
Understanding the Semantic Structure of Noun Phrase Queries

Xiao Li
Microsoft Research
One Microsoft Way

Redmond, WA 98052 USA
xiaol@microsoft.com

Abstract

Determining the semantic intent of web
queries not only involves identifying their
semantic class, which is a primary focus
of previous works, but also understanding
their semantic structure. In this work, we
formally define the semantic structure of
noun phrase queries as comprised ofintent
headsand intent modifiers. We present
methods that automatically identify these
constituents as well as their semantic roles
based on Markov and semi-Markov con-
ditional random fields. We show that the
use of semantic features and syntactic fea-
tures significantly contribute to improving
the understanding performance.

1 Introduction

Web queries can be considered as implicit ques-
tions or commands, in that they are performed ei-
ther to find information on the web or to initiate
interaction with web services. Web users, how-
ever, rarely express their intent in full language.
For example, to find out “what are the movies of
2010 in which johnny depp stars”, a user may sim-
ply query “johnny depp movies 2010”. Today’s
search engines, generally speaking, are based on
matching such keywords against web documents
and ranking relevant results using sophisticated
features and algorithms.

As search engine technologies evolve, it is in-
creasingly believed that search will be shifting
away from “ten blue links” toward understanding
intent and serving objects. This trend has been
largely driven by an increasing amount of struc-
tured and semi-structured data made available to
search engines, such as relational databases and

semantically annotated web documents. Search-
ing over such data sources, in many cases, can
offer more relevant and essential results com-
pared with merely returning web pages that con-
tain query keywords. Table 1 shows a simplified
view of a structured data source, where each row
represents a movie object. Consider the query
“johnny depp movies 2010”. It is possible to re-
trieve a set of movie objects from Table 1 that
satisfy the constraintsYear = 2010and Cast 3
Johnny Depp. This would deliver direct answers to
the query rather than having the user sort through
list of keyword results.

In no small part, the success of such an ap-
proach relies on robust understanding of query in-
tent. Most previous works in this area focus on
query intent classification (Shen et al., 2006; Li
et al., 2008b; Arguello et al., 2009). Indeed, the
intent class information is crucial in determining
if a query can be answered by any structured data
sources and, if so, by which one. In this work, we
go one step further and study the semantic struc-
ture of a query,i.e., individual constituents of a
query and their semantic roles. In particular, we
focus onnoun phrasequeries. A key contribution
of this work is that we formally define query se-
mantic structure as comprised ofintent heads(IH)
andintent modifiers(IM), e.g.,

[IM:Title alice in wonderland] [IM:Year2010] [IH cast]

It is determined that “cast” is an IH of the above
query, representing the essential information the
user intends to obtain. Furthermore, there are two
IMs, “alice in wonderland” and “2010”, serving as
filters of the information the user receives.

Identifying the semantic structure of queries can
be beneficial to information retrieval. Knowing
the semantic role of each query constituent, we



Title Year Genre Director Cast Review
Precious 2009 Drama Lee Daniels Gabby Sidibe, Mo’Nique,. . .

2012 2009 Action, Sci Fi Roland Emmerich John Cusack, Chiwetel Ejiofor,. . .
Avatar 2009 Action, Sci Fi James Cameron Sam Worthington, Zoe Saldana,. . .

The Rum Diary 2010 Adventure, Drama Bruce Robinson Johnny Depp,Giovanni Ribisi,. . .
Alice in Wonderland 2010 Adventure, Family Tim Burton Mia Wasikowska, Johnny Depp,. . .

Table 1: A simplified view of a structured data source for theMoviedomain.

can reformulate the query into a structured form
or reweight different query constituents for struc-
tured data retrieval (Robertson et al., 2004; Kim
et al., 2009; Paparizos et al., 2009). Alternatively,
the knowledge of IHs, IMs and semantic labels of
IMs may be used as additional evidence in a learn-
ing to rank framework (Burges et al., 2005).

A second contribution of this work is to present
methods that automatically extract the semantic
structure of noun phrase queries,i.e., IHs, IMs
and the semantic labels of IMs. In particular, we
investigate the use of transition, lexical, semantic
and syntactic features. The semantic features can
be constructed from structured data sources or by
mining query logs, while the syntactic features can
be obtained by readily-available syntactic analy-
sis tools. We compare the roles of these features
in two discriminative models, Markov and semi-
Markov conditional random fields. The second
model is especially interesting to us since in our
task it is beneficial to use features that measure
segment-level characteristics. Finally, we evaluate
our proposed models and features on manually-
annotated query sets from three domains, while
our techniques are general enough to be applied
to many other domains.

2 Related Works

2.1 Query intent understanding

As mentioned in the introduction, previous works
on query intent understanding have largely fo-
cused on classification,i.e., automatically map-
ping queries into semantic classes (Shen et al.,
2006; Li et al., 2008b; Arguello et al., 2009).
There are relatively few published works on un-
derstanding the semantic structure of web queries.
The most relevant ones are on the problem of
query tagging,i.e., assigning semantic labels to
query terms (Li et al., 2009; Manshadi and Li,
2009). For example, in “canon powershot sd850
camera silver”, the word “canon” should be tagged
asBrand. In particular, Li et al. leveraged click-
through data and a database to automatically de-

rive training data for learning a CRF-based tagger.
Manshadi and Li developed a hybrid, generative
grammar model for a similar task. Both works are
closely related to one aspect of our work, which
is to assign semantic labels to IMs. A key differ-
ence is that they do not conceptually distinguish
between IHs and IMs.

On the other hand, there have been a series of
research studies related to IH identification (Pasca
and Durme, 2007; Pasca and Durme, 2008). Their
methods aim at extracting attribute names, such
ascostandside effectfor the conceptDrug, from
documents and query logs in a weakly-supervised
learning framework. When used in the context
of web queries, attribute names usually serve as
IHs. In fact, one immediate application of their
research is to understand web queries that request
factual information of some concepts,e.g.“asiprin
cost” and “aspirin side effect”. Their framework,
however, does not consider the identification and
categorization of IMs (attribute values).

2.2 Question answering

Query intent understanding is analogous to ques-
tion understanding forquestion answering(QA)
systems. Many web queries can be viewed as the
keyword-based counterparts of natural language
questions. For example, the query “california na-
tional” and “national parks califorina” both imply
the question “What are the national parks in Cali-
fornia?”. In particular, a number of works investi-
gated the importance ofhead nounextraction in
understandingwhat-typequestions (Metzler and
Croft, 2005; Li et al., 2008a). To extract head
nouns, they applied syntax-based rules using the
information obtained from part-of-speech (POS)
tagging and deep parsing. As questions posed
in natural language tend to have strong syntactic
structures, such an approach was demonstrated to
be accurate in identifying head nouns.

In identifying IHs in noun phrase queries, how-
ever, direct syntactic analysis is unlikely to be as
effective. This is because syntactic structures are
in general less pronounced in web queries. In this



work, we propose to use POS tagging and parsing
outputs as features, in addition to other features, in
extracting the semantic structure of web queries.

2.3 Information extraction

Finally, there exist large bodies of work on infor-
mation extraction using models based on Markov
and semi-Markov CRFs (Lafferty et al., 2001;
Sarawagi and Cohen, 2004), and in particular for
the task of named entity recognition (McCallum
and Li, 2003).

The problem studied in this work is concerned
with identifying more generic “semantic roles” of
the constituents in noun phrase queries. While
some IM categories belong to named entities such
as IM:Director for the intent classMovie, there
can be semantic labels that are not named entities
such as IH and IM:Genre(again forMovie).

3 Query Semantic Structure

Unlike database query languages such as SQL,
web queries are usually formulated as sequences
of words without explicit structures. This makes
web queries difficult to interpret by computers.
For example, should the query “aspirin side effect”
be interpreted as “the side effect of aspirin” or “the
aspirin of side effect”? Before trying to build mod-
els that can automatically makes such decisions,
we first need to understand what constitute the se-
mantic structure of a noun phrase query.

3.1 Definition

We let C denote a set of query intent classes that
represent semantic concepts such asMovie, Prod-
uct andDrug. The query constituents introduced
below are all defined w.r.t. the intent class of a
query,c ∈ C, which is assumed to be known.

Intent head

An intent head(IH) is a query segment that cor-
responds to anattribute name of an intent class.
For example, the IH of the query “alice in won-
derland 2010 cast” is “cast”, which is an attribute
name ofMovie. By issuing the query, the user in-
tends to find out the values of the IH (i.e., cast). A
query can have multiple IHs,e.g., “movie avatar
director and cast”. More importantly, there can
be queries without an explicit IH. For example,
“movie avatar” does not contain any segment that
corresponds to an attribute name ofMovie. Such a
query, however, does have an implicit intent which
is to obtain general information about the movie.

Intent modifier

In contrast, anintent modifier(IM) is a query seg-
ment that corresponds to anattribute value (of
some attribute name). The role of IMs is to impos-
ing constraints on the attributes of an intent class.
For example, there are two constraints implied in
the query “alice in wonderland 2010 cast”: (1) the
Title of the movie is “alice in wonderland”; and
(2) theYearof the movie is “2010”. Interestingly,
the user does not explicitly specify the attribute
names,i.e., Title and Year, in this query. Such
information, however, can be inferred given do-
main knowledge. In fact, one important goal of
this work is to identify the semantic labels of IMs,
i.e., the attribute names they implicitly refer to. We
useAc to denote the set of IM semantic labels for
the intent classc.

Other

Additionally, there can be query segments that do
not play any semantic roles, which we refer to as
Other.

3.2 Syntactic analysis

The notion of IHs and IMs in this work is closely
related to that of linguistichead nounsandmodi-
fiers for noun phrases. In many cases, the IHs of
noun phrase queries are exactly the head nouns in
the linguistic sense. Exceptions mostly occur in
queries without explicit IHs,e.g., “movie avatar”
in which the head noun “avatar” serves as an IM
instead. Due to the strong resemblance, it is inter-
esting to see if IHs can be identified by extracting
linguistic head nouns from queries based on syn-
tactic analysis. To this end, we apply the follow-
ing heuristics for head noun extraction. We first
run a POS-tagger and a chunker jointly on each
query, where the POS-tagger/chunker is based on
an HMM system trained on English Penn Tree-
bank (Gao et al., 2001). We then mark the right
most NP chunk before any prepositional phrase
or adjective clause, and apply the NP head rules
(Collins, 1999) to the marked NP chunk.

The main problem with this approach, however,
is that a readily-available POS tagger or chunker is
usually trained on natural language sentences and
thus is unlikely to produce accurate results on web
queries. As shown in (Barr et al., 2008), the lexi-
cal category distribution of web queries is dramat-
ically different from that of natural languages. For
example, prepositions and subordinating conjunc-
tions, which are strong indicators of the syntactic



structure in natural languages, are often missing in
web queries. Moreover, unlike most natural lan-
guages that follow the linear-order principle, web
queries can have relatively free word orders (al-
though some orders may occur more often than
others statistically). These factors make it diffi-
cult to produce reliable syntactic analysis outputs.
Consequently, the head nouns and hence the IHs
extracted therefrom are likely to be error-prone, as
will be shown by our experiments in Section 6.3.

Although a POS tagger and a chunker may not
work well on queries, their output can be used as
features for learning statistical models for seman-
tic structure extraction, which we introduce next.

4 Models

This section presents two statistical models for se-
mantic understanding of noun phrase queries. As-
suming that the intent classc ∈ C of a query is
known, we cast the problem of extracting the se-
mantic structure of the query into a joint segmen-
tation/classification problem. At a high level, we
would like to identify query segments that corre-
spond to IHs, IMs and Others. Furthermore, for
each IM segment, we would like to assign a se-
mantic label, denoted by IM:a, a ∈ Ac, indicating
which attribute name it refers to. In other words,
our label set consists ofY = {IH, {IM:a}a∈Ac ,
Other}.

Formally, we letx = (x1, x2, . . . , xM ) denote
an input query of lengthM . To avoid confusion,
we usei to represent the index of a word token
and j to represent the index of a segment in the
following text. Our goal is to obtain

s
∗ = argmax

s

p(s|c,x) (1)

wheres = (s1, s2, . . . , sN ) denotes a query seg-
mentation as well as a classification of all seg-
ments. Each segmentsj is represented by a tu-
ple (uj, vj , yj). Hereuj andvj are the indices of
the starting and ending word tokens respectively;
yj ∈ Y is a label indicating the semantic role of
s. We further augment the segment sequence with
two special segments:Start andEnd, represented
by s0 andsN+1 respectively. For notional simplic-
ity, we assume that the intent class is given and
usep(s|x) as a shorthand forp(s|c,x), but keep in
mind that the label space and hence the parameter
space is class-dependent. Now we introduce two
methods of modelingp(s|x).

4.1 CRFs

One natural approach to extracting the semantic
structure of queries is to use linear-chain CRFs
(Lafferty et al., 2001). They model the con-
ditional probability of a label sequence given
the input, where the labels, denoted asy =
(y1, y2, . . . , yM ), yi ∈ Y, have a one-to-one cor-
respondence with the word tokens in the input.

Using linear-chain CRFs, we aim to find the la-
bel sequence that maximizes

pλ(y|x) =
1

Zλ(x)
exp

{

M+1
∑

i=1

λ · f(yi−1, yi,x, i)

}

.

(2)
The partition functionZλ(x) is a normalization
factor. λ is a weight vector andf(yi−1, yi,x) is
a vector of feature functions referred to as a fea-
ture vector. The features used in CRFs will be de-
scribed in Section 5.

Given manually-labeled queries, we estimateλ
that maximizes the conditional likelihood of train-
ing data while regularizing model parameters. The
learned model is then used to predict the label se-
quencey for future input sequencesx. To obtains
in Equation (1), we simply concatenate the maxi-
mum number of consecutive word tokens that have
the same label and treat the resulting sequence as a
segment. By doing this, we implicitly assume that
there are no two adjacent segments with the same
label in the true segment sequence. Although this
assumption is not always correct in practice, we
consider it a reasonable approximation given what
we empirically observed in our training data.

4.2 Semi-Markov CRFs

In contrast to standard CRFs, semi-Markov CRFs
directly model the segmentation of an input se-
quence as well as a classification of the segments
(Sarawagi and Cohen, 2004),i.e.,

p(s|x) =
1

Zλ(x)
exp

N+1
∑

j=1

λ · f(sj−1, sj,x) (3)

In this case, the featuresf(sj−1, sj ,x) are de-
fined on segments instead of on word tokens.
More precisely, they are of the function form
f(yj−1, yj,x, uj , vj). It is easy to see that by
imposing a constraintui = vi, the model is
reduced to standard linear-chain CRFs. Semi-
Markov CRFs make Markov assumptions at the
segment level, thereby naturally offering means to



CRF features
A1: Transition δ(yi−1 = a)δ(yi = b) transiting from statea to b
A2: Lexical δ(xi = w)δ(yi = b) current word isw
A3: Semantic δ(xi ∈ WL)δ(yi = b) current word occurs in lexiconL
A4: Semantic δ(xi−1:i ∈ WL)δ(yi = b) current bigram occurs in lexiconL
A5: Syntactic δ(POS(xi) = z)δ(yi = b) POS tag of the current word isz
Semi-Markov CRF features
B1: Transition δ(yj−1 = a)δ(yj = b) Transiting from statea to b
B2: Lexical δ(xuj :vj = w)δ(yj = b) Current segment isw
B3: Lexical δ(xuj :vj 3 w)δ(yj = b) Current segment contains wordw
B4: Semantic δ(xuj :vj ∈ L)δ(yj = b) Current segment is an element in lexiconL

B5: Semantic max
l∈L

s(xuj :vj , l)δ(yj = b) The max similarity between the segment and elements inL

B6: Syntactic δ(POS(xuj :vj ) = z)δ(yj = b) Current segment’s POS sequence isz

B7: Syntactic δ(Chunk(xuj :vj ) = c)δ(yj = b) Current segment is a chunk with phrase typec

Table 2: A summary of feature types in CRFs and segmental CRFsfor query understanding. We assume
that the state label isb in all features and omit this in the feature descriptions.

incorporate segment-level features, as will be pre-
sented in Section 5.

5 Features

In this work, we explore the use of transition, lexi-
cal, semantic and syntactic features in Markov and
semi-Markov CRFs. The mathematical expression
of these features are summarized in Table 2 with
details described as follows.

5.1 Transition features

Transition features,i.e., A1 and B1 in Table 2,
capture state transition patterns between adjacent
word tokens in CRFs, and between adjacent seg-
ments in semi-Markov CRFs. We only use first-
order transition features in this work.

5.2 Lexical features

In CRFs, a lexical feature (A2) is implemented as
a binary function that indicates whether a specific
word co-occurs with a state label. The set of words
to be considered in this work are those observed
in the training data. We can also generalize this
type of features from words ton-grams. In other
words, instead of inspecting the word identity at
the current position, we inspect then-gram iden-
tity by applying a window of lengthn centered at
the current position.

Since feature functions are defined on segments
in semi-Markov CRFs, we create B2 that indicates
whether the phrase in a hypothesized query seg-
ment co-occurs with a state label. Here the set of
phrase identities are extracted from the query seg-
ments in the training data. Furthermore, we create
another type of lexical feature, B3, which is acti-
vated when a specific word occurs in a hypothe-

sized query segment. The use of B3 would favor
unseen words being included in adjacent segments
rather than to be isolated as separate segments.

5.3 Semantic features

Models relying on lexical features may require
very large amounts of training data to produce
accurate prediction performance, as the feature
space is in general large and sparse. To make our
model generalize better, we create semantic fea-
tures based on what we calllexicons. A lexicon,
denoted asL, is a cluster of semantically-related
words/phrases. For example, a cluster of movie
titles or director names can be such a lexicon. Be-
fore describing how such lexicons are generated
for our task, we first introduce the forms of the
semantic features assuming the availability of the
lexicons.

We letL denote a lexicon, andWL denote the
set ofn-grams extracted fromL. For CRFs, we
create a binary function that indicates whetherany
n-gram inWL co-occurs with a state label, with
n = 1, 2 for A3, A4 respectively. For both A3
and A4, the number of such semantic features is
equal to the number of lexicons multiplied by the
number of state labels.

The same source of semantic knowledge can be
conveniently incorporated in semi-Markov CRFs.
One set of semantic features (B4) inspect whether
the phrase of a hypothesized query segment
matchesany element in a given lexicon. A sec-
ond set of semantic features (B5) relax the exact
match constraints made by B4, and take as the fea-
ture value the maximum “similarity” between the
query segment andall lexicon elements. The fol-



lowing similarity function is used in this work ,

s(xuj :vj , l) = 1− Lev(xuj :vj , l)/|l| (4)

where Lev represents the Levenshtein distance.
Notice that we normalize the Levenshtein distance
by the length of the lexicon element, as we em-
pirically found it performing better compared with
normalizing by the length of the segment. In com-
puting the maximum similarity, we first retrieve a
set of lexicon elements with a positivetf-idf co-
sine distance with the segment; we then evaluate
Equation (4) for each retrieved element and find
the one with the maximum similarity score.

Lexicon generation

To create the semantic features described above,
we generate two types of lexicons leveraging
databases and query logs for each intent class.

The first type of lexicon is an IH lexicon com-
prised of a list of attribute names for the intent
class,e.g., “box office” and “review” for the intent
classMovie. One easy way of composing such a
list is by aggregating the column names in the cor-
responding database such as Table 1. However,
this approach may result in low coverage on IHs
for some domains. Moreover, many database col-
umn names, such asTitle, are unlikely to appear as
IHs in queries. Inspired by Pasca and Van Durme
(2007), we apply a bootstrapping algorithm that
automatically learns attribute names for an intent
class from query logs. The key difference from
their work is that we create templates that consist
of semantic labels at the segment level from train-
ing data. For example, “alice in wonderland 2010
cast” is labeled as “IM:Title IM:YearIH”, and thus
“IM: Title + IM:Year+ #” is used as a template. We
select the most frequent templates (top 2 in this
work) from training data and use them to discover
new IH phrases from the query log.

Secondly, we have a set IM lexicons, each com-
prised of a list of attribute values of an attribute
name inAc. We exploit internal resources to gen-
erate such lexicons. For example, the lexicon for
IM:Title (in Movie) is a list of movie titles gener-
ated by aggregating the values in theTitle column
of a movie database. Similarly, the lexicon for
IM:Employee(in Job) is a list of employee names
extracted from a job listing database. Note that
a substantial amount of research effort has been
dedicated to automatic lexicon acquisition from
the Web (Pantel and Pennacchiotti, 2006; Pennac-
chiotti and Pantel, 2009). These techniques can be

used in expanding the semantic lexicons for IMs
when database resources are not available. But we
do not use such techniques in our work since the
lexicons extracted from databases in general have
good precision and coverage.

5.4 Syntactic features

As mentioned in Section 3.2, web queries often
lack syntactic cues and do not necessarily follow
the linear order principle. Consequently, applying
syntactic analysis such as POS tagging or chunk-
ing using models trained on natural language cor-
pora is unlikely to give accurate results on web
queries, as supported by our experimental evi-
dence in Section 6.3. It may be beneficial, how-
ever, to use syntactic analysis results as additional
evidence in learning.

To this end, we generate a sequence of POS tags
for a given query, and use the co-occurrence of
POS tag identities and state labels as syntactic fea-
tures (A5) for CRFs.

For semi-Markov CRFs, we instead examine
the POS tag sequence of the corresponding phrase
in a query segment. Again their identities are com-
bined with state labels to create syntactic features
B6. Furthermore, since it is natural to incorporate
segment-level features in semi-Markov CRFs, we
can directly use the output of a syntactic chunker.
To be precise, if a query segment is determined by
the chunker to be a chunk, we use the indicator of
the phrase type of the chunk (e.g., NP, PP) com-
bined with a state label as the feature, denoted by
B7 in the Table. Such features are not activated if
a query segment is determined not to be a chunk.

6 Evaluation

6.1 Data

To evaluate our proposed models and features, we
collected queries from three domains,Movie, Job
andNational Park, and had them manually anno-
tated. The annotation was given on both segmen-
tation of the queries and classification of the seg-
ments according to the label sets defined in Ta-
ble 3. There are 1000/496 samples in the train-
ing/test set for theMoviedomain, 600/366 for the
Jobdomain and 491/185 for theNational Parkdo-
main. In evaluation, we report the test-set perfor-
mance in each domain as well as the average per-
formance (weighted by their respectively test-set
size) over all domains.



Movie Job National Park
IH trailer, box office IH listing, salary IH lodging, calendar
IM:Award oscar best picture IM:Category engineering IM:Category national forest
IM:Cast johnny depp IM:City las vegas IM:City page
IM:Character michael corleone IM:County orange IM:Country us
IM:Category tv series IM:Employer walmart IM:Name yosemite
IM:Country american IM:Level entry level IM:POI volcano
IM:Director steven spielberg IM:Salary high-paying IM:Rating best
IM:Genre action IM:State florida IM:State flordia
IM:Rating best IM:Type full time
IM:Title the godfather
Other the, in, that Other the, in, that Other the, in, that

Table 3: Label sets and their respective query segment examples for the intent classMovie, Job and
National Park.

6.2 Metrics

There are two evaluation metrics used in our work:
segment F1 and sentence accuracy (Acc). The
first metric is computed based on precision and re-
call at the segment level. Specifically, let us as-
sume that the true segment sequence of a query
is s = (s1, s2, . . . , sN ), and the decoded segment
sequence iss′ = (s′1, s

′
2, . . . , s

′
K). We say that

s′k is a true positive ifs′k ∈ s. The precision
and recall, then, are measured as the total num-
ber of true positives divided by the total num-
ber of decoded and true segments respectively.
We report the F1-measure which is computed as
2 · prec· recall/(prec+ recall).

Secondly, a sentence is correct if all decoded
segments are true positives. Sentence accuracy is
measured by the total number of correct sentences
divided by the total number of sentences.

6.3 Results

We start with models that incorporate first-order
transition features which are standard for both
Markov and semi-Markov CRFs. We then exper-
iment with lexical features, semantic features and
syntactic features for both models. Table 4 and
Table 5 give a summarization of all experimental
results.

Lexical features

The first experiment we did is to evaluate the per-
formance of lexical features (combined with tran-
sition features). This involves the use of A2 in Ta-
ble 2 for CRFs, and B2 and B3 for semi-Markov
CRFs. Note that adding B3,i.e., indicators of
whether a query segment contains a word iden-
tity, gave an absolute 7.0%/3.2% gain in sentence
accuracy and segment F1 on average, as shown
in the row B1-B3 in Table 5. For both A2 and

B3, we also tried extending the features based on
word IDs to those based onn-gram IDs, where
n = 1, 2, 3. This greatly increased the number of
lexical features but did not improve learning per-
formance, most likely due to the limited amounts
of training data coupled with the sparsity of such
features. In general, lexical features do not gener-
alize well to the test data, which accounts for the
relatively poor performance of both models.

Semantic features

We created IM lexicons from three in-house
databases onMovie, Job and National Parks.
Some lexicons,e.g., IM:State, are shared across
domains. Regarding IH lexicons, we applied the
bootstrapping algorithm described in Section 5.3
to a 1-month query log ofBing. We selected the
most frequent 57 and 131 phrases to form the IH
lexicons forMovieandNational Parkrespectively.
We do not have an IH lexicon forJob as the at-
tribute names in that domain are much fewer and
are well covered by training set examples.

We implemented A3 and A4 for CRFs, which
are based on then-gram sets created from lex-
icons; and B4 and B5 for semi-Markov CRFs,
which are based on exact and fuzzy match with
lexicon items. As shown in Table 4 and 5, drastic
increases in sentence accuracies and F1-measures
were observed for both models.

Syntactic features

As shown in the row A1-A5 in Table 4, combined
with all other features, the syntactic features (A5)
built upon POS tags boosted the CRF model per-
formance. Table 6 listed the most dominant pos-
itive and negative features based on POS tags for
Movie (features for the other two domains are not
reported due to space limit). We can see that
many of these features make intuitive sense. For



Movie Job National Park Average
Features Acc F1 Acc F1 Acc F1 Acc F1
A1,A2: Tran + Lex 59.9 75.8 65.6 84.7 61.6 75.6 62.1 78.9
A1-A3: Tran + Lex + Sem 67.9 80.2 70.8 87.4 70.5 80.8 69.4 82.8
A1-A4: Tran + Lex + Sem 72.4 83.5 72.4 89.7 71.1 82.3 72.2 85.0
A1-A5: Tran + Lex + Sem + Syn 74.4 84.8 75.1 89.4 75.1 85.4 74.8 86.5
A2-A5: Lex + Sem + Syn 64.9 78.8 68.1 81.1 64.8 83.7 65.4 81.0

Table 4: Sentence accuracy (Acc) and segment F1 (F1) using CRFs with different features.

Movie Job National Park Average
Features Acc F1 Acc F1 Acc F1 Acc F1
B1,B2: Tran + Lex 53.4 71.6 59.6 83.8 60.0 77.3 56.7 76.9
B1-B3: Tran + Lex 61.3 77.7 65.9 85.9 66.0 80.7 63.7 80.1
B1-B4: Tran + Lex + Sem 73.8 83.6 76.0 89.7 74.6 85.3 74.7 86.1
B1-B5: Tran + Lex + Sem 75.0 84.3 76.5 89.7 76.8 86.8 75.8 86.6
B1-B6: Tran + Lex + Sem + Syn 75.8 84.3 76.2 89.7 76.8 87.2 76.1 86.7
B1-B5,B7: Tran + Lex + Sem + Syn 75.6 84.1 76.0 89.3 76.8 86.8 75.9 86.4
B2-B6:Lex + Sem + Syn 72.0 82.0 73.2 87.9 76.5 89.3 73.8 85.6

Table 5: Sentence accuracy (Acc) and segment F1 (F1) using semi-Markov CRFs with different features.

example, IN (preposition or subordinating con-
junction) is a strong indicator of Other, while TO
and IM:Date usually do not co-occur. Some fea-
tures, however, may appear less “correct”. This
is largely due to the inaccurate output of the POS
tagger. For example, a large number of actor
names were mis-tagged as RB, resulting in a high
positive weight of the feature (RB, IM:Cast).

Positive Negative
(IN, Other), (TO, IM:Date)
(VBD, Other) (IN, IM: Cast)
(CD, IM:Date) (CD, IH)
(RB, IM:Cast) (IN, IM: Character)

Table 6: Syntactic features with the largest posi-
tive/negative weights in the CRF model forMovie

Similarly, we added segment-level POS tag fea-
tures (B6) to semi-Markov CRFs, which lead to
the best overall results as shown by the highlighted
numbers in Table 5. Again many of the dominant
features are consistent with our intuition. For ex-
ample, the most positive feature forMovie is (CD
JJS, IM:Rating) (e.g. 100 best). When syntactic
features based on chunking results (B7) are used
instead of B6, the performance is not as good.

Transition features

In addition, it is interesting to see the importance
of transition features in both models. Since web
queries do not generally follow the linear order
principle, is it helpful to incorporate transition fea-
tures in learning? To answer this question, we
dropped the transition features from the best sys-
tems, corresponding to the last rows in Table 4

and 5. This resulted in substantial degradations
in performance. One intuitive explanation is that
although web queries are relatively “order-free”,
statistically speaking, some orders are much more
likely to occur than others. This makes it benefi-
cial to use transition features.

Comparison to syntactic analysis

Finally, we conduct a simple experiment by using
the heuristics described in Section 3.2 in extract-
ing IHs from queries. The precision and recall of
IHs averaged over all 3 domains are 50.4% and
32.8% respectively. The precision and recall num-
bers from our best model-based system,i.e., B1-
B6 in Table 5, are 89.9% and 84.6% respectively,
which are significantly better than those based on
pure syntactic analysis.

7 Conclusions

In this work, we make the first attempt to define
the semantic structure of noun phrase queries. We
propose statistical methods to automatically ex-
tract IHs, IMs and the semantic labels of IMs us-
ing a variety of features. Experiments show the ef-
fectiveness of semantic features and syntactic fea-
tures in both Markov and semi-Markov CRF mod-
els. In the future, it would be useful to explore
other approaches to automatic lexicon discovery
to improve the quality or to increase the coverage
of both IH and IM lexicons, and to systematically
evaluate their impact on query understanding per-
formance.

The author would like to thank Hisami Suzuki
and Jianfeng Gao for useful discussions.
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