From a practical viewpoint, some

of the recovery models can be applied to infer the market's expectation of recovery rate implicit in

bond prices. Finally, standard model assessment tools can be employed to gauge which recovery

concept has broader empirical support. Even if all recovery concepts are adequately supported

by the data, they could fundamentally depart in the quality of recovery levels implied by market
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prices. As such, these di�erences could be relevant for the design and management of recovery

sensitive instruments.1

To illustrate the empirical potential of various defaultable debt models, they are applied sep-

arately to a sample of BBB-rated corporate bonds. The closed-form defaultable bond models we

test rely on three assumptions. One, guided by our theoretical results, we specify that recovery

rates are negatively associated with default probability. This parametric link is also inspired by

an empirical study by Fitch that shows that when aggregate defaults tend to rise, actual recovery

rates often decline (WSJ; March 19, 2001). Two, we posit a family of hazard rates that are linear

in the short interest rate (Du�ee (1999) and DuÆe and Singleton (1997, 1999)). Lastly, it is as-

sumed (for tractability) that the interest rate process is governed by single-factor di�usion. In this

modeling environment, our theoretical characterizations show that di�erent recovery conventions

can have distinct implications for defaultable bonds. The recovery and default risk underpinnings

of defaultable debt prices is apparent from our analytical characterizations.

Our empirical exercises provide several key insights. Between the recovery of face value model,

the recovery of treasury model, and a version of the DuÆe-Singleton model, the bond data better

supports the notion of recovery based on the recovery of treasury model. For example, the out-

of-sample absolute yield basis point errors and the absolute dollar pricing errors are consistently

lower for the recovery of treasury model (and statistically signi�cant). Adopting the recovery

of treasury model is also found to reduce the dispersion of pricing errors. Among other possible

explanations, a superior out-of-sample �t of the recovery of treasury model has the implication that

bondholders are not overly optimistic about immediate cash recovery of the face value of the bond.

The underlying assumptions of the recovery of treasury model may more closely approximate the

implicit valuation process of the market-place.

The second insight that emerges is that the recovery of face value model and the recovery of

treasury model are both informative about (risk-neutral) expected recovery rates. These estimates

provide a useful benchmark for comparing expected recovery rates over time and across credit

ratings. Finally, we observe that the expected recovery rates are much less volatile for the recovery

1The recovery of market-value model of DuÆe and Singleton (1999) has led to considerable insights about credit
risks. In their debt valuation model, they adopt the assumption that recovery in default is proportional to the
pre-default market value of the defaultable security. For this case, they prove that the defaultable debt value is
the discounted expectation of the promised payments, where the discount rate combines time value, default arrival
and recovery rates. Although this framework has facilitated tractable closed-form characterizations of defaultable
securities and it has generated realistic credit spreads, the simplicity and elegance of this approach comes at a cost
of confounding the e�ect of recovery-in-default from the probability of default. For this reason, determining recovery
concepts that allow debt prices to reveal information about expected recovery levels can prove useful in the design
of recovery sensitive credit derivatives. The language of the Basle Accord, for instance, requires distinct assessments
of the credit risk events of default and loss given default.
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of face value model. The recovery of face value convention may well be a more suitable contracting

choice for writing contingent claims on recoveries.

This paper is organized as follows. Section 1 explain how risk-neutral recovery rates are related

to the density of the physical recovery, and counterparty risk aversion. In section 2, we present

a framework for pricing defaultable coupon bonds under broad recovery speci�cations. The next

section develops closed-form models of defaultable bonds that allow recovery to vary with default

probability. Our empirical applications and estimation strategy is outlined in Sections 4 through

7. In particular, we present the out-of-sample pricing error results and the estimates of the market

implied recovery rates. Section 8 summarizes our main results and concludes.

1 Recovery, Default, and the Market Price of Recovery Risk

Most default risk models directly specify an adapted process for the expected level of recovery

under the risk-neutral measure (starting with DuÆe and Singleton (1999) and Jarrow and Turnbull

(1995)). By implication there is the recognition that the actual/physical level of recovery is a

random variable, given default, with an expected value that can be modeled for valuation purposes.

To clarify how �rm-speci�c risk-neutral recovery rates are impacted by risk aversion and moments

of the physical recovery density, let w denote the proportion of value recovered in default. Suppose

that the physical recovery rate given default has a density with support in the unit interval, say

f [w], 0 � w � 1 satisfying
R 1
0 f [w] dw = 1.

Let h be the probability of default under the physical probability measure. The risk-neutral

probability h is also abstractly linked to its physical counterpart, and possibly recovery. Our

objective is to address two questions: (i) When is physical expected recovery rate at least as large

as the risk-neutral expected recovery rate? (ii) When is the risk-neutral probability of default at

least as large as the physical probability of default? We argue that these issues are crucial for

understanding the price of default risk and/or recovery risk, and for interpreting model-implied

recovery rates.

To derive an explicit relationship between expected recovery rates under the risk-neutral and

physical probability measures, consider a problem where a �rm could default on its obligation.

In such a scenario, many counterparties would be a�ected and as such would have an interest in

buying insurance against this event. Naturally, the lower the expected recovery rate, the greater its

impact on counterparties and the more they are willing to pay to cover against such an eventuality.

For a counterparty wealth level ofW0, their post-default wealth may be written as: W0�(1�w)F ,
where, for simplicity, F is the notional principal at stake. Therefore, the expected utility of wealth,
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for utility function U [:], conditional on default, assuming no hedging, is given by:

E fU [w]g =
Z 1

0
U [W0 � (1� w)F ] f [w] dw (1)

where Ef:g is expectation under the physical probability measure.

Now consider a contingent claim written on the recovery rate w and paying the claim-holder

the dollar amount C[w] were default to occur with a recovery rate of w. Let � denote the price of

this claim. The counterparty wealth of buying � units of the contingent claim is given by W0�� �

with probability: (1 � h), and with probability h, it is: W0 � (1 � w)F + � C[w] � � �. The

expected utility of the counterparty buying insurance is:

E fU [w]g � (1� h)U [W0 � � �] + h

Z 1

0
U [W0 � (1� w)F + � C[w]� � �] f [w] dw: (2)

By a variational argument, the partial derivative of E fU [w]g with respect to � at the optimum,

evaluated at � = 0, should be zero. This condition yields the price of insurance as (U 0 is the

partial derivative of the counterpart utility function with respect to w):

� =
h
R 1
0 U 0 [W0 � (1� w)F ] � C[w]� f [w] dw

(1� h)U 0 [W0] + h
R 1
0 U 0 [W0 � (1� w)F ]� f [w] dw

(3)

= h

Z 1

0

(
U 0 [W0 � (1� w)F ]R 1

0 U 0 [W0 � (1� w)F ] f [w] dw

)
� C[w]� f [w] dw (4)

where the risk-neutral default probability, h, in (4) can be de�ned as:

h � h
R 1
0 U 0 [W0 � (1� w)F ] f [w] dw

(1� h)U 0 [W0] + h
R 1
0 U 0 [W0 � (1� w)F ] f [w] dw

(5)

which is a valid probability function since h 2 [0; 1]. Equation (5) provides the economic intuition

that the risk-neutral default probability is related to (i) the physical probability of default h,

(ii) the counterparty risk aversion as reected in the marginal utility of wealth, and (iii) the

distribution of physical recovery.

Focus �rst on the full recovery situation withw = 1. It follows that
R 1
0 U 0 [W0 � (1� w)F ] f [w] dw

= U 0 [W0] so that the physical and the risk-neutral probability of default are the same regardless

of the counterparty risk aversion (i.e, h = h).

Consider now the more plausible scenario of partial recovery. For a suÆciently wide class of
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utility functions, it is reasonable to expect that

U 0 [W0]R 1
0 U 0 [W0 � (1� w)F ] f [w] dw

< 1: (6)

Substituting this restriction into (5), we obtain:

h > h: (7)

With non-zero risk aversion and partial recovery, the risk-neutral default likelihood is therefore an

ampli�ed version of physical default probabilities. Equations (5)-(7) suggest that the ampli�cation

of the risk-neutral default probability is positively related to the tails of the loss distribution. This

result is also relevant for modeling recovery rates.

From (4), it can be determined that the risk-neutral density of the conditional recovery

rate is given by:

f [w] � U 0 [W0 � (1� w)F ]� f [w]R 1
0 U 0 [W0 � (1� w)F ] f [w] dw

(8)

which connects the risk-neutral recovery density to the physical counterpart and the degree of risk

aversion. Absent risk aversion, equation (8) shows that f [w] = f [w], so that the risk-neutral and

physical densities coincide.

The next proposition proposes a relationship between the expected recovery rates under the

risk-neutral and the physical probability measures.

Proposition 1 Consider the risk-neutral expected recovery rate:

EQfwg �
Z 1

0
w f [w] dw; (9)

=

Z 1

0
w

(
U 0 [W0 � (1� w)F ] f [w]R 1

0 U 0 [W0 � (1� w)F ] f [w] dw

)
dw: (10)

The risk-neutral expected recovery rate is less than the physical expected recovery rate, Efwg,

EQfwg � Efwg (11)

since
R 1
0 wU 0 [W0 � (1� w)F ] f [w] dw �

�R 1
0 w f [w] dw

� �R 1
0 U

0 [W0 � (1� w)F ] f [w] dw
�
=

Cov (w;U 0 [W0 � (1� w)F ]) � 0, for all concave counterparty utility functions.

From the perspective of default risk modeling, the central result from Proposition 1 is that the

risk-neutral expected recovery rate is generally lower than the physical recovery rate. Suppose the
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counterparty has a utility function belonging to the constant absolute risk aversion class with risk

aversion . In the case of positive risk aversion we assert that
R 1
0 w f [w] dw <

R 1
0 w f [w] dw. This

is because

@EQfwg
@

j=0 = �
Z 1

0
w (W0 � F + F w) f [w] dw +Efwg

Z 1

0
(W0 � F + F w) f [w] dw (12)

= �F
(Z 1

0
w2 f [w] dw �

�Z 1

0
w f [w] dw

�2
)
< 0; (13)

and the two expected recovery rates are equal when  = 0. When combined with (5), equations

(11) and (13) establish that the impact of risk aversion is to both increase risk-neutral default

probabilities and simultaneously lower risk-neutral expected recovery rates. In particular, it is

unjusti�ed to directly employ market implied recovery rates as forecasts of expected recoveries

without adjusting for risk aversion (unless it is argued that counterparty exposure is too minimal

for risk aversion to be an issue).

It can be shown that �rms with more uncertain or left-skewed physical recovery densities are

likely to experience greater divergence between the risk-neutral and physical recovery rates. For

further details on these higher moment connections and ways to generalize to a broader family

of marginal utilities, the reader is referred to Bakshi, Kapadia, and Madan (2000). Proposition 1

has implications for extracting physical recovery information from market-based studies.

2 Recovery in Default, and Defaultable Debt Modeling

This section presents the necessary framework for pricing defaultable coupon bonds for a broad

class of recovery de�nitions. These pricing results hold for a wide speci�cation of processes de-

scribing the evolution of the recovery rate, the default probability and the interest rate. As such,

the defaultable bond models are intended to achieve the desired balance between default risk and

recovery. At the outset we must note that our primary content is the empirical assessment of

recovery concepts with the theoretical framework supportive of the empirical work.

2.1 Defaultable Debt Pricing under Stochastic Recovery Rates

To address theoretical and empirical issues, we appeal to the default risk models presented in

DuÆe and Singleton (1999), Jarrow and Turnbull (1995) and Lando (1998). Speci�cally for the
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case of defaultable coupon bonds and random recovery, it can be shown that its price, P (t; T ), is:

P (t; T ) = E
Q
t

(Z T

t
exp

�
�
Z u

t
[r(s) + h(s)] ds

�
� c(u) du

)

+ E
Q
t

(
exp

 
�
Z T

t
[r(s) + h(s)] ds

!)
� F

+ E
Q
t

(Z T

t
exp

�
�
Z u

t
[r(s) + h(s)] ds

�
� y(u)� h(u) du

)
(14)

where,

F is the promised face value of the defaultable bond maturing at date T, and fc(u) : u >
tg is the promised continuous-coupon payment;

E
Q
t f:g represents conditional expectation under the risk-neutral probability measure Q

and r(t) is the economy-wide spot interest rate;

y(u) is the recovery payout in the event of default and h(u) is the hazard rate. Typically,

the recovery payout y(u) is signi�cantly below remaining promised payments.

Equation (14) suggests that the intrinsic value of a defaultable security is the expected dis-

counted value of the underlying payo�, when the discounting factor is increased to the sum of

the interest rate and the hazard rate. When recovery payout is positive, the defaultable bond

price has three distinct components. For instance, the �rst conditional expectation accounts for

the receipt of coupons prior to default. The second term is due to the promised face value in the

absence of default. Finally, the last integral determines the value of the single recovery payout if

the �rm defaults. This conditional expectation involves some novelties arising from the product

of recovery and hazard rate. Intuitively, the underlying payo� embodies recovery with probability

h(u) du in the entire no-prior default time-domain. The next subsection presents a technique that

analytically and simultaneously determines all the three components required to value defaultable

coupon bonds.

Even though not emphasized in the preceding discussion, the primitive modeling variables

h(u), y(u) and r(u) can all be functions of the state of the economy. For example, the hazard rate

h(u) can exhibit complex dependencies on systematic as well as �rm-speci�c factors (as empirically

modeled in Bakshi, Madan, and Zhang (2000) and Du�ee (1999)). Leave the precise (risk-neutral)

evolution of these variables unspeci�ed for now. As in DuÆe and Singleton (1999) and Lando

(1998), equation (14) provides an internally consistent framework to jointly model default risk

and recovery payout.
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While modeling the defaultable debt price in (14), three assumptions are typically made about

recovery payout in default:

1. Recovery payout is a fraction of the face value:

y(u) = w(u)� F: (15)

This recovery assumption is conceptually straightforward. When w(u) � w0, 0 � w0 � 1, the

recovery payout is a constant proportion of the promised face value (DuÆe (1999), DuÆe

and Singleton (1999) and Lando (1998)). For this reason, we refer to this model as the

recovery of face value model (hereby, the RFV model as in DuÆe-Singleton (1999)).

2. Recovery payout is the fraction of the present value of the face:

y(u) = w(u)�B(u; T )� F; (16)

where B(u; T ) = EQ
u

n
exp

�
� R Tu r(s) ds

�o
is the time-u price of a default-free discount bond

with maturity date T . This class of recovery payout is equivalent to the assumption that

recovery is a fraction of the price of a treasury bond with the face value F and maturity T

(see Longsta� and Schwartz (1995), Jarrow and Turnbull (1995) and Collin-Dufresne and

Goldstein (2000)). We will refer to this model as the recovery of treasury model (hereby,

the RT model).

3. Recovery payout is a fraction of the pre-default debt value:

y(u) = w(u)� P (u�; T ): (17)

which is the RMV model of DuÆe and Singleton (1999). In this model, the impact of

recovery is subsumed within the defaultable discount rate.2

Several observations are in order about recovery conventions. One, the �rst two models assume

no recovery of the unpaid coupons. At �rst glance, equations (15) and (16) can be seen as di�erent

ways of de�ning recovery rate w(u) given the process for recovery y(u). As mentioned also in

Jarrow and Turnbull (1995), Longsta� and Schwartz (1995) and DuÆe and Singleton (1999), the

2See, among others, the empirical applications in Bakshi, Madan, and Zhang (2000), Du�ee (1999), DuÆe and
Singleton (1997), He (2000), Liu, Longsta�, and Mandell (2001), and Janosi, Jarrow, and Yildirim (2000). The
DuÆe-Singleton framework (with recovery as a fraction of pre-default debt value) has become an integral part of
credit risk related research.
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recovery de�nition (16) is relatively more complex and requires the knowledge of the term structure

of default-free interest rates. If the process for recovery y(u) is given, the de�nitions (15) and (16)

have no pricing implications. However, the constructs (15) and (16) assume economic content

when they are employed as building blocks for modeling the recovery payout y(u).

While recovery rates may be of second-order consideration for high-rated corporate bonds,

they are crucial determinants of bond values and yields in the default sensitive high-yield debt

market. Existing evidence appears to suggest that default probabilities and recoveries are inversely

related: the recovery payout tends to be low when actual defaults rise and the reverse (Altman

(2001)). However, in the limiting case of no default risk (i.e., treasuries), the recovery rates

become irrelevant. Many such properties of the recovery rate can be incorporated into equations

(15)-(16) with little loss of generality. In light of the empirical evidence, one can postulate w(u)

to be a function of the hazard rate or other state variables. For example, one would not expect

high recovery rates to coincide with high default probabilities. In fact, one such parameterization

will be pursued in Section 3 and empirically implemented in subsequent sections. While easily

relaxed, our recovery conventions assert that bonds by the same issuer have identical recovery

rates regardless of their maturity.

2.2 Characterizing Defaultable Bond Prices

In order to learn about recovery rates from the market bond prices, we need to validate the speci�c

bond pricing model that arises from equation (14) when we adopt the recovery assumptions (15)-

(16). In this subsection we outline a suÆciently wide framework under which equation (14), when

combined with assumptions (15)-(16), is analytically tractable. For these general characterizations,

we impose assumptions about the structure of recovery rates, the hazard rates, the interest rates,

and the default-free discount bond prices (B(t,T)). For the purpose at hand, de�ne, for convenience,

the vector, X(t) � (r(t); h(t); w(t); log(B(t; T )))0. As is traditionally done, assume that the X(t)

dynamics is governed by a Markov-Ito process:

dX(t) = �[X(t); t] dt + �[X(t); t] d!(t) (18)

where the drift coeÆcient, �[X(t); t], is a vector of expected instantaneous changes in X(t) and the

di�usion coeÆcient, �[X; t] is a full-rank local covariance matrix between changes in the (vector)

standard Brownian motion d!(t).

To solve the relevant conditional expectations in (14) for the RFV model and the RT model

(i.e., the recovery payout assumptions in (15)-(16)), de�ne the characteristic function of the future

uncertainty � � (
R u
t [r(s) + h(s)] ds; h(u); w(u); log(B(u; T ))), with density q(�), as shown below
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(see Bakshi and Madan (2000) and DuÆe, Pan, and Singleton (2000)):

J (t; u;�; '; �) � E
Q
t

�
exp

�
�
Z u

t
[r(s) + h(s)]ds+ i�h(u) + i'w(u) + i� log(B(u; T ))

��
(19)

=

Z
exp

�
�
Z u

t
[r(s) + h(s)]ds+ i�h(u) + i'w(u) + i� log(B(u; T )

�
q(�) d�

where �, ' and � are some transform parameters, i =
p�1 and the transforms parameter for the

�rst uncertainty
R u
t [r(s) + h(s)] ds has been set at i. With this substitution for the �rst trans-

form parameter, the characteristic function, J(t; u;�; '; �), is the time-t price of a hypothetical

defaultable claim that pays exp (i�h(u) + i'w(u) + i� log(B(u; T )) at time u. This observation is

immediate by noting that exp (� R ut [r(s) + h(s)] ds ) � q(�) is the defaultable state-price density.

As emphasized in Bakshi and Madan (2000), the spanning properties of the characteristic func-

tions facilitates the spanning and pricing of most claim payo� that rely on �. In what follows,

assume that the characteristic function J(t; u;�; '; �) is suÆciently di�erentiable in its arguments.

By a standard argument, J(t; u;�; '; �) satis�es the partial di�erential equation:

1

2
trace[��0JXX ] + �JX + Jt � (r + h) J = 0 (20)

subject to the boundary condition: J(u; u) = exp (i � h(u) + i 'w(u) + i � log(B(u; T )). We now

prove a correspondence between the characteristic function J(t; u) and defaultable bond prices.

Proposition 2 Suppose the characteristic function, J(t; u), is analytically known by solving the

conditional expectation (19) or the partial di�erential equation (20). With recovery assumptions

(15)-(16), we have:

1. For the class of recovery rates displayed in (15), the defaultable coupon bond price can be

obtained from the characteristic function (19) as follows:

P (t; T ) =

Z T

t
J(t; u; 0; 0; 0) c(u) du + J(t; T ; 0; 0; 0) � F � F

Z T

t
J�'(t; u; 0; 0; 0) du; (21)

where J�'(t; u; 0; 0; 0) denotes the second-order partial derivative of the characteristic func-

tion with respect to � and ', and evaluated at � = 0, ' = 0 and � = 0.

2. For the recovery rate considered in (16), the defaultable coupon bond price is given by the

expression:

P (t; T ) =

Z T

t
J(t; u; 0; 0; 0) c(u) du + J(t; T ; 0; 0; 0) � F � F

Z T

t
J�'(t; u; 0; 0;�i) du; (22)
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where J�'(t; u; 0; 0;�i) is now evaluated at � = 0, ' = 0 and � = �i.

In (21) and (22), each defaultable coupon bond price component is obtained from the charac-

teristic function by combining the operations of di�erentiation and/or evaluation.

The characteristic function e�ectively synthesizes the bond valuation problem in (14). Of

particular note is the use of second-order partial derivative of the characteristic function with

respect to � and ' that renders the analytical tractability of the third term in (14). Additionally,

we observe that on account of the second-order cross-partial derivative in equations (21) and

(22) that closed-form expressions for this �nal conditional expectation would typically be hard to

conjecture even under simple parameterizations of r(t), h(t) and w(t).

Comparing the results in Proposition 2 with the RMV model of DuÆe-Singleton (1999), several

fundamental di�erences emerge from the perspective of modeling debt prices and inferring recovery

rates. Recall that in the DuÆe-Singleton model

P (t; T ) = E
Q
t

(Z T

t
exp

�
�
Z u

t
R(s) ds

�
c(u) du + F � exp

 
�
Z T

t
R(s) ds

!)
: (23)

Although the RMV model is exible in modeling credit spreads via modeling the defaultable

discount rate R(s) � r(s) + (1 � w(s))h(s), it is virtually impossible to empirically di�erentiate

the e�ect of recovery and hazard rates. In contrast, the recovery conventions (15)-(16) lead to

identi�able impacts on credit spreads. Hence the market expectation of recovery rates can be

inverted from the term structure of credit spreads.

Notice that even though recovery and hazard rate appear multiplicatively in equation (14),

it is the presence of the discounted face value that di�erentiates the impacts of hazard rate and

recovery. One may view the second term (i.e., discounted face) as identifying the hazard rate

leaving the recovery rate to be identi�ed by the term that discounts payment on default. The

ability to di�erentiate the impacts of recovery rates and hazard rates is especially useful in pricing

and hedging credit derivatives that are contingent on the default event and/or recovery levels

given default. Therefore, the general recovery formulations presented here are critical to wider

applications in the �eld of credit risk.

While there is overlap with respect to RFV model with DuÆe and Singleton (1999) and DuÆe,

Pan, and Singleton (2000), the proposition also presents in complete the RT model that the DuÆe-

Singleton (1999) paper puts aside as computationally burdensome especially for stochastic recovery

(page 701, second paragraph).

To illustrate the general tractability of the approach outlined in Proposition 2, we consider

three speci�cations for the recovery process. First, suppose that recovery rates are independent
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of the interest rate and the hazard rate. For example, one may write the recovery rate as:

w(u) = 1� e�z; z 2 [0;1]; (24)

where z is independently and identically gamma-distributed with parameters � and � (with mean

�=� and variance �=�2). Here the recovery rate is strictly between zero and one. Under assumption

(16) and the independence of recovery, it follows that equation (22) of Proposition 2 takes the

form:

P (t; T ) =

Z T

t
J(t; u; 0; 0; 0) c(u) du + J(t; T ; 0; 0; 0) � F � F �

�
�

1 + �

�� Z T

t
i J�(t; u; 0; 0;�i) du

(25)

where J�(t; u; 0; 0;�i) is the �rst-order partial derivative of the characteristic function with respect
to � evaluated at � = 0 and � = �i. In this parametric special case, the parameters � and � are

not separately identi�ed and it is just the expected recovery that could be identi�ed.

The previous formulation assumes that the recovery rates are unrelated to the underlying

hazard rate. However, a little reection is suggestive of dependencies in that hazard rates near

zero should be associated with full recovery. Equally relevant is the situation of large hazard rates

when default is likely. But when default is likely, one would expect the recovery rates to be low.

Therefore, one might model w(u) in any of the de�nitions of recovery as functionally related to

the hazard rate h(u), whereby we may specify:

w(u) = 	[h(u)]: (26)

Barring extreme counterexamples, some desirable properties of the function 	[:] are that 	[0] = 1

while 	[1] = 0. We also expect that 	[h] be a decreasing function of the hazard rate. A wide class

of such functions is the collection of completely monotone functions de�ned as Laplace transform

of a positive function, f [z], on the positive half line, or that

w(u) = 	[h(u)] =

Z 1

0
e�z h(u) f [z] dz: (27)

The condition 	[0] = 1 imposes the further restriction that f [z] be a (risk-neutral) density on the

positive half line. A robust two parameter family of such densities is again the gamma density so

that

	[h(u)] =

Z 1

0
e�z h(u) f [z] dz (28)
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=

�
�

� + h(u)

��
(29)

since f [z] = �� z��1 e�� z

�(�)
, and �(:) is the mathematical gamma function. Thus, in this family of

recovery rates, the counterpart to (22) is of the form:

P (t; T ) =

Z T

t
J(t; u; 0; 0; 0) c(u) du + J(t; T ; 0; 0; 0) � F � F

Z 1

0
f [z] dz

Z T

t
J�(t; u; iz; 0;�i) du:

(30)

Therefore, even when a closed-form solution for the characteristic function is available, one may

have to use Gauss-Laguerre quadrature to replace the integral with respect to z by a �nite sum,

an extension we intent to pursue in the future. Unlike equation (25), the impact of recovery

parameters � and � on debt prices of di�erent maturities is di�erentiated on account of the

stochastic evolution of the hazard rate. This potentially permits the identi�cation and estimation

of the recovery parameters from the bond prices.

Up until now, we have considered defaultable bond models where recovery is immediately after

default. However, recovery often occurs at a random time after default which is a double-stopping

time problem. To briey describe how this post-default recovery case can be accommodated

within the framework of Proposition 2, de�ne another stopping time ��(t) > �(t) where �(t) is the

default time process de�ned in Section 1.1, and ��(t) is the recovery time process. The hazard rate

corresponding to the recovery stopping time takes the form: �(u�)�(1���(u�))�h�(u), for default
conditional recovery hazard rate h�(u). Notice that the combined term is zero until the occurrence

of default; after default, the recovery hazard rate is positive until the recovery time. Guided by

Bakshi, Madan, and Zhang (2000, Equation 2), the generic third term in (14) should then be

modi�ed as (ignoring discounting for now): EQ
t

R T
t (1 � �(u�)) d�(u)

R T
u (1 � ��(u�)) y(s) d�

�(s),

to account for recovery at a random time after default. Under suitable assumptions, this double-

stopping time problem reduces to evaluating the conditional expectation:

E
Q
t

(Z T

t
exp

�
�
Z u

t
[r(v) + h(v)] dv

�
h(u)

Z T

u
exp

�
�
Z s

u
[r(a) + h�(a)] da

�
y(s)� h�(s) ds du

)

(31)

with the �rst two terms remaining the same as in (14). This model is considerably more complex

and involves default conditional recovery hazard rate modeling. With appropriate modi�cations

to the characteristic function (19), one can develop defaultable bond prices for both the RFV

model and the RT model. We do not empirically pursue the double-stopping time problem.
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3 Closed-Form Models of Defaultable Debt

Building on results established in Proposition 2, this section presents analytical expressions for the

price of defaultable coupon bonds. Our goal is to address the economic implications of recovery

functions (15)-(16). The resulting closed-form models are the basis for the later empirical appli-

cation. Our speci�c assumptions about the dynamics of the interest rate, the hazard rate and the

recovery rate are as follows. First, we assume that the recovery rate is related to the underlying

hazard rate as shown below:

w(u) = w0 + w1 e
�h(u): (32)

We may note that as h! 0, w ! w0+w1, and h!1, w! w0. Thus, we require the restrictions

that w0 � 0, w1 � 0 and 0 � w0 + w1 � 1.

Assumption (32) is attractive from both theoretical and empirical viewpoints. First, consistent

with extant empirical evidence, recovery is negatively related to default probability. That is,
@w(u)
@h(u) = �w1e

�h(u) � 0. Our set-up is guided by the belief that �nancial distress can diminish

the ability of the borrower to pay its creditors in the event of default (see also equation (8)).

The recovery rate assumption (32) is not only economically appealing but also a�ords technical

tractability. For instance, it leads to a closed-form expression for the characteristic function in

(19) and also permits the analytical valuation of the third (recovery) term in equations (21) and

(22).

Following DuÆe and Singleton (1997, 1999), Du�ee (1999) and Bakshi, Madan, and Zhang

(2000), we make the convenient assumption that the hazard rate is linear in the short interest rate

(under the risk-neutral measure):

h(t) = �0 +�1 r(t); (33)

dr(t) = � ( � � r(t) ) dt + �
q
r(t) dw(t); (34)

where �0 > 0. The parameter �1 reects the correlation between the interest rate and the hazard

rate. Although �rm-speci�c variables can be incorporated into (33), the empirical investigation

of Bakshi, Madan, and Zhang (2000) has shown that this class of hazard rate functions captures

the �rst-order e�ect of default. The single-factor interest rate process is of the Cox-Ingersoll-Ross

(1985) type.

Since the hazard rate and the recovery rate are both a function of the short interest rate, we
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specialize the characteristic function in equation (19) to the following:

J(t; u;�; �) � E
Q
t

�
exp

�
i �

Z u

t
r(s) ds+ i � r(u)

��
: (35)

Solving this conditional expectation results in the analytical solution

J(t; u;�; �) = exp [Y(t; u;�; �) �Z(t; u;�; �) � r(t) ] ; (36)

where de�ning (�) �
p
�2 � 2 i � �2, and noting that

Y(t; u;�; �) =
2� �

�2
log

0
@  exp

�
� (u�t)

2

�
 cosh( (u�t)2 ) + (�� i � �2) sinh( (u�t)2 )

1
A ; and; (37)

Z(t; u;�; �) =
i �  coth( (u�t)2 )� i � �� 2i �

 coth( (u�t)2 ) + �� i � �2
: (38)

Given the solution to the characteristic function (35), the zero-coupon bond price in (16) is then

B(u; T ) = J(u; T ; i; 0). We are now ready to provide the valuation expressions for the defaultable

coupon bonds for both the RFV model and the RT model.

Proposition 3 Let the recovery rate be as displayed in (32) and the hazard rate obey the structure

given in (33). Moreover, let the interest rate follow the square-root process (34). The following

pricing results are then obtained by combining the characteristic function (35) with equations (21)

and (22) of Proposition 2:

1. For the RFV model with recovery convention (15), the defaultable coupon bond price is:

P (t; T ) =

Z T

t
e��0(u�t) � J(t; u; i(1 + �1); 0) � c(u) du + e��0(T�t) J(t; T ; i(1 + �1); 0) � F

+F w0 �0

Z T

t
e��0(u�t) � J(t; u; i(1 + �1); 0) du

�i F w0 �1

Z T

t
e��0(u�t) � J�(t; u; i(1 + �1); 0) du

+F w1 �0 e
��0

Z T

t
e��0(u�t) � J(t; u; i(1 + �1); i�1) du

�i F w1 �1 e
��0

Z T

t
e��0(u�t) � J�(t; u; i(1 + �1); i�1) du; (39)

where J�(t; u;�; �) represents the partial derivative of the characteristic function (36) with

respect to �.
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2. For the RT model with recovery convention (16), the defaultable coupon bond price is:

P (t; T ) =

Z T

t
e��0(u�t) � J(t; u; i(1 + �1); 0) � c(u) du + e��0(T�t) J(t; T ; i(1 + �1); 0) � F

+F w0 �0

Z T

t
e��0(u�t) � J(t; u; i(1 + �1); 0) � J(u; T ; i; 0) du

�i F w0 �1

Z T

t
e��0(u�t) � J�(t; u; i(1 + �1); 0) � J(u; T ; i; 0) du

+F w1 �0 e
��0

Z T

t
e��0(u�t) � J(t; u; i(1 + �1); i�1)� J(u; T ; i; 0) du

�i F w1 �1 e
��0

Z T

t
e��0(u�t) � J�(t; u; i(1 + �1); i�1)� J(u; T ; i; 0) du: (40)

In (39) and (40), the partial derivative J�(t; u;�; �) can be analytically computed as:

J�(t; u;�; �) = exp [Y(t; u;�; �) �Z(t; u;�; �) � r(t)]

�
@Y(t; u;�; �)

@�
� @Z(t; u;�; �)

@�
� r(t)

�
:

(41)

The exact expressions for the partial derivatives
@Y(t;u;�;�)

@�
and

@Z(t;u;�;�)
@�

are presented in (48)

and (49) of the Appendix.

Proposition 3 derives the solution for defaultable coupon bonds under stochastic recovery rates,

respectively for the RFV model and the RT model. As equations (39) and (40) demonstrate, the

pricing solution can be complex and needs the evaluation of several terms even for the single-

factor interest rate case. For this reason, we have not empirically pursued a multi-factor extension

although its characteristic function can be derived for a large family of multi-factor interest rate

(hazard rate) models. In the Appendix, we present an example where the hazard rate has a three-

factor structure and the interest rate is driven by a two-factor structure. The details are available

in (50)-(59) of the Appendix. To stay focussed on the modeling issues and the corresponding

empirical work, the interest rate is assumed to follow the single-factor interest rate process in

equation (34).

Each bond model incorporates a exible correlation structure between the hazard rate, the

interest rate, and the recovery rate. As stressed in DuÆe and Singleton (1999), the burden of

analytically computing defaultable bond prices can be substantial especially for the RT model.

By presenting the characteristic function of the remaining uncertainty, we have resolved this

analytical intractability mentioned by DuÆe-Singleton. For instance, we do not have to restrict

recovery rates to be a constant or assume that the evolution of the hazard rates is independent of

the evolution of the risk-free interest rate. In fact, we can introduce additional complexities such

as orthogonal jumps and still arrive at closed-form formulations of defaultable debt prices, both
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for the RFV model and the RT model.

In each model, the role of recovery rate is captured by the pricing terms involving w0 and

w1. Observe that the constant recovery rate assumption can be obtained by setting w1 � 0 in

(32). Accordingly, the last two terms in the pricing formula (39) and (40) are set equal to zero. In

applications involving the general model (39) and (40), the structural parameters can be estimated

by �tting the model determined prices to the market determined prices. Provided the valuation

model is not overly misspeci�ed, the model can be employed to reverse-engineer recovery rates

from the market debt prices. Although tedious, the partial derivative of the defaultable bond price

with respect to the interest rate and the recovery rate parameters can be determined analytically

for a large parametric model class. These sensitivities can be used in hedging interest rate and

recovery rate risks.

With the convenience of the solutions (39) and (40), the yield-to-maturity on the defaultable

coupon bond, R(t; T ), can be determined by solving the non-linear equation:

P (t; T )�
Z T

t
c(s) exp [�R(t; T ) (s� t)] ds� F exp [�R(t; T ) (T � t)] = 0; (42)

which now potentially takes into account both recovery and default considerations.

In the remainder of the paper, we implement parametric defaultable bond models using a sam-

ple of BBB-rated corporate bonds. Our empirical investigation provides several new perspectives

about recovery and default:

1. Which recovery model is better supported by the market debt data? That is, we evaluate

the out-of-sample pricing implications of the RFV, the RT, and the RMV models;3

2. What is the quality of market implied recovery rates embedded in individual bond prices?

In particular, we assess the stability of the implied recovery rates.

In discussing possible model misspeci�cations and related recovery estimates, we throughout

take the stand that the market fairly prices defaultable coupon bonds.

4 Description of BBB-Rated Corporate Bond Sample

Based on several considerations, we investigate model implications using a cross-section of coupon

bonds rated BBB by Standard and Poor's. First, the impact of recovery payout is relatively small

3DuÆe and Singleton (1999) use a four-factor model in comparing RMV and RFV models. It is important to
note that there is no empirical or market test involved in this exercise but a mere comparison of analytical models
with one another. Our intent is to provide empirical test that rigorously compare recovery concepts.

17



on higher-rated corporate bonds. For example, given the low likelihood of default for AA-rated

bonds, the recovery-in-default is of a secondary concern. On the other hand, creditors care much

more about recovery payout for lower-rated and speculative-grade (high-yield) bonds. However,

most high-yield bonds are callable. To match our theoretical developments we have eliminated

bonds with option features. We are therefore led to test our defaultable bond models using BBB-

rated straight bonds. This data set provides a reasonable environment for judging the performance

of defaultable bond models.

For model implementation purposes, the cross-section of treasury prices is also required. To

achieve our empirical objectives, the corporate coupon bond data and the treasury STRIPS prices

are obtained from Lehman Brothers Fixed Income Database. For each issuing �rm, the database

contains entries on the month-end at price, the accrued interest, the maturity date, the annual

coupon rate, and the yield-to-maturity. Trader bid quotes on treasury STRIPS are used to estimate

the risk-neutralized parameters of the interest rate process. The STRIPS data is comprehensive

with 20,173 quotes. Since there are few straight corporate bonds prior to 1989, our corporate bond

(and treasury STRIPS) sample spans the nine-year period from January 1989 through March 1998.

Several empirical issues must be addressed at the outset. One, matrix quotes are discarded {

only trader bid quotes are employed in our empirical exercises. Two, bond issues with maturity

longer than one-year are retained due to their higher liquidity. To facilitate parameter estimation,

we only consider �rms that have at least four bond issues outstanding per month. We also con�ne

our empirical analysis to bonds that pay semi-annual coupons (only a small number of bonds pay

coupons at frequencies other than semi-annual). Lastly, we focus on a sample of 25 BBB-rated

straight bonds (to economize on space). The resulting bond sample has 12,228 observations.

Three-month treasury bill rate is adopted as the proxy for the short interest rate r(t). Corpo-

rate bonds with remaining maturity between 1 and 5 years are classi�ed as short-term. Similarly

bonds with maturity between 5 and 10 (higher than 10) years are classi�ed as medium-term

(long-term). None of the debt issues in our sample are secured by any collateral.

For a sample of individual bonds (Delta Airlines, Enron, Federal Express, K-Mart, and Wells

Fargo), Table 1 reports the summary statistics for (i) the yield-to-maturity, (ii) the coupon rate,

(iii) the bond maturity, and (iv) the number of bonds outstanding. According to this table, Delta

Airlines has an average yield-to-maturity of 8.68% with an average coupon rate of 9.59%. Across

the entire sample of 25 bonds, the average yield and coupon rate is 7.70% and 8.73%, respectively.

As seen the average bond maturity in the sample varies between 5.19 years to 17.86 years, with a

sample average of 9.71 years (average standard deviation of 5.76 years). The number of corporate

bonds outstanding can vary from a minimum of 4 to a maximum of 13 each month with an average

of 6.68 issues across all bonds. This dataset forms the basis for our empirical inquiry on the role
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of recovery in default modeling.

5 Estimation of Debt Models and Results

Each defaultable bond pricing model requires three sets of parameter estimates: (1) the (risk-

neutral) interest rate parameters (�, � and �), (2) the hazard rate parameters (�0 and �1) and (3)

the recovery rate parameters (w0 and w1). It must be recognized that the hazard and recovery rate

parameters are unique to each �rm. However, the interest rate parameters are economy-wide. For

this reason, we estimate the interest rate parameters using the cross-section of treasury STRIPS

(as in Bakshi, Madan, and Zhang (2000)). The same interest rate parameters are employed for

discounting cash-ows in the entire cross-section of corporate bonds.

Consider the estimation of the interest rate parameters. In this estimation procedure, we �rst

solve for the parameters that minimize the root-mean-squared percentage pricing errors (one for

each month t). The objective function is:

min
�;�;�

vuut 1

N

NX
n=1

 
B(t; Tn)�B(t; Tn)

B(t; Tn)

!2

8t; (43)

where B(t; T ) is the market price of the treasury STRIPS and B(t; T ) is the corresponding model

price (given by the Cox-Ingersoll-Ross model). To account for time-variation in the risk premia,

we have allowed the interest rate parameters to vary from one month to the next. This means

that we have estimated the parameter time-series f�(t); �(t); �(t) : t = 1; : : : ; Tg. Our estimation
procedure results in the following average parameter values for the interest rate process: � = 0:48,

� = 9:4% and � = 0:31. These estimates imply a long-run interest rate mean of 9.4% and a

long-run interest rate volatility of about 9.5%. Furthermore, the parameter values are in-line with

such well-known counterparts as Chan, Karolyi, Longsta�, and Sanders (1992) and Pearson and

Sun (1994). Suggestive of parameter stability, the coeÆcients of variation are each estimated to

be lower than 0.5. With an average root-mean-squared error of 1.68%, the square-root model (34)

provides reasonably low in-sample errors when �tted to the term structure of interest rates.

Since it must be conducted separately for each issuing �rm, the estimation of �0, �1, w0 and

w1 is admittedly more cumbersome. To be concrete, consider the recovery convention (16) which

posits recovery payout to be a fraction of the discounted face value. Let P (t; T ) be the theoretical

RT model bond price (as displayed in (40)) and let P (t; T ) be the corresponding market price.

Substituting the estimated interest rate parameters into the RT model price, we solve for the

remaining structural parameters that �t the individual bond prices (the implicit market valuation
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process) as closely as the model structure would allow:

RMSE(t) � min
�0;�1;w0;w1

vuut 1

N

NX
n=1

 
P (t; Tn)� P (t; Tn)

P (t; Tn)

!2

8t: (44)

For greater parameter accuracy, the minimization (44) is done only once each quarter by combining

all bonds within that quarter (the available monthly cross-section is not suÆciently large). For

instance, the �rst quarterly estimation employs all corporate coupon bonds available in April, May

and June of 1989. Finally, the above optimization procedure is repeated for every �rm, thereby

yielding a (�rm-speci�c) quarterly time-series of
n
�0(t);�1(t); w0(t); w1(t) : t = 1; : : : ; T4

o
. In

order to a�ord each model an equal treatment, the same procedure is applied in estimating the

RFV model (and the RMV model).

Table 2 reports the parameter estimates for the RFV model and the RT model (in Panels

A and B respectively). An interesting empirical �nding is that the estimate of the hazard rate

parameter �1 is negative (across all the 25 �rms). Speci�cally from Panel B it can be observed

that the mean �1 estimate is -0.145 for Delta Airlines, -0.132 for K-Mart and -0.14 across all

the 25 �rms (see also Du�ee (1999)). Economically a �1 < 0 implies a negative co-movement

between the hazard rate and the interest rate. In a market in which interest rates are trending

upwards, one would expect �1 to be negative as higher interest rates tend to increase the earning

capacity relative to the cost of debt. The reverse logic applies to periods of declining interest

rates: falling interest rates would cause higher default probabilities on account of lower earnings

capacity relative to debt cost.

Regardless of the model, Panels A and B of Table 2 indicate that the sample estimate of �0 are

positive. This is essential to guarantee positive hazard rates especially since �1 is negative. For the

RT model, its reported value ranges between 1.6% to 3.9% with an average �0 of 2.6%. The linear

speci�cation of hazard rates is accordingly positive for interest rates below 18.57%. Additionally,

for each �rm and each model, the estimated hazard rates are strictly positive. Comparing the

hazard rate estimates, we can see that �0 is systematically higher for the RFV model, while the �1

estimate from the RT model is slightly more negative. This means that the hazard rate estimate

for the RFV model is generally higher than that for the RT model. The documented di�erence in

the hazard rate estimates is a potential source of the di�erential pricing between the two models.

The recovery rate parameters of equation (32) are also consistent with theoretical predictions.

Each for the RFV model and the RT model, the parameters w0 and w1 are strictly positive.

Furthermore, as hypothesized, w0 + w1 is strictly less than unity. Overall, Table 2 suggests

considerable cross-sectional variations in w0 and w1. This �nding may suggest that bond prices
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contain information about expected recovery levels. For the RFV model, the estimate of w0 varies

between 0.135 in the case of K-Mart to 0.248 for Enron. The respective average w0 and w1 is

0.24 and 0.245. These estimates imply that a 4% worsening of the hazard rate is associated with

a 1% decline in the recovery rates. Irrespective of the �rm, the estimated w0 and w1 appear

higher for the RT model. The discrepancy in the recovery rate parameters are also suggestive of

di�erential pricing and hedging implications between the two recovery conventions. The cross-

sectional properties of the implied recovery rates w(u) = w0 + w1e
�h(u) will be discussed in

subsection 3.4.

Based on the RMSE and the in-sample absolute dollar pricing errors (denoted DPE), we

may draw the conclusion that the recovery of treasury model �ts the bond data better than its

undiscounted counterpart. To illustrate this point, take Delta Airlines as an example. The RFV

model has an average RMSE of 2.05% and a DPE of $1.93 (per $100 par value), which is larger

than the RMSE of 1.57% and $1.41 obtained with the RT model. Table 2 veri�es that in-sample

error measures are larger for the RFV model than for the RT model for virtually every �rm.

In summary, this subsection points to three principal empirical �ndings. First, our single-factor

parameterization of the hazard rate, the interest rate, and the recovery rates result in theoretical

defaultable bond prices that reasonably match market bond prices. Second, the recovery assump-

tion (16) appears to provide a better in-sample �t than assumption (15). Finally, the estimates of

recovery and hazard rates are not at odds with theory. Our empirical methods appear suÆciently

robust in capturing the �rst-order e�ect of recovery embedded in market bond prices.

6 What Concept of Recovery Does the Data Support?

While the in-sample comparison among models is an important guideline for selecting valuation

models for marking-to-market purposes, a more stringent test is whether one model outperforms

another based on out-of-sample pricing-error measures. To construct such measures, we rely on

parameters estimated from bond prices in the previous three months and use them to compute

the model determined prices in the following three months. More precisely, the out-of-sample

prices in month t (for the RFV and the RT models) are obtained by substituting the prior-month

treasury and prior-quarter default parameters and the current market interest rate, in the bond

formulas (39) and (40). Finally, subtracting the model determined bond price from the market

price produces the dollar pricing error series, or the market price normalized counterpart: the

percentage pricing error series. Yield basis point errors are similarly constructed as the di�erence

between the market and the model determined yields (see equation (42)). For each out-of-sample

yardstick, we report the mean absolute error, the mean error and the standard deviation of the
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errors.

To put our empirical results into perspective, Table 3 �rst contrasts the out-of-sample valuation

implications of the RFV model versus the RT model. Essentially our results aÆrm that the RT

model has better out-of-sample performance relative to the RFV model. There are several reasons

supporting this conclusion. Let us start with the pricing quality implicit in the yield basis point

errors. The �rst matter of note is that the average absolute yield basis point errors for the RT

model is 24.10 bps compared to 28.88 bps for the RFV model (when averaged across all the 25

�rms). The second matter of note is the lower overall dispersion of the yield basis point errors for

the RT model. As the table documents, the average across-�rm standard deviation of the yield

basis point errors is 27.03 bps with the RT model compared to 29.60 with the RFV model. In

fact, the standard deviation of the yield basis point errors for the RT model is lower across most

�rms. Similar conclusions can be drawn on the basis of mean yield basis point errors.

Dollar pricing errors con�rm the superiority of the RT model from a di�erent angle. Notice

that the database scales bond prices to have a par value of $100, so the reported errors must

be interpreted accordingly. Based on the absolute dollar errors, the model di�erence is also

economically signi�cant: the pricing di�erence translates into $2200 for every $1 million notional.

In view of the fact that it has lower absolute dollar pricing errors for 23 out of 25 �rms, the

RT model also consistently outperforms the RFV model. The lower standard deviation of the

dollar pricing errors again supports the broader argument that the RT model better tracks market

prices and is closer to the market's valuation process. A �nal inspection of the table reveals that

the percentage pricing errors do not materially alter the performance ranking between the two

recovery models.

The outperformance of the RT model over the RFV model is also statistically signi�cant. To

conduct statistical tests, a representative error series is created by pooling the absolute errors

across our bond sample each month. The mean of the di�erence between the RFV model and the

RT model errors, divided by the standard error of the di�erence of the error series is t-distributed.

The null hypothesis that the RFV model's absolute yield basis point errors are equivalent to

those from the RT model is rejected with a t-statistic of 7.49. When absolute percentage pricing

errors are adopted as the benchmark, we �nd an equally strong rejection with a t-statistic of 9.27.

Our evaluation establishes that the RT and the RFV models are signi�cantly di�erent on both

statistical and economic grounds.

Are our conclusions also robust controlling for bond maturity? To address this concern, we

sort our bond sample into short-term, medium-term and long-term. Fixing maturity, we aggregate

pricing errors across available �rms at each month and then in the time-series. Our assertion that

the RT model is less misspeci�ed is still valid. For instance, our results verify that for short-term

22



bonds the average absolute yield basis point errors for the RT model is 26.69 bps, compared to

34.83 bps with the RFV model (not reported in the table). In the case of medium-term bonds, a

likewise divergence is documented: the RT (RFV) model provides an average absolute yield basis

point errors of 27.19 (32.55) bps. According to the t-tests discussed earlier, the RFV model is still

rejected in favor of the RT model (the minimum t-statistic across maturities is 7.56). Consequently

the recovery of treasury model provides superior valuation irrespective of the bond maturity.

We now compare the pricing quality of a version of the RMV model (DuÆe-Singleton (1999))

with the RT and the RFV models. Before we present these results, the assumptions behind the

RMV model need some clari�cations. In the RMV model price (23), we suppose that R(t) �
��0+��1 r(t), where r(t) obeys the square-root process displayed in (34). In our testing framework,

the RFV, the RT and the RMV models all share the single-factor interest rate feature. Estimating

the parameters ��0 and ��1 for each �rm, we compute the out-of-sample pricing errors. When

consolidated across all the �rms, we obtained the following average absolute pricing errors for

the RMV model:

Yield Basis Point Errors (in bps): All=28.60, Short=35.81, Medium=30.34.

Dollar Pricing Errors (in $): All=1.67, Short=0.97, Medium=1.70.

Comparing these numbers with the corresponding entries in Table 3, we can observe that

the single-factor version of the DuÆe-Singleton model does worse than the RT model (the t-

statistic for the yield basis point errors is higher than 8). In addition, the RMV model is virtually

indistinguishable from the RFV model (with t-statistics below 2). The largest discrepancy between

the various models emerges for short-term bonds: the yield basis point errors for the RT model,

the RFV model, and the RMV model are respectively 26.99, 34.83, and 35.81 bps. For medium-

term bonds, the yield basis point errors for the RFV model and the RMV model are 32.55 and

30.34 bps, which are also higher than the RT model's 27.19 bps (and statistically signi�cant). In

sum, the RT model is still a �rst-place performer.

Two additional exercises are carried out to examine the general robustness of the results. When

we divided the full sample into two subsamples, (1989:03-1993:12 subsample and the 1994:01-

1998:03 subsample) a similar performance ranking was documented. That the RT model has

better performance is not an artifact of the sample period considered.4

4The possible sources of the divergence between the RT and the RFV models warrants some remarks. First,
we calculated the model-implied default probabilities and found it to be systematically higher for the RFV model.
For example, the average default probability is 2.55% with the RFV model versus 1.94% for the RT model. If the
RT model is closer to the market's valuation, then the RFV model appears to overestimate the default probability.
Another di�erence arises due to recovery, which is also overestimated with the RFV model. To be exact, the
contribution of the �nal model pricing term in (14) is 3.53% (of the market price) for the RT model compared
to 5.74% with the RFV model. The better performance of the RT model can be possibly attributable to a more
accurate assessment of hazard and recovery rates.
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To further understand the di�erences and similarities between di�erent recovery models, we

implemented the RFV and RT valuation models under the constant recovery case. Constraining

w1 � 0 in the RT model (40), we �nd that the RT model continues to perform better than the

RFV (with w1 � 0 in (39)) and the RMV models.

However, a somewhat surprising result that emerges is that the pricing errors obtained from

the stochastic recovery rate are quantitatively similar to those obtained with w1 set to zero. This

seemingly contradictory result can be explained in two ways. First, since the models are estimated

each quarter, it is possible that by allowing w0 to uctuate from one quarter to the next it implicitly

accounts for the time-variation in the recovery rates. In other words, the remaining structural

parameters adjust internally so as to bring the model price closer to the market's valuation process

as reected in the market prices. The next reason may be that the variation in individual recovery

rates may not be so strongly correlated with default probabilities for BBB-rated bonds. Stronger

pricing implications may surface when the time-varying recovery rate model is applied to high-yield

bonds.

To summarize, a signi�cant �nding from this part of the investigation is that debt data is

more supportive of the RT model. This may be because the RT model recognizes time-value of

money considerations; its supposition that full recovery is made upon the payment of the face

value of debt may be more closer to truth in market valuation. Perhaps less plausibly so, the

RFV model asserts that full recovery necessitates the immediate payment of the face value at

the default time. Therefore, one interpretation of the lesser misspeci�cation of the RT model is

that the defaultable bonds are priced in such a way that the market explicitly incorporates this

type of recovery uncertainty in their intrinsic value calculations. As also argued in Longsta� and

Schwartz (1995), the recovery in the RT model may be consistent with typical reorganizations in

which security holders receive new securities rather than cash for their original claims. Our results

validate that the market is not optimistic about immediate cash recovery in default. Time-value

considerations are an important determinant of recovery modeling.5

5One may additionally argue that if the underlying bond to be priced was a par bond and the market sought
compensation for all future coupons in present value terms for full recovery, then RFV model is the most appropriate
candidate for modeling recovery. This suggests another recovery de�nition

y(u) = w(u)�B(u; T )� F + w(u)

Z
T

u

B(u; s)� c(s)ds;

which can be interpreted as recovery of outstanding value. The superiority of the RT model over the RFV model may
just be a reection of low coupons in the sample for which RFV is clearly incorrect when recovery of outstanding value
is the right answer, and RT is the better approximation. From the perspective of the recovery of outstanding value
model, both models may thus be misspeci�ed. As the pricing formula now needs a double numerical integration for
the term involving remaining coupons, this model is considerably more involved for actual implementation purposes.
At a heuristic level, none of the bonds in our sample have coupon rates that are small enough to be ignored.
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7 Market Implied Recovery Rates

Even when the RFV, the RT, and the RMV, models are comparable along the pricing dimension,

understanding recovery rate estimates obtained from the RFV and the RT models is potentially

important. As already reasoned, model-speci�c recovery rates inverted from debt prices can serve

as a benchmark for writing claims contingent on recoveries (just like options on VIX, the im-

plied volatility index). Therefore, this subsection addresses two related empirical issues: Are

quantitative estimates of (risk-neutral) expected recovery rates in-line with the historical evidence

(adjusted for risk aversion)? Which recovery convention is better suited for writing contingent

claims? We investigate the stability of implied recovery rates.

Let us �rst elaborate on the contractual aspects of recovery associated with the RFV, the RT

and the RMV models. To do so, consider a generic bond with a $100 par value. Suppose only

$40 is recovered in the event of default (i.e., y(u)=$40 in equation (14)). According to the RFV

model, the recovery rate, w(u), can be measured in a straightforward manner and is 40%. In

contrast, in the DuÆe-Singleton de�nition of recovery, the recovery rate requires the knowledge of

the pre-default debt value either from market sources or the model. Even when the RMV model

is perfectly speci�ed, the reliance on the pre-default debt value renders this notion of recovery

rate unattractive from contractual standpoints. The measurement of the recovery rate in the

RT model is relatively less cumbersome but still requires the speci�cation of the yield curve.

Therefore, despite the relatively worse out-of-sample performance of the RFV model, it may yet

be an attractive choice to measure and manage recovery related risks.

To nonetheless provide an empirical comparison between the RFV and the RT models (the

recovery rate is unidenti�ed in the RMV model), the expected recovery rates are backed-out from

market bond prices as follows. Focus on the RFV model where w(t) = w0 + w1 e
�h(t) and h(t) =

�0 + �1 r(t). The out-of-sample implied recovery rate is then constructed by taking the prior-

quarter estimates of w0, w1, �0 and �1, in conjunction with the current market interest rate. Table

4 presents the mean, the standard deviation, the maximum and the minimum expected recovery

rates. The �rst point to note is that the RFV model and the RT model provide plausible (risk-

neutral) recovery rates that lie between zero and one. The second point that deserves emphasis

is that the two models imply di�erent recovery rates. Take the case of Delta, where the implicit

average recovery rate is 44% with the RFV model; this departs substantially from 58.5% with the

RT model. Table 4 con�rms that the average recovery rate is 48.5% for the RFV model compared

to 56.7% with the RT model. Our empirical methodology is informative about expected recovery

rates.

In particular, these implied estimates are broadly comparable to actual recovery rates. Even
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though not directly comparable due to the impacts of risk aversion, the calculations of Altman

(2001) shows that recoveries for high-yield bonds for all seniorities has a weighted-average of $36.88

per $100 face value ($43.77 for senior secured). Similarly, the recovery rates have averaged between

40% and 60% in Weiss (1990) for unsecured debt. Potentially useful in managing recovery risk,

our recovery estimates can be employed, among others, to gauge which bonds are subject to lower

recovery (within the same credit class). Moreover, these estimates can be adopted as signals for

changes in credit rating or setting capital adequacy requirements.

Albeit not stressed earlier, it must be recognized from (15) and (16) that the di�erences in the

recovery rates for the RFV and the RT model have information content on the arrival of default.

For the same dollar recovery, y(u), notice that ratio of the RFV recovery rate to the RT recovery

rate is the present value of face divided by the face value. At a heuristic level, one may think of

this ratio as exp(�r(T � u)) where u represents the default time. For a �xed T , a higher (lower)

ratio suggests earlier (distant) default time. Certainly one would expect the recovery rate from

the RFV model to be below those from the RT model and this is consistently observed. From

the recovery rate estimates in Table 4 and the average maturity displayed in Table 1, a rough

approximation indicates an expected arrival of default at 6% interest rate of around 10.97 years

for Delta Airlines (i.e., 15.72 - 1
0:06 log(0:440=0:585)) versus an early default time of 3.09 years for

K-Mart. For the entire sample, the relative recovery rate comparison is indicating a default-time

of about 7.10 years.

Third, the estimates of the recovery rates appear more time-stable for the RFV model. We

can draw this inference by comparing the standard deviation of the recovery rates between the

RFV model and the RT model. One possible implication of the higher volatility of the RT model

determined recovery rate is that it may be a less desirable contracting choice for writing recovery

rate related contingent claims. The RFV convention may be preferable on grounds of simplicity

and more reliable recovery estimates.

We should emphasize that market-implied recovery rates are impacted by risk aversion con-

siderations in the change of measure to risk-neutral, and physical assessments of recovery (as

elaborated in Proposition 1). Risk-neutral recoveries cross-sectionally are a�ected by possibly

�rm-speci�c di�erences in counterparty risk aversion and �rm-speci�c moments of the physical

recovery density. For instance, it is possible that �rms with more left-skewed (physical) recovery

densities may have their expected recoveries discounted further. A properly speci�ed risk-neutral

recovery rate model may be the key to understanding cross-sectional and time-series variations

in credit spreads and market implied recovery rates. More research is therefore needed in the

theoretical and empirical modeling of the recovery rates.
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8 Conclusions

Under the recommendations set forth by the Basle committee, market participants subject to

credit risk should not just evaluate the risk of default but also assess recovery if default occurs.

Despite substantial progress in modeling credit risk, existing debt models have only provided a

minimal parameterization of recovery. Even less appreciated is which recovery concept is appro-

priate in default modeling. The relative pros and cons of a recovery concept versus another still

remains a less than understood phenomenon at the empirical level. Realizing the potential signif-

icance of jointly modeling recovery and default probability, this paper has presented a framework

for pricing (and hedging) defaultable securities under alternative recovery payout de�nitions. Ex-

pected recovery is a crucial modeling element in applications ranging from high-yield bonds to

sovereign bonds. If the recovery rates are misspeci�ed then the default probabilities can get dis-

torted. In a default context, our theoretical analysis shows that risk-neutral expected recovery

rates are related to risk aversion and �rm-speci�c moments of the physical recovery density.

Reconciling prevailing modeling frameworks, we show how to price defaultable coupon bonds

when recovery is an exogenous proportion of the face value, or when recovery is a proportion of

the discounted face value. The apparent strength of the methodology comes from three modeling

traits. First, our theoretical characterizations allow distinct roles for recovery rates and default

probabilities. In our parameterizations, recovery rates can depend on default probabilities and

other state variables. Second, the models are amenable to analytical solutions for defaultable

debt for a wide class of stochastic processes describing the recovery rates, the default probabilities

and the risk-free interest rate. Third, unlike DuÆe-Singleton (1999) where default-adjusted dis-

count rates subsume the e�ects of recovery, recovery rates now have identi�able impacts on credit

spreads. Hence some of these models can be employed to infer market expectation of recovery

levels embedded in the prices of debt instruments. These recovery conventions are also attractive

from the perspective of writing recovery contingent claims. Such claims can assist in the eÆcient

allocation of default risks across the economy.

When our parsimoniously parameterized defaultable debt models are tested using a sample

of BBB-rated bonds, we �nd that the recovery speci�cation that relies on discounted face value

provides a better �t to the data. Introducing dimensions of time-value in the recovery payout to

creditors is found to reduce out-of-sample pricing errors relative to both a version of the DuÆe-

Singleton (1999) model and the recovery of face value model. Finally, the average recovery rates

implicit in defaultable coupon bonds are broadly consistent with empirical studies on unsecured

debt. For the purpose of designing recovery contingent claims, we note that de�ning recovery as

a proportion of face has substantially lower standard deviation for market implied recovery rates.

27



This paper has made a special attempt to model recovery and quantify its impact on defaultable

debt.
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Appendix: Proof of Proposition 3

We wish to prove the defaultable coupon bond valuation models (39)-(40). Guided by Propo-

sition 2, consider the characteristic function

J(t; u;�; �) � E
Q
t

�
exp

�
i �

Z u

t
r(s) ds+ i � r(u)

��
;

=

Z
exp

�
i �

Z u

t
r(s) ds+ i� r(u)

�
q(�) d�;

where q(�) is the risk-neutral density � � (
R u
t r(s) ds; r(u)). With interest rate dynamics (34), the

characteristic function satis�es the partial di�erential equation:

1

2
Jrr �

2 r + Jr � (� � r) + Jt + i � r J = 0 (45)

subject to the boundary condition J(u; u) = exp (i � r(u)). By direct substitution it can be veri�ed

that the solution to (45) is given by exp[Y(t; u)�Z(t; u) �r(t)]. Then solving the resulting Ricatti
equations produces the closed-form expressions for Y(t; u;�; �) and Z(t; u;�; �) displayed in (37)

and (38) of the text.

Inserting h(u) = �0 +�1 r(u) and y(u) =
�
w0 + w1 e

�h(u)
�
� F into the pricing equation (14)

results in (40). In deriving each term in equation (40), we note that

@J(t; u;�; �)

@�
=

Z
exp

�
i �

Z u

t
r(s) ds+ i� r(u)

�
i r(u) q(�) d�: (46)

Therefore,

@J(t; u;�; �)

@�
= exp [Y(t; u;�; �) �Z(t; u;�; �) r(t)]

�
@Y(t; u;�; �)

@�
� @Z(t; u;�; �)

@�
r(t)

�
: (47)

The required partial derivatives can be determined analytically as:

@Y(t; u;�; �)
@�

=
2 i � � sinh( (u�t)2 )

 cosh( (u�t)2 ) + (�� i � �2) sinh( (u�t)2 )
; (48)

and,

@Z(t; u;�; �)
@�

=
2��2 + i 2 coth2( (u�t)2 )� i �2�
 coth( (u�t)2 ) + �� i � �2

�2 : (49)

Evaluating (47)-(49) at � = i (1 + �1), � = 0 and � = i�1 leads to the desired closed-form
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expressions. All the terms in the defaultable coupon bond models (39)-(40) are therefore in

explicit closed-form. 2.

An Illustrative Multi-factor Defaultable Bond Valuation Model

In this example setting, we assume that (i) the short interest rate obeys a two-factor process

and the hazard rate obeys a three-factor process. We continue to maintain that recovery is of the

type (32). For the interest rate dynamics assume that

dr(t) = �r (m(t)� r(t) ) dt+ �r d!r(t); (50)

dm(t) = �m (�m �m(t) ) dt+ �m d!m(t); (51)

where m(t) represents the long-run stochastic mean interest rate and !r and !m are correlated

standard Brownian motions (Bakshi, Madan, and Zhang (2000) and Collin-Dufresne and Solnik

(2001)). Let �j;k � Covt (!j; !k) for any j and k. For the hazard rate we make the simplifying

assumption that

h(t) = �0 + �1 r(t) + �2m(t) + �3 g(t); (52)

where g(t) is some �rm-speci�c variable that is governed by an autonomous process, as in:

dg(t) = �g (�g � g(t) ) dt + �g d!g(t): (53)

In this higher-dimensional setting, the characteristic function of the remaining uncertainty is given

by:

J(t; u� t;�; �) � E
Q
t

�
exp

�
�
Z u

t
[r(s) + h(s)] ds+ i � r(u) + i � g(u)

��
: (54)

We assert that

J(t; u� t;�; �) = exp [�Y(t; u)�Z(t; u)� r(t)� U(t; u)�m(t)� V(t; u)� g(t)] ; (55)

where:

Z(t; u;�; �) � �(i �+ i � �1) e
��r (u�t) +

(1 + �1)

�r

�
1� e��r( u�t)

�
; (56)

U(t; u;�; �) � �i � �2 e
��m(u�t) +

(1 + �1 +�2)

�m

�
1� e��m(u�t)

�
(57)

�(1 + �1) + �r (i �+ i ��1)

(�m � �r)

�
e��r(u�t) � e��m(u�t)

�
;

V(t; u; �) � �i � �3 e
��g (u�t) +

�3

�g

�
1� e��g (u�t)

�
; (58)
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and �nally

Y(t; u;�; �) � �i��0 +�0(u� t)� 1

2
�2r

Z u

t
Z2(s) ds+ �m �m

Z u

t
U(s) ds+ �g �g

Z u

t
V(s) ds

�1

2
�2m

Z u

t
U2(s) ds� 1

2
�2g

Z u

t
V2(s) ds� �g;r �g �r

Z u

t
Z(s)V(s) ds

��m;r �m �r

Z u

t
Z(s)U(s) ds: (59)

The bond prices for the RFV and the RT model can now be obtained via Proposition 2 and

Proposition 3, and are in analytical closed-form. 2
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Table 1: BBB-rated Corporate Bond Sample

This table reports the yield-to-maturity, the coupon, the maturity structure, and the number of
bonds outstanding for a sample of 25 BBB-rated corporate bonds. For each variable we display the
mean, the standard deviation, the maximum, and the minimum. Included in this bond sample are
Amr Corp, Arizona Public, Boise Cascade Corp, Champ International, Csx Corp, Delta Airlines,
Enron Corp, Fedex Corp, First Energy, First Interstate, Georgia Paci�c, K-Mart, Niagara Mohawk
Hld., Oryx Energy, Paine Webber, PECO Energy, Safeway, Tele-Communications, Tenneco, Time
Warner, Unicom Corp Hld., United Airlines, Unocal, Usx Corp, and Wells Fargo. These bonds are
straight bonds with S&P determined credit rating of BBB or lower. The sample period is March
1989 through March 1998. This sample contains 12,228 observations. The data is collected from
Lehman Brothers Fixed Income Database.

Delta Enron Fedex K-Mart Wells All 25

Fargo Firms

Yield Mean 8.68 7.41 7.73 8.59 6.92 7.70
(in %) Std. 1.15 1.10 1.43 1.77 0.88 1.12

Max. 11.02 10.79 10.94 17.53 8.81 8.68
Min. 5.73 4.10 4.68 3.95 4.10 6.81

Coupon Mean 9.59 8.65 9.26 9.16 7.70 8.73
(in %) Std. 0.66 1.21 1.17 1.93 0.91 1.00

Max. 10.37 10.00 10.00 12.50 8.75 9.90
Min. 8.25 6.45 6.25 7.75 6.12 6.94

Maturity Mean 15.72 8.43 6.54 17.35 6.23 9.71
(in years) Std. 9.17 4.19 5.23 8.35 2.74 5.76

Max. 29.98 19.97 19.97 30.02 10.01 17.86
Min. 1.00 1.00 1.04 1.00 1.00 5.19

No. of Mean 7.81 7.85 4.50 5.11 5.17 6.68
Bonds Std. 1.99 2.16 0.65 0.52 0.61 1.46

Max. 10.00 14.00 6.00 6.00 6.00 13.09
Min. 4.00 4.00 4.00 4.00 4.00 4.10
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Table 4: Market Implied Recovery Rates

This table reports the recovery rates by backing-out the relevant recovery rate parameters from the
market price of bonds. Out-of-sample recovery rates are computed (each quarter) by computing
w(t) = w0+w1 e

�h(t), where h(t) = �0+�1 r(t). The estimates of �0, �1, w0, and w1 are taken from
estimations done in quarter t-1. Reported is the average, the standard deviation, the maximum,
and the minimum recovery rate. The respective averages across all 25 �rms is shown under \All 25
Firms." The RFV model assumes that dollar recovery, y, is y(u) = w(u)�F , while the RT model

assumes that y(u) = w(u)�B(u; T )� F . The estimation methodology is as described in table 2.

Delta Enron Fedex K-Mart Wells All 25

Fargo Firms

RFV Model Mean 0.440 0.505 0.516 0.253 0.482 0.485
Std. 0.156 0.048 0.097 0.124 0.019 0.109
Max. 0.893 0.733 0.862 0.538 0.500 0.629
Min. 0.150 0.476 0.476 0.150 0.405 0.253

RT Model Mean 0.585 0.634 0.591 0.595 0.541 0.567
Std. 0.239 0.184 0.186 0.297 0.088 0.148
Max. 0.964 0.966 0.961 0.963 0.960 0.654
Min. 0.140 0.512 0.164 0.140 0.509 0.482
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