
https://helda.helsinki.fi

Understanding the Role of Requirements Artifacts in Kanban

Liskin, Olga

ACM

2014

Liskin , O , Schneider , K , Fagerholm , F & Münch , J 2014 , Understanding the Role of

Requirements Artifacts in Kanban . in Proceedings of the 7th International Workshop on

Cooperative and Human Aspects of Software Engineering (CHASE 2014) . ACM , pp. 56-63

, International workshop on cooperative and human aspects of software engineering ,

Hyderabad , India , 02/06/2014 . https://doi.org/10.1145/2593702.2593707

http://hdl.handle.net/10138/153356

https://doi.org/10.1145/2593702.2593707

submittedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.

Understanding the Role of Requirements Artifacts in
Kanban

Olga Liskin, Kurt Schneider
Leibniz Universität Hannover

Welfengarten 1
30167 Hannover, Germany

+49 511 76219667
{olga.liskin,kurt.schneider}@inf.uni-hannover.de

Fabian Fagerholm, Jürgen Münch
Department of Computer Science, University of Helsinki

P.O. Box 68
FI-00014 University of Helsinki, Finland

+358 9 19151383
fabian.fagerholm@helsinki.fi,

juergen.muench@cs.helsinki.fi

ABSTRACT
User stories are a well-established way to record requirements in
agile projects. They can be used as such to guide the daily work of
developers or be split further into tasks, which usually represent
more technical requirements. User stories and tasks guide
communication and collaboration in software projects. However,
there are several challenges with writing and using user stories in
practice that are not well documented yet. Learning about these
challenges could raise awareness for potential problems.
Understanding how requirements artifacts are used for daily work
could lead to better guidelines on writing stories that support daily
work tasks. Moreover, user stories may not be appropriate to
capture all kinds of requirements that are relevant for a project.

We explore how to utilize requirements artifacts effectively, what
their benefits and challenges are, and how their scope granularity
affects their utility. For this, we studied a software project carried
out in the Software Factory at the Department of Computer
Science, University of Helsinki. We investigated the requirements
artifacts and then interviewed the developers and the customer
about their experiences. Story and task cards have helped the
participants throughout the project. However, despite having a
Kanban board and rich communication within the team, some
requirements were still too implicit, which also led to
misunderstandings. This and other challenges revealed by the
study can guide future in-depth research.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications –
methodologies.

General Terms
Management, Documentation, Experimentation, Human Factors.

Keywords
Requirements Artifacts, User Stories, Kanban, Collaboration.

1. INTRODUCTION
Good requirements communication is crucial to the success of
agile projects. Especially in agile projects, a big emphasis is laid
on collaborating with the customer in order to implement his or
her requirements as well as possible. For this purpose, agile
methods put user stories into the center of the process [2],[4].
While there is agreement about the usefulness of the user story
oriented approaches, there is little focused research on the exact
benefits and challenges. This results in lacking guidelines for how
to use user stories [19] and tasks and jeopardizes the stories’ and
tasks’ effectiveness in projects. One aspect that we believe
influences the handling of a requirements artifact is the amount of
functionality it deals with at a time, described as granularity in
this paper.

Granularity of a requirements artifact has many facets. It can be
understood in terms of: (See [14])

• Clarity/vagueness. If a user story leaves out a lot of
information, it is written vaguely.

• Concreteness/abstraction. A user story can describe the
desired functionality as an abstract concept or sketch
a concrete manifestation of this concept.

• Scope. A user story that implies a lot of system
functionality (and accordingly, implementation
work) has a large scope.

In order to change the scope of a user story, the desired
functionality must be changed. For example, in order to reduce
implementation work, some of the desired functionality must be
removed or the story must be split into smaller ones. In contrast,
the clarity or abstractness of a user story is varied by providing
different information about the desired functionality that the
customer has in mind, while the functionality remains the same

While all three aspects are important for the quality of a user
story, we focus on scope granularity. If a user story’s scope is too
large, the team working with it might become less agile. If a story
covers a large chunk of requirements, the developers
implementing it get fewer chances to get customer feedback,
check their progress, and adjust their plans. Also, the desired
functionality might become vague and less tangible for the
developers resulting in more unexpected issues. However, when
stories are smaller, there are usually more of them.

We try to find out how developers and customers in agile projects
work with requirements artifacts, which demands they have, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CHASE’14, June 2 – June 3, 2014, Hyderabad, India.
Copyright 2014 ACM 978-1-4503-2860-9/14/06 …$15.00.

how the scope or the number of requirements artifacts affects their
work. In order to approach these questions, we investigate a
software project at the Software Factory at the Department of
Computer Science, University of Helsinki. We observe the
requirements artifacts and take a detailed look at the participants’
experiences and challenges throughout the project. These help us
approach our research questions and uncover interesting points for
discussion. For example, we find that user stories that take one
week or longer often are too vague and should be split into
smaller stories.

The remainder of this paper is structured as follows. Section 2
describes literature that is related to our work. Section 3 presents
the context of the study, namely the observed Software Factory
project. In Section 4, we introduce the design and leading
questions of our study. Section 5 presents the study results, which
we then discuss in Section 6. Section 7 concludes the paper.

2. RELATED WORK
In an empirical study, Cao and Ramesh [3] investigate general
requirements engineering practices in agile projects. Abdullah et
al. [1] specifically address communication patterns in agile
requirements engineering.

Sharp et al. investigate communication within agile teams [22]
and in particular the role of physical artifacts like story cards and
the Wall [23]. They observe real teams and use the distributed
cognition approach in order to understand communication in agile
teams. Petre et al. [21] compare the use of physical artifacts
between agile and traditional products. While the other authors
deal with team communication aspects, we specifically focus on
requirements communication. Therefore, our work also addresses
aspects of collaboration with the customer.

The effective handling of user stories has been in the focus of
recent literature. Cohn [4] and Nawrocki [17] provide general
guidelines on how user stories should be written. Wake has
created the acronyms INVEST and SMART to manifest criteria
for good user stories and tasks [25].

Kanban does not incorporate sprints and therefore estimation of
user stories is optional. However, a user story’s scope still
influences the workflow so that estimation and splitting of user
stories are relevant techniques that help control a story’s scope.
Further, the method used in the observed project is a prominent
variant of Kanban called Scrumban [12] (see Section 3 for a more
detailed explanation). Scrumban in turn does include sprints and
thus relies on story and task estimations. Cohn [4], [5] and
Leffingwell [13] provide insights on estimation and splitting of
user stories. Gottesdiener [9] considers the INVEST criteria and
advises on how to split user stories according to them. Miranda et
al. [16] focus on improving estimation strategies and the
estimations themselves. Fægri [7] investigates how estimation can
be established as a team activity and observes barriers to team
estimation in a specialist organizational environment. He reports
how poor planning and too optimistic estimates affected higher
work pressure. Haugen, Mahniç et al. and Tamrakar et al. [10]
[15] [24] examine whether introduction of planning poker
improves the team’s ability to estimate user stories.

Oza et al. [18] investigate the impacts of Kanban on
Communication and Collaboration. In a questionnaire study, they
investigate frequency and importance of communication and
collaboration and discuss patterns. Ikonen et al. [11] present an
empirical investigation of the impact of Kanban on project work
and also look into the visualization and communication aspects.

They present a framework for understanding project work, which
consists of nine literature-based aspects. They find out that
visualization and communication were supported by Kanban and
had positive effects on the project.

Petersen and Wohlin [20] apply cumulative flow diagrams in lean
projects to visualize the flow and define new measures related to
these. They evaluate the measures in an industrial case study.

3. STUDY CONTEXT
The study was carried out in the Software Factory laboratory at
the Department of Computer Science, University of Helsinki. The
Software Factory consists of a physical facility and a framework
procedure for selecting and conducting projects in which teams of
senior computer science students collaborate with industry
partners on software development projects that have real business
relevance [6]. In this study, the partner company was Tellybean,
Inc., a startup based in Helsinki, Finland. Tellybean produces a
novel video calling service targeted for a late-adopter market.
Users of the service are assumed to have a low level of technical
proficiency, and thus there is a heavy emphasis on simplicity and
ease of use in the service. The service is delivered as a hardware-
software product that connects to the user’s existing TV set.

The student team initially consisted of seven master’s-level
students, of which two exited the project during the first few
weeks due to scheduling conflicts with other courses. The
remaining five-person team worked for a total of seven weeks in
close collaboration with Tellybean’s representatives, mainly the
lead architect and designer of the technical platform. The project
started with an initial meeting during which the overall service
vision was presented and the team worked closely with the
customer to form an initial understanding of the goals of the
project. During the remainder of the project, the team worked in a
self-organised manner, with regular customer meetings, daily
team meetings, and direct contact to the customer representative
as needed. The team was supported by three coaches, who helped
the team with project management, customer communication, and
quality assurance. However, the coaches’ role was supportive and
they were instructed to let the team solve their own problems
rather than providing solutions.
The team used a variant of the Kanban task scheduling system, a
method which originates in Lean and Agile software development
[11]. The variant used in this project is called Scrumban, and is a
combination of Scrum project management practices and a
Kanban board [12]. Practices from the Scrum methodology
included daily team meetings and week-long sprints with an end
demo for the customer and a retrospective session where the team
reflected on their progress in the previous sprint. The Kanban
board consists of columns, which represent task states, into which
task cards are placed to signify the stage in which each task is
currently. Markers representing team members are placed on the
task cards to indicate who is working on which task. The objective
is to keep an even flow of tasks and to gain a visual overview of
the current state of the project.

4. STUDY DESIGN
In this study, we used direct observation, surveying and
interviews to gain information on the requirements artifacts that
were used in the project described in the previous section.
Qualitative analysis was used to gain insights into the role of the
artifacts. In this section, we present the detailed research questions
and our procedures for data collection and analysis.

4.1 Research Questions
Our objective was to examine the role of requirements artifacts in
Kanban by studying the customer’s and developers’ perspectives
in a real project. We formed the following research questions in
order to focus the study. They guide us in our interviews.

RQ1: How are requirements artifacts (stories and tasks) used
to facilitate team communication and collaboration?
Story and task cards contain information about the requirements
and present them in a visible way on the board. We want to find
out, how the participants used these requirements artifacts for
communication and collaboration. Also, we wanted to see, for
which communication purposes the cards were used (user
requirements, work items, etc.).
RQ2: Does the granularity of requirements artifacts affect
communication and collaboration?
Granularity (in the meaning of scope) greatly influences the work
that is attached to a story or task card. Changing the overall
granularity of requirements artifacts therefore could influence the
whole workflow within a Kanban project. Story and task cards
can be on a high level and contain a large amount of requirements
and functionality. Alternatively, they can be divided into smaller
items – with the consequence that each item might become more
tangible, but at the same time there are more of them. We want to
find out, whether differences can also manifest themselves in the
communication and collaboration.

Further, we sought to link effects on collaboration to concrete
granularity values. As a weaker form, we wanted to at least isolate
granularity ranges that proved to be beneficial or problematic.

RQ3: How are user stories, tasks, and actual implementation
work mapped to each other?
Splitting a user story into smaller stories or tasks is an often-used
but not strongly documented technique. Especially if granularity
of user stories and tasks influences development, knowing how to
split an artifact well is crucial.

We want to understand how artifacts in this project are split and
which effects this has. Requirements can be split vertically or
horizontally. User stories can be split into smaller stories or into
tasks. Actual implementation work could consist of further
subtasks that are implicit. All these are interesting things we want
to understand.

4.2 Data Gathering and Analysis
We recorded all user story and task cards that were written by the
students. Each task belonged to a user story. After each sprint, the
students filled out a questionnaire where they entered each story
card they had worked on and the time that they worked on it.
Further, the students stated whether the duration had corresponded
with what they had implicitly expected or whether the
implementation of the task took longer or shorter time.

At the end of the project, we interviewed all participants. We used
semi-structured interviews. Based on our research questions, we
formed leading topics for the interviews. We conducted 5
interviews in total, one with the customer (C) and 4 with the
developers (D1 – D5). Two of the developers (D3 and D4) had to
be interviewed together because of their personal schedules. On
average, an interview took 30 minutes.

We recorded all interviews, transcribed them and coded all
relevant statements. Then, we grouped all coded statements based
on the interview topics, i.e. all statements about a certain topic
were grouped together.

5. RESULTS
In this section, we describe our findings from the interviews and
from the collected story and task cards. First, we describe the
process and notable events. Then, in the following sections, we
address the research questions.

Figure 1 summarizes the relevant themes in our results and their
connections.

5.1 The Actual Process
5.1.1 Process and Planning
Figure 2 summarizes the process, requirements artifacts, and
events throughout the project. The height of the requirements
artifacts on the vertical axis depicts their duration within the
sprint. The striped artifacts were planned for but not completed
within Sprint 1. Each sprint started on a Wednesday and took one
week. Between two sprints, the developers and the customer had a
meeting (“customer meeting”). The developers presented the work
of the previous sprint and then talked about the next week. The
customer told the team what was the next functionality he wanted
and then they talked about the technical details of what had to be
done for this.

Figure 1: Themes that emerged in the interviews

Usage&of&&
Requirements&&

Ar2facts&

Time&pressure&

Team&size&

Project&&
complexity&

Good&internal&&
communica2on&

Communica2on&

Es2ma2on&

Making&&
requirements&

explicit& Granularity&

Planning&

SpliCng&
Requirements&

Ar2facts&

User&value&

Work&coordina2on&&
among&&

team&members&

Feedback&Loops&

After the customer had left, the team did a planning session.
There, they wrote the actual story and task cards for the sprint.
Usually, a sprint contained one story card, which illustrated the
goal for the sprint. Sometimes, the team had talked with the
customer on the task level and wrote a story card that summarized
all the tasks mentioned by the customer.

Mostly, a story was divided into 2-3 tasks, which often mainly
facilitated work distribution among team members. They divided
the story into the client-side and server-side implementations, and,
where applicable, the definition of the protocol. The user stories
and task cards for the current sprint were placed on a physical
Kanban board in the development space.

There was no explicit backlog. Instead, the members had rather a
fluid backlog in their heads. There existed a slide from the first
meeting with the customer, which contained a vision together with
all essential and dispensable features.

5.1.2 Creation of a prototype based on only a vision
In the first sprint, the customer was not available. In the sprint
planning he was substituted by another person from the
customer’s company, who was in charge of the overall user
experience of the service. This person presented only the vision of
the whole product. This information alone was not enough for the
developers to clearly understand what needed to be done.
Therefore, the first sprint went into the wrong direction. The
outcome was a prototype, from which the developers had learned
some relevant things, which however were of no use for the
customer.

5.1.3 Two miscommunications
Two important issues emerged in the interviews. They had played
a major role within the project.

“The overplanned task”: One of the planned and (half-)
implemented subtasks was not required for the sprint. Two
developers (D2 and D5) had interpreted the customer’s
requirements for a sprint in the way that they saw three desired
sub-functions, although the customer actually only had wanted
two of them. The third task was not completely superfluous for
the product, but had such a low priority that the customer did not
want it in one of the current or next sprints. One developer (D1)
knew that. However, he and D3 had not been at the sprint
planning. Instead they only received their tasks and started
working on these. On the last day of the sprint, after D2 and D5
had worked on the wrong subtask for two or three days, they
realized that they would not be able to make it and brought this
subtask up in a team conversation. Only then, D1 could clarify
that this subtask was not in the sprint’s focus.
This issue shows three things. For that story, there were
communication issues with the customer, communication issues
inside the team, and a planning issue, which only allowed the
developers to see on the last day of the sprint that they would not
be able to implement everything they had intended to do.

“The suggestion that was a requirement”: The customer wanted a
user requirement (authentication) to be solved with the help of a
specific library (passport.js). He mentioned it in the customer
meeting. The developers, however, understood it as a suggestion
and solved the user requirements with their own – in their eyes
simpler – method. Only in the next customer meeting the
customer saw that the desired library had not been used. This had
to be fixed in the next sprint.
This event shows a communication issue with the customer.

5.2 How are requirements artifacts (stories
and tasks) used to facilitate team
communication and collaboration? (RQ1)
5.2.1 Value of user stories and tasks
Both stories and tasks had a value for the developers. The user
stories were seen as helpful to understand what the actual goals of
a sprint were. Further, it gave the developers a good feeling to see
what benefit for the user they had created at the end of a sprint.
(“In a way, it was good, because at least we get some direction
where to go.”, D1)
Tasks divided a user story into smaller pieces. Often, a story was
divided into a client-side and a server-side task, which were then
implemented by a developer pair each. The tasks were further
divided into subtasks. Sometimes, this happened explicitly by
writing the subtasks on the task card, often the splitting happened
only implicitly when a developer planned how to solve the task.
The splitting was considered as important by the developers. It is
what in the first place made the big sprint goal tangible to them
and lead their daily work. (“It's more, like, usable. Because, if you
have once sentence – [the customer] wants to see active clients or
something. Everybody is like, "ok", but these [tasks] are the
actual things to do. And a story is more like the topic of the
week.”, D1) (“Cut stories to small tasks. Like... that's making it
easier to implement and also easier to focus, I think. […] And
also you feel like you are doing something. You see the results.”,
D2) (“[…]it divides a big part into smaller ones, so we can focus
on smaller ones. Also, it kind of explained what we need to do for
this task, step by step.”, D5)

Although the developers saw a value in the stories and cards, they
tried to minimize the amount of items within a sprint. One reason
for this was that they felt highly pressed for time and did not want

Figure 2: Project overview with sprints, requirements
artifacts and notable events. The height of artifacts depicts

their duration in the sprint.

Setup,'Learning'
Technologies'0'

1'

2'

3'

4'

5'

Sprint'

“The%
overplanned%

task“%

“The%sugges3on%
that%was%a%

requirement“%

Story''
Card'

Task''
Card'

Event'
(See'SecAon'5.1.3)'

Start/End'of'Sprint'

Customer'MeeAng'

Planning'Session'

to waste much by maintaining too detailed a current project status
on the board. Another reason was that they felt that they did not
need very thorough planning in a project this small.

5.2.2 Kanban board vs. implicit communication
In this team, there was much communication. The developers
were sitting in the same room almost all the time, paired up on
most tasks, and had lunch together, where they often
communicated about the current status of their respective tasks.
Because of the small team and project size and because of the rich
communication, the members did not see a great need of the
Kanban board for their communication. (“So, we constantly were
talking, so there [was] no information point [in the board] - that
"ok, now I'm doing this and this" - to write 5 more [cards] daily.
It was more like informing the coaches.”, D1)

The developers saw value in the board for making things visible.
Since they themselves did not depend on this additional visibility,
they saw the board’s greatest use in informing the coaches (as
more external persons) about what was going on in the project.
One developer, who was responsible for quality assurance, also
stated that he found the overall view provided by the board
helpful for deciding which quality assurance tasks were most
appropriate for the according sprint.

One member found that his actual work was completely detached
from the task cards on the board. Later, he remarked that he was
working on the client side mostly on his own and did not feel the
need to coordinate with others. (“We would talk to the customer
also on a technical level and then we would make the tasks up by
ourselves. So, we would be living on this low abstraction level, but
then, when doing [sprint planning], we would have to think at a
high level, just for the sake of how this works. This was
unnecessary and frustrating to me, in a way”, D3)
Interacting with the customer also happened mainly through
communicating with him in the weekly customer meeting. They
discussed the topic for the next sprint in great detail, because the
customer was also experienced with the technical aspects of the
desired product. Since the developers wrote the actual story and
task cards after the customer was gone, he did not see the actual
cards before the next meeting (at the end of the sprint).

5.2.3 Additional value from explicit information
Although all team members found that their internal
communication was sufficient, they still had communication
issues, namely the two issues explained in Section 5.1.3. These
consisted of misunderstandings the respective parties were not
aware of. However, in both cases, there existed a representation of
one of the parties in the tasks. For the overplanned task, a task
card stated all three subtasks the developers intended to
implement. If the customer or the other two team members had
seen this task, they might have noticed the misunderstanding.
Equally, for the suggestion that was a requirement, there was a
task card that explained how the developers were going to satisfy
the user story. If the customer would have seen this task, he might
have noticed that the developers were going to implement the
story without using the desired library.

We asked all participants in the interviews, whether they thought
that showing the tasks to the customers might have helped with
the misunderstandings. They all believed that showing some form
of externalized tasks (definitions of done, task cards, meeting
minutes) would have helped. However, this is only speculation
and possibly not the only solution to this problem.

5.3 Does the granularity of requirements
artifacts affect communication and
collaboration? (RQ2)
In the interviews, the participants did not directly recount
shortcomings they experienced
The participants were previously not familiar with the concept of
granularity, especially in the sense in which we mean it. They
stated that in general they could imagine working with smaller
stories and tasks, but they did not see the need for it due to the
small project size. However, we saw some effects that we bring in
connection with the story granularity.

5.3.1 Length of Feedback Loops
The developers asked for customer feedback after a user story has
been implemented. Even after they decided to communicate more
often in the course of sprints, the developers asked the customer
about feedback after they had implemented a user story.
Therefore, in this setup, the size of a user story directly influences
the length of feedback loops.

5.3.2 Planning Precision
The developers did not estimate their story and task cards in
detail. However, by planning a story or task into a sprint, they
implicitly estimated that it would get finished within the sprint. In
particular, the sum of all tasks should take one week to be
implemented by four or five developers.

In general, the developers found it difficult to predict how long a
task will take. (“The estimations of the tasks are really hard, so I
don't know whether it takes one day or three days. We had like an
overall vision that "that’s doable in one week."”, D1)

In one of the first sprints, two developers had underestimated one
of their tasks. They had expected the task to take approximately
one week. Only on the last day of the sprint, were the developers
able to predict that they would not implement the task on time.

After this sprint, the team planned more defensively. They only
took things into the sprint, when they were sure that they would
finish it in the sprint. The effect in the following sprints was that
the team always finished early with the tasks.

5.3.3 Problematic granularity ranges
Most stories and tasks took one week. Since the developers had
little experience with smaller items, we are not able to relate
effects to a specific size. The developers did not see the
granularity of their stories or tasks as problematic. They stated
that in a team like theirs, where there is a lot of communication, it
was ok to have relatively vague stories and tasks.
However, our observations showed that with stories and tasks of
this size, some negative effects occurred. First, we saw
communication issues. When a weeklong story was discussed as a
whole, it was not always clear, what exactly was included in the
story and what might be excluded (see Section 5.1.3). Further, we
saw planning issues. For a task that covers so much functionality
at a time, the developers were only able to predict whether it
would fit into a certain time window when it was already very late
in the sprint.

Further, we identified issues that arise when stories or tasks are
made smaller. Since there will be more of the artifacts in turn, the
cost to maintain all artifacts rises. Especially, moving cards in-
between linked development tasks can disturb implementation.
(“If you are in a hectic working mode, "ok, now I need to stop and
write some [cards] [for the next] 10 minutes“.” D1) Also,

planning and estimating all small tasks takes a lot longer. (“To
make a good plan, it's quite time-consuming. And the sprint
planning was right after the customer meeting, which is like at
three o'clock in the afternoon. And most of the team members are
ready to go home. So, they just don't have the mind to do it well.”,
D5) (“I think, we only had two sprint plannings that were quite
thorough and clear. and actually, for both plannings it took two
hours, which is quite long for us.”, D5)

Splitting a user story into smaller pieces also has an additional
effect: if a user story gets too small, it can lose in value for the
customer. (“No. because, this [task a)] doesn't bring anything to
the end user. Maria [- the persona -] doesn't see that. So, that was
the story […] that the end user has something to experience or a
benefit that makes her life easier. So, that [task a)] doesn't
actually do anything; you can't see that.”, C)

5.4 How are user stories, tasks, and actual
implementation work mapped to each other?
(RQ3)
5.4.1 Horizontal Splitting of User Stories
The developers mainly split user stories into tasks, as compared to
splitting them into smaller stories. The main purpose was to
coordinate work among team members. Most sprints contained
one story and the developers divided it into work packages that
each pair could focus on. The team members stated that splitting a
story into tasks helped them to make it more tangible, what needs
to be done. (See Section 5.2.1.)

The tasks split a story in a horizontal way, i.e. a task consisted of
multiple user-oriented parts, but covered only one technical tier.
The most prominent division was between the client and server
side. Most of the tasks took almost the full week.

We asked the developers if they could imagine splitting their
stories vertically, i.e. one item (story or task) contains one user-
oriented piece and implements it on all technical levels. They
thought that this would be possible but did not see additional
value in this. They thought so mainly because their project and the
team were so small and they had such a good understanding of
what needed to be done.

5.4.2 Early Interfaces
To facilitate coordination of their work in the middle of a sprint,
the developers used to define a shared interface as early as
possible in the sprint. This happened via the definition of the
protocol between client and server.
This allowed the developers to integrate and test parts of
implemented functionality often in the sprint, although their tasks
actually took almost the whole sprint. With this strategy,
coordination did not occur in relation to a finished task but at
independent coordination points in the course of a task.

5.4.3 Actual Implementation Work as Implicit
Subtasks
For dividing work among pairs, the developers wrote actual task
cards and used them on the Kanban board. The task cards
explicitly reflected this division of responsibility. Division into
subtasks, however, was either not reflected by task cards at all or
only by writing the subtasks on the respective task card. (“I think,
for some weeks, I had like only one ticket there and that's what I
do. But of course, that's only for the Kanban, because the real
thing is not that I do only one thing in a week.”, D1)

The developers preferred to have a clean Kanban board with as
few cards as possible. One reason for this was the constant hurry
the team felt. They felt like using much time to reflect on all small
happenings would waste too much development time. (“It was
more like "ok, we have these four [cards] on the Kanban board, if
I know what to do, I would take extra time for me to split them
into smaller [cards] and then always update it daily.” D1) (“but
our mindset was "ok, let's not waste time on this because we will
lose half a day to do [planning] properly. Because there was like
a constant hurry, to actually complete the stuff.”, D1)

Another reason was because the team was small and co-located.
The team members felt like they were aware of what was
happening in the team, so that they did not need extra task cards to
reflect that. (“So, maybe we were not so focused on the board to
check. ... I have done one project earlier, where we had nine
people on the team. Then the board is necessary, I think, to know,
what's the [status], what others are doing.”, D2)
In general, the developers saw a value in making small tasks
visible. For example, in other projects they already had used tasks
to represent what a team member is implementing on a particular
day. (“Ok, this was almost like real-life work - but in the real-life
work situation, I think, trello would be better, or maybe
duplicated somehow. Because lots of people work like - ok, we
were always in class, but normal people work remotely and so on,
so it would be nice to know in details what the team members are
doing.”, D1) (“Yes. Even for a small team like us, there were some
disagreements about the requirements. So, for a larger team,
there is a larger probability [of miscommunication] to happen.”,
D5)

6. DISCUSSION
We have seen many interesting events in this study, which we
would like to discuss.

Requirements artifacts that take one week or more to implement
are too vague.
The investigated project mainly dealt with requirements artifacts
that took one week to be implemented by one or two pairs. In two
of five sprints, the team experienced collaboration issues that we
also attribute to the granularity of the requirements artifacts. The
size of the artifacts affected misunderstandings as well as
planning precision.

In the investigated case, the team was small, the project was
comprehensible, and communication was good. However, even
under such good circumstances, communication and collaboration
problems occurred. In bigger or more detached teams, the
probability of such problems is even higher.

In addition, we have previously discovered that such a relatively
big size of requirements artifacts is not untypical in user story-
based projects. In an earlier survey [14] with about 50
practitioners, about a half of our participants stated that 30% or
more of their user stories take one week or more to implement.
They also suggest that feedback and tangibility are more
problematic for larger user stories.
Therefore, we recommend splitting requirements artifacts whose
granularity is in the range of one week or more.
Requirements must be made explicit
Despite good communication in the team, misunderstandings
happened in the course of the project. Misunderstandings are hard
to spot just with regular communication, because often, the
participants are not aware that the other party has a different

understanding (“Symmetry of Ignorance”, [8]). They might not
even mention the part that contains the misunderstanding.

Therefore, it is important to communicate about requirements on
as concrete a level as possible. In the studied project, there existed
a textual representation of the conflicting part in both
miscommunication cases. However, it was only seen and
considered by some of the participants. All participants believed
that if the customer would have seen some textual representation
of the developers’ interpretations, the miscommunications could
have been discovered earlier.

The participants suggested different forms of textual
representations. In addition to the tasks themselves, definitions of
done or meeting minutes with outlined decisions were suggested.
However, it needs to be noted that in long textual representations
like meeting minutes, relevant information might be difficult to
find.

Requirements artifacts in agile development are exactly the key
for this activity. When openly displayed to everybody, they are a
means to effectively and efficiently represent what will be
implemented and make requirements visible.

This underlines the indispensability of requirements artifacts in
agile projects. Further, integrating the artifacts in a meeting where
everybody is present (like customer meetings) helps to make sure
that everybody takes note of the artifacts. Mechanisms for
ensuring that artifacts have been seen and understood could
include signing off each artifact separately, and for more critical
cases, testing that the artifact has been understood by posing
questions that will reveal differences in interpretation.
Collaboration challenges in Kanban
We have seen that it is not trivial to collaborate in Kanban.
Effective collaboration requires a lot of discipline from all
participants. Although the process and the practices already
support communication to a great extent, it can still happen
quickly that not all practices are followed and collaboration
suffers.

Our results show that the customer has to be involved in the
Kanban process. If the team uses Kanban only internally and, for
example, does not include requirements artifacts in customer
meetings, the collaboration might suffer from misunderstandings.
The customer might feel that she does not get what she wants; the
developers might not know what the customer wants; customer
and developers might not understand each other.
Specifically, a good process that prevents miscommunication
about requirements could incorporate the following items. The
customer should “own” the backlog together with the team, and
the customer should own the “Next” column on the Kanban board.
When both, team and customer, have signed off on a task, the
customer is permitted to put it into the Next column. Then, the
team members can pull tasks from the Next column into
subsequent columns. The customer then needs to be involved
again in the final acceptance of the task.

These are all ideas on how Kanban (and Scrumban) should work
in theory. However, our study shows how difficult it is for the
team and customer to understand how this interaction is supposed
to work and how difficult it is for them not to bypass the system
and start to collaborate in an ad-hoc manner.
The second challenge emerged in the planning process. In
Kanban, the backlog, planning, and estimations are optional.
Since the focus is on the flow of tasks, it is not important to
predict how long a task will take. When using a timeboxed

method like Scrumban, however, they become crucial. We have
seen that too simplistic sprint planning can result in incorrect
estimations of what will be delivered within one iteration. If a task
is underestimated and then not delivered, this might result in a
lack of trust. The other way around, when the amount of doable
work is underestimated, the sprint needs to be filled up with
additional tasks. This might slow down development. Especially,
if the customer does not have control over what gets added to the
sprint, she might feel that having to wait for the end of a sprint is a
burden.

6.1 Limitations
We have investigated the concrete events and experiences in one
specific project setting. Our results are not generalizable to all
other agile projects. The time period of the studied project is
relatively short. The team was still in the phase of learning and
adapting to the process. Also, the team members were new to this
process. Their experience might not be comparable to that of
software developers who have experience in Kanban. Therefore,
they might have encountered problems that do not apply to
experienced teams.
Further, the research approach was mainly qualitative, which
reflects subjective opinions of the participants. These cannot be
generalized, but must be seen as indicators of possible challenges.
Despite all limitations, we believe that our results have a value for
many projects. They are suggestions of possible problems and
solutions. They demonstrate that even in small projects,
communication and collaboration issues can occur. The results
show that just good internal communication is not enough for
meeting collaboration challenges.

We also think that many other teams can easily get in a situation
where they face the same challenges. For example, many teams
might drift to rather simplistic planning practices due to time
pressure. Also, teams might be using Kanban only internally
while having a different process to the outside, which affects
customer collaboration and requirements specification. Further,
newly formed teams always need to establish good
communication practices first. Equally, teams that have only
recently moved to Kanban need a certain time to learn.

7. CONCLUSIONS
The presented study provides insights into the use of requirements
artifacts in a Kanban project. It shows that requirements artifacts
played an important role in the project. Although the participants
felt that their communication was good, the project still suffered
from misunderstandings. Especially when the requirements
artifacts were not made visible to all participants,
misunderstandings occurred. In addition, the study points to
collaboration challenges that arise when artifacts are too coarsely
grained in scope size.

In the future, we would like to conduct more in-depth studies in
the area of requirements artifacts. We have seen many possible
challenges and would like to examine these more thoroughly.
Further studies should evaluate, whether our suggested solutions –
like explicitly signing off story cards, splitting story and task
cards and establishing more sophisticated planning – really have
an effect on collaboration in software teams.

8. ACKNOWLEDGMENTS
We would like to thank the project participants for their help by
providing insights in the interviews.

9. REFERENCES
[1] Nik Nailah Binti Abdullah, Shinichi Honiden, Helen Sharp,

Bashar Nuseibeh, and David Notkin. Communication
patterns of agile requirements engineering. In Proceedings of
the 1st Workshop on Agile Requirements Engineering,
page 1. ACM, 2011.

[2] Kent Beck and Cynthia Andres. Extreme Programming
Explained: Embrace Change (2Nd Edition). Addison-Wesley
Professional, 2004.

[3] Lan Cao and Balasubramaniam Ramesh. Agile requirements
engineering practices: An empirical study. IEEE Software,
1:60–67, 2008.

[4] Mike Cohn. User Stories Applied: For Agile Software
Development. Prentice Hall, 2004.

[5] Mike Cohn. Agile estimating and planning. Pearson
Education, 2005.

[6] F. Fagerholm, N. Oza, , and J. Münch. A platform for
teaching applied distributed software development: The
ongoing journey of the helsinki software factory. In
Proceedings of the 3rd International Workshop on
Collaborative Teaching of Globally Distributed Software
Development, 2013.

[7] Fægri, T. E. Adoption of team estimation in a specialist
organizational environment. In A. Sillitti, A. Martin, X.
Wang, & E. Whitworth (Eds.), Agile Processes in Software
Engineering and Extreme Programming (11th International
Conference, XP2010), Vol. LNBIP 48: 28-42. Springer
Berlin Heidelberg, 2010.

[8] G. Fischer. Social Creativity, Symmetry of Ignorance and
Meta-Design. Knowledge-Based Systems Journal, 2000.

[9] Ellen Gottesdiener, Mary Gorman. Slicing Requirements for
Agile Success. Better Software, 2010.
(http://ebgconsulting.com/Pubs/Articles/SlicingRequirements
ForAgileSuccess_Gottesdiener-Gorman_August2010.pdf)

[10] N.C. Haugen. An empirical study of using planning poker for
user story estimation. In Agile Conference, 2006, pages 9–34,
2006.

[11] Marko Ikonen, Elena Pirinen, Fabian Fagerholm, Petri
Kettunen, and Pekka Abrahamsson. On the impact of kanban
on software project work: An empirical case study
investigation. In Engineering of Complex Computer Systems
(ICECCS), 2011 16th IEEE International Conference on,
pages 305–314. IEEE, 2011.

[12] C. Ladas. Scrumban: Essays on Kanban Systems for Lean
software development. Scrumban: Essays on Kanban
Systems for Lean software development, 2009.

[13] Dean Leffingwell. Agile software requirements: lean
requirements practices for teams, programs, and the
enterprise. Addison-Wesley Professional, 2010.

[14] Olga Liskin, Raphael Pham, Stephan Kiesling, and Kurt
Schneider. Why we need a granularity concept for user
stories. In Agile Processes in Software Engineering and
Extreme Programming (15th International Conference,
XP2014), in press. Springer Berlin Heidelberg, 2014.

[15] Viljan Mahnic and Tomaž Hovelja. On using planning poker
for estimating user stories. Journal of Systems and Software,
85(9):2086–2095, 2012.

[16] Eduardo Miranda, Pierre Bourque, and Alain Abran. Sizing
user stories using paired comparisons. Information and
Software Technology, 51(9):1327 – 1337, 2009.

[17] Jerzy Nawrocki, Michal Jasiñski, Bartosz Walter, and Adam
Wojciechowski. Extreme programming modified: embrace
requirements engineering practices. In Proceedings of 2002
IEEE Joint Conference of Requirements Engineering (RE),
pages 303–310. IEEE, 2002.

[18] Nilay Oza, Fabian Fagerholm, and Jürgen Münch. How does
kanban impact communication and collaboration in software
engineering teams? In Cooperative and Human Aspects of
Software Engineering (CHASE), 2013 6th International
Workshop on, 2013.

[19] Chetankumar Patel and Muthu Ramachandran. Story card
based agile software development. International Journal of
Hybrid Information Technology, 2(2):125–140, 2009.

[20] Kai Petersen and Claes Wohlin. Measuring the flow in lean
software development. Software: Practice and experience,
41(9):975–996, 2011.

[21] Marian Petre, Helen Sharp, and Sallyann Freudenberg. The
mystery of the writing that isn’t on the wall: Differences in
public representations in traditional and agile software
development. In Cooperative and Human Aspects of
Software Engineering (CHASE), 2012 5th International
Workshop on, pages 120–122. IEEE, 2012.

[22] Hugh Robinson and Helen Sharp. Collaboration,
communication and co-ordination in agile software
development practice. In Collaborative Software
Engineering, pages 93–108. Springer, 2010.

[23] Helen Sharp, Hugh Robinson, and Marian Petre. The role of
physical artefacts in agile software development: Two
complementary perspectives. Interacting with Computers,
21(1-2):108–116, 2009.

[24] Ritesh Tamrakar and Magne Jørgensen. Does the use of
fibonacci numbers in planning poker affect effort estimates?
In Proceedings of 16th International Conference on
Evaluation & Assessment in Software Engineering (EASE
2012), pages 228–232, IET Conference Proceedings, 2012.

[25] William C. Wake. INVEST in Good Stories, and SMART
Tasks. XP123, 2003. (http://xp123.com/articles/invest-in-
good-stories-and-smart-tasks/)

