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INTRODUCTION

T cell-redirection strategies aim to selectively eliminate cancer cells by physically linking T
lymphocytes with cancer cells using tumor-targeted cell-cell bridging (CCB) molecules, such as
membrane-anchored chimeric antigen receptors (CARs) or soluble bispecific antibodies (bsAbs)
that specifically recognize a cell-surface tumor-associated antigen (TAA) (Blanco et al., 2019).
In the CAR approach, a TAA-specific antibody is genetically fused to intracellular T cell
signaling domains. CARs have evolved greatly since their initial description, as single-chain
antibody fragment (scFv)-based receptors containing the signaling domain of the CD3ζ chain
(CD247) of the T cell receptor (TCR) (Eshhar et al., 1993). Subsequently, constructs incorporating
signaling domains of costimulatory molecules (e.g., CD28 or 4-1BB) in tandem with the CD3ζ
signaling domain were generated (Finney et al., 1998). Engrafting T-cells with such receptors,
termed second-generation CARs, enables sustained proliferation and increased cytokine secretion.
Third-generation CARs contain two costimulatory domains, in addition to the CD3ζ signaling
domain (Carpenito et al., 2009; Milone et al., 2009). Current CAR-T cell therapy involves the
isolation of autologous T cells using leukapheresis, followed by in vitro stimulation, genetic
modification to express the TAA-specific CAR, and expansion to infuse back into the patient
(Blanco et al., 2019). The bsAbs are designed to simultaneously bind to the TAA in the surface
of tumor cells and the CD3ε chain of the TCR/CD3 complex in the surface of T cells (Blanco et al.,
2019).More than a 100 different bsAb formats have been reported, including small bsAbs composed
only by two antigen-binding sites, IgG-like bsAbs and larger and non-IgG bsAbs formed by
different antigen-binding moieties, often combined with oligomerization modules (Nuñez-Prado
et al., 2015; Brinkmann and Kontermann, 2017). By connecting CD3 signaling molecules with a
recognition process independent of the TCR variable domains, T cells can be hot-wired to recognize
a user-defined cell-surface TAA that is not associated with the major histocompatibility complex
(MHC) to activate effector cell responses and kill cancer cells (Blanco et al., 2019). Nonetheless,
the precise molecular mechanisms by which T cells are activated through these CCB molecules are
poorly understood.

The administration of bsAbs and CAR-T cells has achieved remarkable clinical outcomes in
hematological tumors, and several products have been approved by regulatory agencies for clinical
use. Blinatumomab, an anti-CD19xanti-CD3 bsAb designed in the BiTE (bispecific T cell-engager)

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org/journals/cell-and-Developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-Developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-Developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-Developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2019.00370
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2019.00370&domain=pdf&date_stamp=2020-01-10
https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:proda@med.ucm.es
mailto:lav.imas12@h12o.es
https://doi.org/10.3389/fcell.2019.00370
https://www.frontiersin.org/articles/10.3389/fcell.2019.00370/full
http://loop.frontiersin.org/people/162558/overview


Roda-Navarro and Álvarez-Vallina Artificial Immunological Synapses in Immunotherapy

format, was approved by the US Food and Drug Administration
(FDA) for the treatment of relapsed or refractory B cell
acute lymphoblastic leukemia (B-ALL) (Przepiorka et al., 2015).
Two CD19-specific second generation CAR-T cell products,
tisagenlecleucel and axicabtagene ciloleucel (axi-cel), have been
approved by the US FDA for the treatment of pediatric and young
adult patients with relapsed or refractory B-ALL (Maude et al.,
2018) and adult patients with relapsed or refractory diffuse large
B cell lymphomas (Neelapu et al., 2017), respectively. However,
the utility of these approaches in the treatment of solid tumors
targeting TAAs has been limited by organ toxicities related
to activation of T cell effector functions by non-tumor cells
expressing low levels of the TAA, as well as systemic cytokine-
associated toxicities (Alonso-Camino et al., 2016).

PHYSIOLOGICAL T CELL ACTIVATION
AND THE IMMUNOLOGICAL SYNAPSE

Under physiological conditions, TCR engagement leads to
suppression of T cell locomotion and formation of the
immunological synapse (IS), a highly organized structure at the
interface between antigen-presenting cells or target cells and
T cells (Alcover et al., 2016). The TCR-mediated IS (TCR-IS)
is currently seen as a three-dimensional dynamic structure in
which the endosomal compartment, the cytoskeleton, and the
signaling network are finely tuned to achieve proper T cell
activation and effective immune responses (Soares et al., 2013).
The mature TCR-IS is compose of a central supramolecular
activation cluster (cSMAC), a peripheral (p)SMAC and a distal
(d)SMAC (Figure 1A) (Monks et al., 1998; Freiberg et al., 2002).
The cSMAC is the docking site for the microtubule organizing
center (MTOC), which generates a radial net of microtubule
fibbers that cover all the IS and mediates the polarization of
the endosomal compartment (Martín-Cófreces et al., 2014).
pSMAC and dSMAC are sites where contractile actomyosin arcs
and an actin retrograde flow, respectively, generate centripetal
mechanical forces toward the cSMAC (Babich et al., 2012;
Murugesan et al., 2016; Basu and Huse, 2017). In this context,
early signaling of the TCR/CD3 complex in response to a strong
agonist occurs in plasma membrane microclusters at the dSMAC
that move to the cSMAC where the TCR is endocytosed and
early signaling ceases (Varma et al., 2006). However, in the case
of weak agonist, cSMAC has been proposed to enhance T cell
activation (Cemerski et al., 2008). The centripetal movement of
TCR microclusters toward the cSMAC is mediated by the actin
retrograde flow at the dSMAC, by the contractile actomyosin
arcs at the pSMAC and by dynein motors on microtubule fibbers
(Hashimoto-Tane et al., 2011; Yi et al., 2012; Murugesan et al.,
2016). Cytoskeleton dynamics are also essential for an adequate
T cell activation. For instances, the actin retrograde flow at the
dSMAC sustains the PLCγ1 activation (Babich et al., 2012) and
MTOC polarization to the IS controls sustained activating signals
(Martín-Cófreces et al., 2008).

Sustained TCR/CD3 signaling is required to achieve a proper
T cell activation and the endocytosed and degraded TCR during
activation should be replenished by TCR molecules recruited

to the IS from the endosomal compartment (Das et al., 2004).
The endosomal compartment also conveys signaling molecules,
such as Lck and LAT, which participate in signaling complexes
organized at the IS (Ehrlich et al., 2002; Bonello et al., 2004;
Purbhoo et al., 2010; Balagopalan et al., 2018).

During T cell effector functions, the cSMAC is the place from
where lytic granules or cytokines are secreted to the synaptic
cleft by cytotoxic or helper T cells, respectively (Huse et al.,
2006; Stinchcombe et al., 2006). This role depends on the actin
clearance and the polarization of the MTOC to the cSMAC, as
well as on integrin rings at the pSMAC that ensure the required
cell-cell adhesion (Martín-Cófreces et al., 2018).

IMMUNOLOGICAL SYNAPSE MEDIATED
BY CCB MOLECULES

The precise spatial and temporal topology of the IS assembled
in response to CCB molecules (CCB-IS) is poorly understood.
Although CAR-T cell stimulation induces an efficient MTOC
polarization and lytic granule secretion (even faster than in
TCR-IS), actin cytoskeleton is not completely depleted from
the center of the IS, microclusters of the CAR and signaling
molecules are evenly dispersed through the IS, cSMAC and
LFA-1 ring at the pSMAC are not properly organized and
activating signals as well as cell-cell interactions are shorter than
in conventional TCR-IS (Figure 1A) (Mukherjee et al., 2017;
Davenport et al., 2018; Watanabe et al., 2018). It should be
noted that this fast CAR-T-IS might be instrumental in the
secretion of lytic granules before MTOC polarization to the IS,
as previously observed (Bertrand et al., 2013). In the case of
bsAb-mediated IS, initial work indicates the establishment of a
conventionalmature IS with a typical ring of LFA-1 at the pSMAC
and polarization of the secretory compartment at the cSMAC
(Figure 1A) (Offner et al., 2006). Interestingly, filamentous
actin, CD3ζ-containing endosomes and PLCγ1 activating signals
properly polarize to the bsAb-mediated IS (Harwood et al.,
2017).

DISCUSSION

In spite of the above-mentioned recent contributions, a precise
understanding of the spatial and temporal topology of the
CCB-IS remains elusive. To what degree is the physiological
IS organization maintained in the artificial CCB-IS formed
in CAR-T cells or following CD3ε engagement by a TAA-
bound bsAb? This question is particularly relevant as an altered
topology of the TCR-IS has been associated with immune
pathologies (Schubert et al., 2012). Structural or procedural
differences between the CCB-IS and TCR-IS will likely change
the nature of the resulting signaling and influence therapeutic
T cell responses. Thus, in cancer immunotherapy, the study
of the CCB-IS is expected to improve the efficiency of the
treatment while reducing side-effects. Consistent with this idea,
the IS seems to predict the efficiency of CAR-T cells (Xiong
et al., 2018). Considering the cancer cell side, conventional T
cell activation and TCR-IS assembly is mainly influenced by
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FIGURE 1 | Factors potentially affecting IS topology. (A) Reported topology observed in the TCR-mediated, CAR-mediated and bsAb-mediated IS. The organization
of cytoskeleton, signaling and effector molecules along the interface of the IS established by T cells and target cells is depicted. The TCR-mediated and the
bsAb-mediated IS display a well-organized bull’s eye structure whereas CAR-mediated IS shows a rather disordered structure. Bidirectional arrow and question mark
indicate the uncertainty of expected topology in future CAR and bsAb formats. (B) Schematic of the activating system in TCR-mediated physiological IS or
CCB-mediated artificial IS. The different factors influencing IS assembly and T cell activation are indicated in the tumor cell and in the T cell.

the copy number of the MHC (frequently reduced by cancer
cells) and by the affinity of the MHC/peptide engagement
by the TCR. In the artificial CCB-IS many other factors can
be influential, such as the TAA density (copy number and
shedding), size and structure, the location of the targeted
epitope (accessibility and distance to the cell membrane),
and the number and affinity of crosslinking events mediated
by CCB molecules. Other decisive factors are the structure
and format (size, geometry and valence) and the density or
local concentration of the CCB molecule (CAR or bsAb)
(Figure 1B).

The influence of some of these factors in the assembly
of the CCB-IS has been studied. For example, in the bsAb-
mediated IS membrane proximal TAA-epitopes are necessary
for the assembly of the IS with CD45 exclusion and central
clustering of the TAA, the signaling molecule ZAP70 and the
bsAb (Li et al., 2017). Also, an incremented TAA binding
valence of bsAbs contributes to a more efficient activating
signaling at the IS and effector function (Harwood et al.,

2017). Nonetheless the precise spatial and temporal topology
of intracellular signaling and cellular organelles following
lymphocyte activation with different formats of CCB molecules
should be deeply studied. Such information will allow us to
know which is the strategy that best reproduces the molecular
mechanisms underlying canonical TCR-mediated activation
and effector function, as well as to determine whether it
is possible to improve the tumoricidal potency of T cells
redirected to the tumor by CCBmolecules, with limited collateral
damage to normal tissues. Thus, studies to understand IS
topology must be included in the roadmap for the development
of safer and more effective T cell-redirecting strategies for
cancer immunotherapy.
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