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Shu and Osher introduced a conservative finite difference discretization for hyper-
bolic conservation laws using nodal values rather than the traditional cell averages.
Their form was obtained by introducing mathematical relations that simplify the
resulting numerical methods. Here we instead ‘‘derive’’ their form from the standard
cell average approach. In the process, we clarify the origin of their relations and the
properties of this formulation. We also investigate the extension of their form to non-
uniform grids. We show the strict conservation form only extends to grids with
quadratic or exponential stretching. However, a slight generalization can be applied
to all smoothly stretched grids with no loss of essential properties.
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1. INTRODUCTION

To discretize a hyperbolic conservation law,

du
dt

+
df(u)

dx
=0, (1)

on a grid {xi}, it is common practice to simply integrate the equation over each grid
cell [xi,xi+1] to obtain the ‘‘cell averaged conservation form’’

dūi+1
2

dt
+

(f(ui+1) − f(ui))
Dx

=0, (2)

where ūi+1
2

denotes the average value of u over the cell, and ui=u(xi) denotes the
nodal value at node xi.

It is well known (as the Lax–Wendroff Theorem [4, p. 129]) that such a ‘‘con-
servative difference form’’ is essential because it insures that discontinuities (shocks
or contacts) in the flow move at the correct speed dictated by physical conservation.



This could not be guaranteed by the traditional notion of numerical accuracy,
which is based on approximating smooth solutions.

The standard conservative difference form (2) automatically combines both cell
averages ūi+1

2
and nodal values ui, and thus requires the use of both reconstruction

and averaging procedures to pass between these representations of u. This compli-
cates the numerical algorithms, especially in multiple dimensions.

In order to simplify the numerical schemes, Shu and Osher [6, 7] introduced a
discretization based solely on nodal values. They first postulate the functional rela-
tion

df
dx

=
(h(x+Dx

2 ) − h(x − Dx
2 ))

Dx
, (3)

so that the original differential equation takes on a conservative difference form

du
dt

+
(h(x+Dx

2 ) − h(x − Dx
2 ))

Dx
=0, (4)

which we will refer to as the ‘‘Shu–Osher form’’. This can then be discretized con-
servatively in terms of nodal values simply by imposing the equation at the nodes

dui

dt
+

(hi+1
2
− hi − 1

2
)

Dx
=0, (5)

assuming we can construct hi+1
2
=h(xi+

Dx
2 ) in terms of the local nodal values of f

in some convenient fashion. Towards this end, Shu and Osher [7] provide two
functional relations between f and h: a power series asymptotic expansion for h

h(x)=a0 f(x)+a2 fœ(x) Dx2+a4 f''(x) Dx4+ · · · +a2n f (2n)(x) Dx2n+ · · · , (6)

where the coefficients are deduced from the defining relation (4), to be a0=1,
a2=−1/24, a4=7/5760,..., and also a integral ‘‘primitive’’ for h,

f(x)=
>x+Dx

2

x − Dx
2

h(x) dx

Dx
. (7)

Either of these relations can be used to compute hi+1
2

from local nodal values
fj=f(uj) to any desired order of accuracy in Dx. In particular, Shu and Osher
provide an elegant divided difference construction using the primitive relation [7],
and this is a major algorithmic component of the resulting family of Essentially
Non-Oscillatory (ENO) schemes.

We have three goals in this paper. First, we want to relate the Shu–Osher con-
servation form (4) back to the traditional cell average form (2) in a way that illu-
minates the origins of the h function and its relations given by Eqs. (3), (6), and (7).
We provide a derivation of the Shu–Osher form from cell averages, and show why h
and its relations are indeed natural and essential. Second, we want to clarify why
the nodal value form provides a simplification over cell averages, given that both
forms require reconstruction processes. We show that the relative simplicity of
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the nodal form becomes clear in multiple dimensions. Finally, we want to inves-
tigate the extent to which the Shu–Osher form extends to non-uniform grids, since
the original presentation [7] assumes a uniform spatial grid. We will show the strict
conservation form applies only to quadratically or exponentially stretched grids,
but a slightly generalized form can be applied to any smoothly stretched grid.

2. DERIVING THE SHU-OSHER FORM

We first give a formal derivation of the Shu–Osher form (4), starting from the
standard cell average form (2). Let A denote the cell average operator, which we
define generally as a functional that acts on u(x) to give

A[u](x)=
>x+Dx

2

x − Dx
2

u(x) dx

Dx
. (8)

Here Dx is the ‘‘grid spacing’’, which for now is simply a constant. Applying A to
the general hyperbolic conservation law (1) gives the cell average conservative
difference form

dAu
dt

+
Df
Dx

=0 (9)

where

Df(x)=f 1x+
Dx
2
2− f 1x −

Dx
2
2 (10)

is the generalized central difference operator, and f(x)=f(u(x)). Simply inverting
A off the cell averaged Eq. (9) gives

du
dt

+
A−1 Df

Dx
=0, (11)

and, since A−1 and D commute, we have

du
dt

+
D(A−1f )

Dx
=0. (12)

This is precisely the same form as the Shu–Osher form in (4), but here we naturally
encounter the conservative difference of the function

h=A−1f. (13)

Thus we have derived the Shu–Osher form in a way that shows it to be a natural
consequence of the cell average form, rather than being a wholly independent for-
mulation. This has an important consequence for properly interpreting the nodal
value form. In general, pointwise values are ambiguously defined at discontinuities
(shocks, contacts) in the solution u, hence there is a mathematically justified bias
towards describing solutions in terms of well-defined local (or cell) averages.
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However, this anti-pointwise bias should not be applied to the Shu–Osher ‘‘nodal
value’’ form, since it is merely a mathematically transformed version of the cell
average form. At the discretized level, this means the nodal values {u(xj)} com-
puted from this form should not be thought of as true pointwise values, but rather
as being the best-estimate values as inferred by applying A−1 to the computed cell
average values {ūj+1

2
}. Thus the {u(xj)} and {ūj+1

2
} are equivalent, with the cell

averages being the primary, well-defined quantities, and the ‘‘nodal values’’ being a
derived set of data. The Shu–Osher formulation simply allows us to compute this
derived set directly, avoiding the need to ever compute the underlying cell averages.

We now consider the origin of the various Shu–Osher relations involving h, in
light of our derivation. Comparing the nodal form (12) to the original conservation
law (1), we see that we must have the functional relation Dh/Dx=fŒ, which was
used as the defining relation for h, (3), by Shu and Osher. Also, to express h, which
is natural defined by (13), in terms of standard operations, we must invert that
relation and write

f=Ah, (14)

which is precisely the primitive relation (7) of Shu and Osher. This relation was
particularly puzzling in their original presentation [7], since they dealt only with
nodal values yet this cell average operation appeared spontaneously. Here we see
this is a necessary consequence of using the operator A to convert between between
the cell average (f) and nodal value (h) based forms of the conservation law.

As for the power series expansion relation (6), we simply point out that this
expansion can be obtained in a closed form via the Fourier transform. Fourier
transforming the functional difference relation (3) that defines h gives

− ikf̂=−i
2

Dx
sin 1k

Dx
2
2 ĥ, (15)

or, isolating ĥ and transforming back,

h=h csc(h) f, (16)

where h=i Dx
2

d
dx, which is a closed form for h as a (pseudo-)differential operator

on f. This relation can be made explicit by substituting for h in the Taylor series
expansion [1, p. 85, formula 4.5.65]

h csc(h)=1+
1
6

h2+
7

360
h4+

31
15120

h6+ · · · +(−1)n+1 (22n − 2) B2n

(2n)!
h2n+ · · · , (17)

where the Bn are the Bernoulli numbers [1, p. 804]. In particular, this shows
that the coefficients for h in the power series (6) given by Shu and Osher are
a0=1, a2=−1/24,a4=7/5760, a6=−31/967680, a8=127/154828800, a10=
−73/3503554560,..., with the general formula being

a2n=(−1)n+1 (22n − 2) B2n

22n(2n)!
(18)

for n \ 0.
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3. THE MULTI-DIMENSIONAL ADVANTAGE

Since both the standard cell average form and the Shu–Osher nodal form have
reconstruction processes (u from ū or h from f), it is not clear that there is any real
difference in simplicity between them. However, repeating our derivation in the
multi-dimensional setting makes this distinction clear. Consider a general scalar
conservation law in three spatial dimensions,

du
dt

+
dFx

dx
+

dFy

dy
+

dFz

dz
=0, (19)

where F=(Fx, Fy, Fz) is the vector flux of the conserved quantity u(x, y, z, t). Let
Ax denote the 1-D cell averaging operator in x,

Ax[u](x, y, z)=
>

x+Dx
2

x − Dx
2

u(x, y, z) dx

Dx
, (20)

where Dx is a constant, and let Dx denote the 1-D central difference in x,

Dx f(x, y, z)=f 1x+
Dx
2

, y, z2− f 1x −
Dx
2

, y, z2 . (21)

Similarly, let Ay, Dy and Az, Dz be the 1-D averaging and difference operators
in y and z.

The full 3-D cell average over a Dx × Dy × Dz cell centered at (x, y, z) is given
by the composition of 1-D averages, A=AxAyAz, and these 1-D averages freely
commute with each other. Applying this cell average to the conservation law (19)
and using Ax

d
dx=Dx/Dx, and similarly for y and z, gives the standard cell average

conservation form

d(AxAyAzu)
dt

+
Dx(AyAzFx)

Dx
+

Dy(AxAzFy)
Dy

+
Dz(AxAyFz)

Dz
=0. (22)

To obtain the Shu–Osher form, we again simply apply A−1=A−1
x A−1

y A−1
z and use

the fact that all the 1-D operators commute with each other to get the Shu–Osher
form

du
dt

+
Dx(A−1

x Fx)
Dx

+
Dy(A−1

y Fy)
Dy

+
Dz(A

−1
z Fz)

Dz
=0. (23)

This is easily conservatively discretized via nodal values on a {xi} × {yj} × {zk} grid
by evaluating it at the nodes (xi, yj, zk). Thus in 3-D we naturally encounter three
1-D Shu–Osher flux functions

hx=A−1
x Fx,

hy=A−1
y Fy,

hz=A−1
z Fz,

(24)
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each of which are obtained through the standard, purely 1-D reconstruction rela-
tions from Eqs. (6) or (7) applied along the grid in the respective directions. This is
the so-called ‘‘dimension-by-dimension’’ discretization process. If we contrast the
cell average and Shu–Osher forms, we see that each term in the cell average form
(22) involves operations in all three of the x, y and z directions, where as in the
Shu–Osher form (23) the x-term involves only operations in the x-direction, the
y-term only operations in the y direction, and the z-term only operations in the
z-direction, and further all three contributions can be computed using the same 1-D
procedure. Moreover, there is never a need to do a ‘‘fully 3-D’’ reconstruction such
as reconstructing u from the triple averaged AxAyAyu, nor is there ever a need to
do any 2-D integrations of fluxes such as AyAzFx.

Thus we see that in multiple dimensions, the inversion leading to Shu–Osher
form yields a conservative difference form equivalent to cell averages, but which
separates out the operations dimension-by-dimension. This in turn corresponds to a
real algorithmic simplification in multiple dimensions, since multidimensional cal-
culations simply recycle the same basic 1-D procedure. In practice this greatly
facilitates producing computer programs that solve equations in any number of
spatial dimensions, since they can be implemented as a simple dimension-by-
dimension loop over the basic 1-D code. This easy extensibility favors the 1-D
Shu–Osher ENO method over the otherwise comparable 1-D cell average form,
which does not enjoy such a simple multidimensional extension. Thus, in the
context of ultimately wanting to do multidimensional flow calculations, the
Shu–Osher form is generally favored by its simplicity.

4. EXTENDING SHU–OSHER FORM TO NON-UNIFORM GRIDS

In problems where the solution has localized fine scale structure that must be
fully resolved, it is computationally efficient to do local grid refinement. Such
situations can arise in purely hyperbolic problems, for example due to shock wave
focusing or merging of material contact discontinuities. Thus it is desirable that
discretization methods for conservation equations have extensions to non-uniform
grids.

The standard cell average discretization procedure leading to (2) extends
naturally to arbitrary non-uniform grids, although the reconstruction of values
from the cell averages can become quite complicated, depending on the complexity
of the grid structure.

In contrast, if we try and repeat our derivation of the Shu–Osher finite differ-
ence form from the cell average discretization, the argument breaks down because
the cell-average operator A no longer commutes with the finite difference operator
D. This suggests that the Shu–Osher form may not extend to non-uniform grids.
Indeed, we will show that in general it does not, even for smoothly stretched non-
uniform grids, although it is possible for the special cases of exponentially or
quadratically stretched grids. However, we will also show how the Shu–Osher form
can easily be employed in a way that does extend to all smoothly stretched 1-D
grids (and the product of such grids, in higher dimensions), retaining all the
desirable properties of accuracy, simplicity and shock-capturing form.
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We will not address the practically important and difficult problem of extend-
ing these methods to grids that have abrupt changes in cell size, but the analytical
techniques presented here may be of use in these situations as well. Also, in section
(4.4) we briefly describe one general framework for adaptive gridding that is in
principle compatible with the Shu–Osher form.

4.1. Failure of the Derivation for Non-Uniform Grids

First we will consider in detail what goes wrong when we attempt to derive the
Shu–Osher form from the cell average form, since this is the underlying reason for
the difficulties on non-uniform grids. To facilitate the discussion we need to
generalize our conception of a grid and the associated operators. We will assume a
grid on x in 1-D is produced by a smooth, monotone mapping function x(a)
applied to a uniform grid on a of spacing Da. The cell average operator is given by
essentially the same form as before,

A[f](x(a))=F
x(a+Da

2 )

x(a − Da

2 )

f(x) dx, (25)

but we no longer divide by Dx in order to simplify the subsequent analysis.
Similarly, the associated central finite difference operator becomes

Df(x(a))=f 1x 1a+
Da

2
22− f 1x 1a −

Da

2
22 . (26)

Using this generalized notation, we can follow the derivation leading to the
standard Shu–Osher form (4) starting from cell averages. We can proceed as before
up to the point of interchanging the order of cell averaging and finite differencing

A−1 Df=DA−1f, (27)

but the derivation fails at this point. One can easily show that if this relation is
generally valid, the grid must be uniform. Specifically, if we evaluate the equivalent
measure of commutivity AD − DA, we find that for any function g,

(AD − DA)[g](x(a))=F
a+Da

2

a − Da

2

C(a; g, x, Da) da (28)

where the integrand is

C(a; g, x, Da)=g 1x 1a+
Da

2
221xŒ 1a+

Da

2
2− xŒ(a)2

− g 1x 1a −
Da

2
221xŒ 1a −

Da

2
2− xŒ(a)2 . (29)
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If the commutator integral (28) is to be zero for all choices of g(x) and Da, then
we must have C vanish for all g and Da as well, and hence we must have
xŒ(a+Da

2 )=xŒ(a) for all Da. Thus xŒ is constant, which means the grid x(a) is
uniform.

Simply summarized, when the grid is not uniform, the cell averaging operation
A is not translation invariant and thus does not commute with the translation
operator D. This is the fundamental reason why the Shu–Osher form cannot be
derived in this case.

However, this breakdown of the derivation does not strictly imply the
Shu–Osher form does not exist for such grids. In fact, to derive a Shu–Osher con-
servation form in greatest generality, we do not actually need the exact commuta-
tion relation

A−1D − DA−1=0. (30)

It would suffice for this commutator itself to be a conservation-form difference of
some operator G (that must be conveniently constructable from f), i.e.,

A−1D − DA−1=DG, (31)

since then we would obtain the generalized Shu–Osher form

du
dt

+
DH
Dx

=0, (32)

where H=A−1f+G[f]=h+G[f]. The main drawback of this more general
form is that only h can be constructed using the elegant divided difference tech-
niques given in [7]—G[f] would presumably have to be constructed by a series
expansion, comparable to that for h in (6).

If we rewrite this most general commutation relation (31) in terms of the more
tractable operator A instead of A−1, it becomes

DA−AD=A DGA. (33)

Because of the complexity of the right hand side and the unspecified nature of G,
this relation (33) is not of practical value for deciding when a given non-uniform
grid allows the general Shu–Osher form. Its main value is to show the possibility
that some exceptional non-uniform grids may still allow this form, although in
those cases it will not be possible to rely (solely) on the elegant Shu–Osher divided
difference reconstruction technique. We will give a complete characterization of
these ‘‘exceptional’’ non-uniform grids in the subsequent sections.

4.2. Non-Uniform Grids that Allow the Shu–Osher Form

Now we will show directly that the Shu–Osher finite difference form exists only
for special classes of smoothly stretched grids.
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4.2.1. The General Condition

The precise question is this: given a non-uniform grid x(a), is it is possible to
obtain the exact functional relation

df
dx

=
DH
Dx

(34)

where D is the difference operator associated with x(a), and H[f](x) is an ‘‘essen-
tially locally constructable’’ functional of f, i.e., to any given order of accuracy in
Da, H(x(a)) can be expressed in terms of local f values, f(x(a+j Da)), j=−k,..., k,
where k depends only the desired order. The local constructability of H is essential
for a practical numerical algorithm, and is carried out by the upwind biased divided
difference table reconstruction in the standard uniform grid Shu–Osher finite dif-
ference method [7], where H=h. The alternative series expansion for h in Eq. (6)
gives a more concrete example of what it means to be essentially locally construct-
able. There we see that formally h could not be computed using a local stencil, since
it depends on derivatives of all orders of f. But, up to any desired order of
accuracy in Da, h(x) depends on only a finite number of derivatives of f at x and
thus can be approximated using a local stencil on the grid near x—hence the
‘‘essentially’’ locally constructable.

Note that the defining relation (34) trivially implies a unique solution for H on
any given grid {x(aj)}, obtained by summing the relation from an arbitrary starting
point x0=x(a0) to get

H(xn+1
2
)=H(x0 − 1

2
)+ C

j=n

j=0
fŒ(xj) Dxj (35)

where xj=x(aj), aj=a0+j Da, and Dxj=x(aj+
Da
2 ) − x(aj − Da

2 ). Thus, on any given
grid there is no ambiguity as to what H must be, and we immediately have an
exact—but nonlocal—expression for H. The only remaining question is under what
conditions there exists (to any desired order of accuracy) a local expression for H as
well. We already know that in the case of a uniform grid such an expression exist,
as exhibited by the series expansion for h in Eq. (6).

4.2.2. A Negative Example

We will give a simple example that shows such local expressions do not always
exist, so it is not possible to obtain the Shu–Osher form in general. Let xj=j Dx be
a uniform grid with spacing Dx, and let X(a) be a grid identical to the uniform one,
X(j Dx)=xj, except that a single grid node J is displaced, X(J Da)=xJ+b Dx,
where 0 < b < 1. Let h be the standard Shu–Osher function corresponding to the
uniform grid x, and let H be the function defined by the nonlocal summation for
grid X via the summation formula (35). Then, comparing their respective explicit
summation forms, we see they differ only in the J term, so that at any point xn we have

H(xn+1
2
)=h(xn+1

2
)

z
local

+(fŒ(XJ) DXJ − fŒ(xJ) Dx)
z

non − local

. (36)

Understanding the Shu–Osher Conservative Finite Difference Form 317



This shows H equals an essentially locally constructable part (since h is), expressible
via f values near xn, plus a ‘‘truly nonlocal’’ error term that fundamentally depends
on values of f near the remote point xJ, thus no essentially local expression for H
can be possible. Specifically, if there were some local expression

H(xn+1
2
)=L(xn − k(p),..., xn+k(p))+O(Dap) (37)

it would imply a relation between f values near xJ and near xn

(fŒ(XJ) DXJ − fŒ(xJ) Dx)=G(xn − k(p),..., xn+k(p))+O(Dap) (38)

for arbitrarily large p, and xn arbitrarily far from xJ, yet no such relation (with a
truly small O(Dap) error term) is possible for general smooth f.

The example given uses an ‘‘unresolved’’ non-uniform grid x, i.e., with abrupt
change in cell size at the particular Da considered. This was for simplicity and is not
essential to the argument. The same argument can be applied to a grid that is
smoothly distorted from uniform near xJ, such as

x(a)=a+b(a − xJ) (39)

where b is a smooth bump of compact support and with |bŒ| < 1, and Dx ° 1,
yielding the same result that H(xn+1

2
) has a truly nonlocal dependence on the values

of f near the distant point xJ.

4.2.3. Solving the General Condition

Now that we have demonstrated that local expressions are not always possible,
we return to the general question of whether a local expression exists for H. We will
need the Euler–Maclaurin summation formula [1, p. 806, formula 23.1.30], which
for our purposes says: for a uniform grid ai of spacing Da, and any smooth F(a),
the midpoint rule summation and corresponding integral differ only by terms
depending on F at the endpoints as follows

C
n

i=0
F(ai) Da=F

an+1
2

a0 − 1
2

F(a) da+E[F](an+1
2
) −E[F](a0 − 1

2
) (40)

where the E[F] is a functional given formally by an asymptotic series expansion

E[F](a)=c0F(a)+c1FŒ(a) Da+c2Fœ(a) Da2+ · · · +cnF (n)(a) Dan+ · · · (41)

for certain coefficients cn. (Note: the Euler–Maclaurin summation formula is
usually written with integration limits a0 and an; the altered form we use here must
including corresponding terms in E[F] that compensate for shifting the endpoints
by Da

2 .)
Applying this to the sum that occurs in the summation form for H in (35), we

obtain

C
j=n

j=0
fŒ(xj) Dxj= C

j=n

j=0
fŒ(x(aj))

(x(aj+
Da
2 ) − x(aj − Da

2 ))
Da

Da

=F
an+1

2

a0 − 1
2

fŒ(x(a)) 1 (x(a+Da
2 ) − x(a − Da

2 ))
Da

2 da

+E[GfŒ](an+1
2
) −E[GfŒ](a0 − 1

2
) (42)

318 Merriman



where G(a)=Dx/Da as indicated. We change variable in the integral from a to x
via dx=xŒ da, and adopt a more succinct notation to obtain

C
j=n

j=0
fŒ(xj) Dxj=F

xn+1
2

x0 − 1
2

fŒ(x) g(x) dx+E[gxŒfŒ]n+1
2
−E[gxŒfŒ]0 − 1

2
(43)

where g(x)=g(x(a))=
x(a+Da

2 ) − x(a − Da

2 )
xŒ(a) Da =G/xŒ.

Using result (43) in the summation formula for H, (35), we get

H(xn+1
2
)=E[gxŒfŒ](an+1

2
)+F

xn+1
2

x0 − 1
2

fŒ(x) g(x) dx+H0, (44)

where we will from now on absorb all x0 terms into the constant term H0. Integrat-
ing by parts to take the derivative off f gives

H(xn+1
2
)=E[gxŒfŒ](an+1

2
)+f(xn+1

2
) g(xn+1

2
) − F

xn+1
2

x0 − 1
2

f(x) gŒ(x) dx+H0. (45)

The only nonlocal term (i.e., away from xn) in this expression is the integral, and
thus H has a local expression only if this integral vanishes for all smooth f. This is
possible only if gŒ(x)=0, i.e., if g(x) is constant. In this case we can write
g(x)=c(Da), depending only on Da, and we get

H(x)=c(Da)(E[xŒfŒ](a(x))+f(x))+H0 (46)

as the essentially local construction of H from f. Given the general form of E

coming from the Euler–Maclaurin error term (41), this is an asymptotic series
expansion for H in terms of derivatives of f and Da.

As noted, this local form exists only for grids for which g(x)=c(Da) is
constant, which implies

x 1a+
Da

2
2− x 1a −

Da

2
2=c(Da) xŒ(a) Da. (47)

If we Taylor expand the left side in Da we obtain a relation between all odd order
derivatives of x,

xŒ(a) Da+2
x'−(a) Da3

3!
+ · · · =c(Da) xŒ(a) Da. (48)

There are only two ways such a (pseudo-)differential equation can be satis-
fied—either all odd order derivatives of x must be nontrivially proportional to xŒ, in
which case x must have the exponential form

x(a)=aeca+be−ca (49)
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for arbitrary constants a, b, and c (which could be complex, allowing sinusoidal
solutions as well), and c=(ecDa/2 − e−cDa/2)/c, or xœŒ and all higher odd order deri-
vatives must simply vanish, in which case x must be a quadratic function

x(a)=a+ba+ca2. (50)

for arbitrary constants a, b and c, and c=1.
As an aside, note the analysis in this section solves the ‘‘paradox’’ of how the

apparently nonlocal explicit summation form for H (or h) in Eq. (35) can collapse
into a local form—under the right circumstances, the summation can be expressed
entirely as integrals of derivatives (this is the basis of the Euler–Maclaurin error
formula as well), which all integrate to just endpoint values.

4.2.4. Exceptional Grids in Practical Application

We have shown that only two special types of non-uniform grid—exponen-
tially stretched and quadratically stretched—allow the Shu–Osher form, and in
these cases local construction of H from f is provided only by the asymptotic series
in Eq. (46). Since both forms of stretching may be useful for resolving a fine scale
feature near one end of the grid, the Shu–Osher form for these grids may be of
practical value in special cases. However, the standard Shu–Osher divided differ-
ence construction from [7] cannot be used to construct H. This added bit of com-
plexity may make it more desirable to use the more flexible, less exact, approach of
the next section, even though these special non-uniform grids in principle allow the
exact Shu–Osher finite difference conservation form.

However, we will further develop the H construction for these special cases,
which may enhance their practical value. Foremost, we can derive the unspecified
coefficients cn in the required series expansion (41). Note that our general deriva-
tion of H applies to the special case of a uniform grid, x(a)=a, in which case
H=h and we already have the Shu–Osher series expansion for h given succinctly in
Eq. (16). Thus the series derived here in (46) must be identical, i.e. we must have
(using xŒ=1 and c=1 in this case)

E[fŒ]+f=h csc hf. (51)

Since this holds for all smooth f, it determines the general coefficients cn for E in
(41). Indeed, we get that ck=0 for all even k \ 0, and

c2n − 1=a2n Da (52)

for all n > 0, where a2n are the same coefficients for the Shu–Osher series (18).
Given this close relation between the series expansions for h and H, its seems pos-
sible that the standard Shu–Osher reconstruction from primitives procedure in [7]
may also have a closely related reconstruction for H, even though we have no
obvious apriori primitive relation for H comparable to that for h (7).

As an amusing aside, note that the cn-defining relation (51) is valid for any
smooth f, and thus provides a novel closed form expression for the error term in
(our slightly modified form of ) the Euler–Maclaurin summation formula (40).
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4.3. A Shu–Osher Form Suitable for General Non-Uniform Grids

Fortunately, the Shu–Osher finite difference form can easily be employed in a
way suitable for all smoothly stretched grids. In this case, using

df
dx

=
df
da

da

dx

=g(x)
df
da

(53)

where g(x)=1/xŒ, we can rewrite the conservation law in equivalent form as

dU
dt

+
df
da

=0, (54)

where U(x,t)=u(x,t)/g(x). This form can be semi-discretized using the standard
Shu–Osher form on the uniform a grid,

dU
dt

+
Dh
Da

=0, (55)

where h is the Shu–Osher function h(a) from f(a)=f(x(a)). Of foremost impor-
tance, this conservation form will ensure that discontinuities in U—and hence in u,
since they are related by a smooth multiplier—move at the right speed. The h func-
tion is obtained from the standard construction on the uniform a grid. In practice
this simply means using the standard divided difference table reconstruction on the
nodal f values on the xi grid, but using Da instead of Dx as the grid spacing
parameter. Thus it is a trivial modification of the standard construction procedure.

Multiplying this form by g to transform back to the standard unknown u
shows that

du
dt

+g(x)
Dh
Da

=0 (56)

is a suitable generalization of the Shu–Osher form, even though it is not itself in
strict conservation form. In practice g=1/xŒ may need to be computed using
numerical derivatives. Because it is smooth, it suffices to use central difference of
the desired order of accuracy to evaluate this factor.

Thus we see that the standard Shu–Osher form and h construction both carry
over directly to the case of a smoothly stretched grid, although instead of

C ui Dxi (57)

being the discretely conserved quantity, it will now be

C ui dxi (58)

where dxi=x −

i Da.
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In [5], Osher and Chakravarthy developed this smoothly stretched grid
approach in detail for an earlier class of conservative difference schemes. They
include the treatment of multiple dimensions, boundary conditions and the Euler
Equations, as well as a detailed proof that this special non-conservative form is
sufficient to ensure that converged solutions are indeed weak solutions of the
governing conservation laws. Their developments can be directly applied to the
Shu–Osher discretization outlined here.

4.4. An Alternative Extension for Adaptive Grid Refinement

We conclude our discussion of non-uniform grids by mentioning that Harten
[2] has introduced an alternative approach that allows use of the standard
Shu–Osher form with locally refined grids. In his framework, only uniform grids
are used for discretization, but a multiresolution hierarchy of such grids is main-
tained, allowing local refinement via passage to a finer grid only where needed. The
development of this approach was disrupted by Harten’s untimely death, but
further research can be found in Harten’s series of unpublished technical reports
[3]. These early results are promising and suggest that it may be possible to
develop a full (multidimensional space and time) adaptive gridding version of the
Shu–Osher finite difference ENO. Making the Shu–Osher form compatible with
robust adaptive gridding remains one of the outstanding problems in the develop-
ment of the highly successful class of ENO methods, and it is both a challenging
and important problem for future research efforts.
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