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a b s t r a c t

In this paper, we use the generalized Hurst exponent approach to study the multi-scaling
behavior of different financial time series. We show that this approach is robust and
powerful in detecting different types of multi-scaling.We observe a puzzling phenomenon
where an apparent increase in multifractality is measured in time series generated from
shuffled returns, where all time-correlations are destroyed, while the return distributions
are conserved. This effect is robust and it is reproduced in several real financial data
including stock market indices, exchange rates and interest rates. In order to understand
the origin of this effect we investigate different simulated time series by means of
the Markov switching multifractal model, autoregressive fractionally integrated moving
average processes with stable innovations, fractional Brownian motion and Levy flights.
Overall we conclude that the multifractality observed in financial time series is mainly
a consequence of the characteristic fat-tailed distribution of the returns and time-
correlations have the effect to decrease the measured multifractality.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A traditional assumption, used in the early studies of financial time series, considered that returns are independent,
Gaussian random variables. However, uncountable number of empirical studies, initiated by Ref. [1], have shown that
empirical returns reveal instead very rich and non trivial statistical features, such as fat tails, volatility clustering andmulti-
scaling. From that times, several models have been proposed to mimic the multi-scaling behavior of stock market returns.
For instance, Benoit Mandelbrot, together with his students Luarent Calvet and Adlai Fisher, introduced a stochastic process
as a generating mechanism of stock market returns with a multifractal cascade [2–4]. Such multifractal processes provide
us with a newmodel with attractive stochastic properties, which can reproduce some stylized facts of financial markets: fat
tails, volatility clustering, long-term dependence and multi-scaling. However, the practical applicability of earlier versions
ofmultifractal models suffers from its combinatorial nature and from its non-stationarity due to the restriction to a bounded
interval. Themost attractive feature of these processes is their ability to generate several degrees of longmemory in different
powers of returns. More recently, Calvet and Fisher [4,5] have introduced a new family of iterative multifractal models: the
Markov-switchingmultifractal (MSM)modelwhichpreserves the hierarchical,multiplicative structure of the earliermodels,
but possesses appealing asymptotic properties.
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In the recent years, there has been an increasing interest in the application of the scaling concept to financial markets
[6–10]. Scaling properties in time series have been studied in the literature by using several techniques [4,11]. For the
interested reader let us briefly mention here some of them such as the seminal work of Hurst [12] on rescaled range
statistical analysis and the modified rescaled range analysis of Lo [13], the multi-affine analysis [14], the detrended
fluctuation analysis [15,16,11], multifractal detrended fluctuation analysis [17], the partition function approach [18,19] and
the detrending moving average [20].

The challenge for empirical and theoretical researches lies in uncovering what scaling laws tell us about the underlying
mechanisms that generate the data. Furthermore, empirical scaling evidences should be used as stylized facts that any
theoretical model should also reproduce.

In addition to this findings, Schmitt et al. [21] show that the additive models like Brownian, fractional Brownian, Lévy,
Truncated Lévy and fractional Lévy models are not compatible with the properties of financial data and they propose the
multifractal framework as an alternative. Authors in Ref. [22] argue that structure function of generally non-multifractal
processes fitted to the financial time series behaves as those of a genuine multifractal process. Jiang and Zhou [18] find
that scaling behavior of the original financial datasets cannot be distinguished from those of shuffled time series. Zhou [23]
investigates the components of the empirical multifractality of financial returns and finds that temporal structure hasminor
impact on the multifractal spectrum. More recently, Schmitt et al. [24] find that introduction of Euro had no influence on
the multifractal behavior of the Euro–Yuan exchange rate.

In this paper, we analyze themulti-scaling properties of different time series bymeans of the generalized Hurst exponent
(GHE) which provides a robust estimator to compute these scaling properties [25,26]. There are two types of scaling
behaviors studied in the finance literature: the behavior of the returns distribution tails as a function of the movement
size, but keeping the time interval of the returns constant; the behavior of some forms of volatility measure as a function
of the time interval on which the returns are measured. In this study we investigate the link between the two in real and
simulated data series. Furthermore, to distinguish between the effects on multifractality from time-correlations and from
fat-tailed return distributions we apply the GHE on shuffled data series where the time history is destroyed but the return
distribution is maintained.

The main part of this paper concerns the study of the source of the multifractality in financial datasets. The origin of
multifractality has been discussed in the literature, by means of the partition function approach [27] and by means of
the multifractal detrended fluctuation analysis [17,23]. In particular, Kantelhardt et al. [17] points out that in general, we
can find two types of multifractality in the time series: (i) Multifractality due to a broad probability density function;
(ii) Multifractality due to different long-range correlations of the small and large fluctuations in time. In the first case,
multifractality cannot be removedby shuffling the series. In the second case, the corresponding shuffled series should exhibit
uni-fractality, since all long-range correlations are destroyed by shuffling. In case that both types are present in the data,
shuffled data should show different multifractality than the original series.

We contribute to the debate about scaling properties of the financial returns with a rigorous statistical analysis of the
problem. In particular, we investigate the two types of multifractality both on real financial data and MSM simulated time
series. To test the robustness of our findings, we also compare the results to the simulations from α-stable distribution,
fractional Brownianmotion and autoregressive fractionally integratedmoving averagemodelwith stable innovationswhich
allows us to study the impact of short memory in the heavy tailed process with long range dependence. Our study is
structured as follows. Sections 2 and 3 review theMarkov-switchingmultifractal (MSM) and the generalizedHurst exponent
(GHE) methods. Section 4 reports the empirical and simulation-based results describing the two types of multifractality in
the data. In Section 5we check the results for robustness by comparing the simulations fromα-stable distribution, fractional
Brownian motion and fractional autoregressive moving average model with stable innovations. Finally, results are followed
by the conclusions given in Section 6.

2. The Markov-switching multifractal model

In the Markov-switching multifractal model [5,28–31] asset returns are modeled as:
rt = σtut (1)

with innovations drawn from a normal distribution with average zero and unitary standard deviation (ut ∼ N(0, 1)) and
instantaneous volatility determined by the product of k volatility components, or multipliers, M(1)
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t , . . . ,M(k)

t and a
constant scale factor σ :
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where M(i)
t is a random variable drawn from a binomial distribution, which is characterized by random draws taking two

discrete values with equal probability, i.e.,m0 andm1, (withm1 = 2−m0, and 1 ≤ m0 ≤ 2). Each volatility componentM(i)
t

is renewed at time t with probability γi depending on its rank iwithin the hierarchy ofmultipliers and it remains unchanged
with probability 1 − γi. The transition probabilities are:

γi = 1 − (1 − γk)
bi−k

, i = 1, . . . , k, (3)
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