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Abstract The fast growing market for smart phones
coupled with their almost constant on-line presence makes
these devices the new targets of malicious code (virus)
writers. To aggravate the issue, the security level of
these devices is far below the state-of-the art of what is
used in personal computers. It has been recently found
that the topological spread of MMS (Multimedia Mes-
sage Services) viruses is highly restricted by the under-
lying fragmentation of the call graph—the term topo-

logical here refers to the explicit use of the call graph
topology to find vulnerable phones. In this paper, we
study MMS viruses under another type of spreading be-
havior that locates vulnerable phones by generating a
random list of numbers to be contacted: generally re-
ferred to as scanning. We find that hybrid MMS viruses

including some level of scanning are more dangerous to
the mobile community than their standard topological
counterparts. Interestingly, this paper shows that the
topological and scanning behaviors of MMS viruses can
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be more damaging in high and low market-share cases
respectively. The results also show that given sufficient
time, sophisticated viruses may infect a large fraction
of susceptible phones without being detected. Fortu-
nately, with the improvement of phone providers’ mon-
itoring ability and the timely installations of patches
on infected phones, one can contain the spread of MMS
viruses. Our findings lead to a better understanding
on how one could prevent the spread of mobile-phone
viruses even in light of new behaviors such as scanning.

Keywords Mobile-phone Viruses · Social Networks ·
Mobile Security

1 Introduction

The history of technological viruses is intrinsically linked
to the history of computational devices. Since the cre-
ation of the Internet, programmers began writing self-
replicating executables with malicious purpose to: cause
harm to computers, destroy information from comput-
ers, and profit from information stored in such devices.
The infamous Creeper1 is the first known instance of
a computer virus. From there on, the field of computer
security improved significantly but unfortunately so did
the ability of programmers to write increasingly more
sophisticated viruses. In recent years, mobile phones
have become the new frontier for these self-replicating
programs [16,22,14]. The availability of these mobile
devices coupled with their constant on-line presence
makes them an ideal breeding ground for technologi-
cal viruses [16]. Mobile-phone viruses can steal user’s
private information [9,14], drain handset’s battery [14],
track user’s locations by GPS [26], to name but a few.

1 http://en.wikipedia.org/wiki/Creeper virus
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They can infect a large number of mobile phones in
stealth mode and later make these infected phones per-
form some simple malicious functions, such as sending
short text messages to get the communication channels
jammed [13].

Mobile-phone viruses are able to self-replicate and
spread quickly. Similarly to their biological counter-
parts, they can spread based on physical proximity,
when they use Bluetooth communication; and like PC
viruses, they can spread by either targeting individuals
in the address books of the infected phones (topologi-
cal behavior), or by randomly selecting contacts/phone
numbers to be contacted (scanning behavior) [21]. The
pursuit to fully understand the spread dynamics of mo-

bile-phone viruses and their damage potential starts
with the introduction of spreading models; many have
been proposed in the literature. Mickens and Nobel [18]
proposed an epidemiological framework to model the
topological properties of mobile networks. Su et al. [23]
used trace-drive simulations to examine the propaga-
tion dynamics of Bluetooth worms; they found that
Bluetooth worms can quickly infect a large population
of susceptible devices. Yan et al. [27] used logistic equa-
tion to characterize the propagation dynamics of Blue-
tooth worms. Wang et al. [24] and Funk et al. [12] stud-
ied the important role of human mobility in the spread
of Bluetooth viruses. Based on real mobile-phone data,
Wang et al. [25] studied different spreading patterns of
Bluetooth and MMS viruses; they predicted that once a
mobile operating system’s market share reaches a phase
transition point, MMS viruses will become a serious
threat to users.

Researchers also investigated the strategies to moni-
tor or restrain the propagations of mobile-phone viruses.
Cheng et al. [9] studied the approach to detect abnor-
mal message sending behavior by collecting and sending
communication data to remote servers. Bose et al. [2]
proposed an approach to distinguish malicious behav-
ior from normal operations through training a classi-
fier based on support vector machines. Kim et al. [15]
looked into a methodology to detect malware by moni-
toring battery-lifetime. Zhu et al. [28] studied counter-
mechanisms to contain the propagation of a mobile
worm at the earliest stage by patching an optimal set

of selected phones. This counter-mechanism continu-
ally extracts a social relationship graph between mobile
phones, which is representative of the most likely prop-
agation path of a mobile worm. Gao et al. [13] studied
a two-layer network for modeling virus propagation in
mobile networks and designed a pre-immunization and
adaptive patch dissemination strategy to restrain mo-

bile virus propagation.

The spreading dynamics of mobile-phone viruses has
been amply studied in recent years. However, previous
works normally use a topological approach, ignoring the
possibility that a virus can scan random phone num-
bers. Indeed, the mobile-phone world has already seen
instances of scanning behavior such as the Timofonica
virus2 and more recently in a hybrid virus called Be-

selo3. At first glance, random scans seem to be a naive
approach but what makes them dangerous is that a few
successful scans may transfer the infection from one side
of the network to another in a very short amount of
time. Figure 1 depicts a scenario with topological and
scanning behaviors in a mobile-phone network. Note
that part of the network (depicted in light color) could
never be reached without the scanning behavior. This
simple example demonstrates the difference between
topological viruses (which have to respect the existing
connections between users) and scanning viruses (which
are able to jump to anywhere in the network). We can
observe that the topology formed by users having other
users’ numbers in their address books is not used for
the scans (in dashed line). In this paper we study the
effects of MMS viruses’ topological behavior combined
with a scanning behavior. We find that for high market-
share mobile operating systems (hence forth called OS),
viruses with topological behavior are more effective but
for low market-share OS, the ones with some level of

scanning behavior cause more harm.

ADDRESS BOOK LINKS

SCANS TO RANDOM NUMBERS

Fig. 1 Virus can contact phones based on the call graph
(topological behavior) or generating numbers randomly
(scanning behavior). The light-colored phones in this picture
could never be reached using only topological behavior.

2 http://www.kaspersky.com/about/news/virus/2000/
TIMOFONICA Virus Questions and Answers

3 http://www.f-secure.com/v-descs/
worm symbos beselo.shtml
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Unlike previous works, this paper investigates the
interplay between spreading behaviors employed by MMS
viruses and the ability that phone providers have to
look for anomalies based on messaging volume as a
function of time of the day and day of the week. MMS
viruses can spread at different rates and this rate can
be the difference between their success or failure. Hence

we study the spread of viruses under different spreading
rates. We find that the most dangerous MMS viruses
may not have the fastest spreading rates.

Finally, we discuss two strategies that could be used
to mitigate the spread of MMS viruses. First, with an
improved monitoring ability on abnormal MMS vol-
ume, MMS viruses may be detected at an earlier stage
of infection. Second, as expected, we find that the in-
stallation of patches on infected phones can help miti-
gate MMS viruses’ potential damages—we discuss a few

patching scenarios in this paper.

2 Dataset and Methodology

The dataset used in this paper was collected by a mobile-
phone providers for billing and operational purposes
during a 12-weeks period. The privacy of all callers is
ensured through the use of a security key (hash code)
for each user instead of users’ real phone numbers.

2.1 Usage Pattern of MMS

We first analysed the use of MMS as form of commu-

nication. Figure 2 shows the result of such analysis for
the MMS activity of approximately 6 million mobile-
phone users over a period of 12 weeks with an average
volume of 4.7 million messages per week. The figure
shows a periodic usage of MMS peaking from Sunday
to Tuesday. This analysis is important because this us-
age pattern is widely used by mobile-phone providers

to protect their communication systems; abnormal us-
age can be stopped when one has a model of the nor-
mal cyclic usage pattern [9,7]. Moreover, in our sim-
ulations we assume that mobile-phone providers are
able to use the global activity patterns to check for
anomalies that may arise from big fluctuations in users’
MMS activity. In the inset of Figure 2, we measured the

maximum and average MMS volume in different two-
hour periods of a week (Figure 2(a)). If the MMS vol-
ume generated by the spread of viruses is larger than
the volume difference, ∆V , between the maximum and
average MMS volume (depicted in the Figure 2(b)),
phone providers are able to detect the viruses using sim-
ple anomaly detection approaches. In contrast, MMS

viruses may spread without being detected if the MMS

volume created by them is smaller than ∆V , because
phone providers generally regard these slightly higher
rates of messages as part of expected fluctuations in
users’ MMS usage [7].
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Fig. 2 (a) The maximum and average volume of MMS mes-
sages and (b) the threshold of MMS viruses being detected
by phone providers.

2.2 SI and SIR Models

In this paper, we first use the SI model [1] to simulate
the spread of MMS viruses. Under this model, mobile
phones can be in only one of two possible states: sus-
ceptible (S) when they are vulnerable to infection, or
infected (I) when they are transmitting the infection to
other devices. Using the SI model, we study the initial
spreading process in the absence of recovery or antivi-
ral software. That is, we do not consider the possibil-
ity that the phones could recover from the infection;
a reasonable assumption due to the limited capacity of
some handsets for installing antiviral software [22,14,9],
combined with the users’ current lack of concern about
the threat of mobile-phone viruses [22,14,9]. In Section
3.4 we also use the SIR model [1] to study the spread
of MMS viruses under the scenario where patches can
be installed on infected phones. In the SIR model, an
infected mobile phone changes from infected state to
recovered state (R) after the installation of patches.

In our simulations we assume that a virus does not
need the user confirmation to be installed in the device,
corresponding to the worst possible spreading scenario.
Without confirmation, every phone that receives an in-
fected MMS becomes infected.
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In the SI model an infected mobile phone can infect
a susceptible phone at a rate µ described by

S + I
µ
−→ 2I. (1)

In the SIR model an infected phone can recover at
a rate γ by installing patches.

I
γ
−→ R. (2)

2.3 Topological and Scanning Behaviors

Two spreading behaviors of MMS viruses are investi-
gated in this paper: viruses behaving topologically send
out malicious MMS to the phone numbers listed in its
address book; viruses performing scanning send out ma-
licious MMS to randomly generated phone numbers.

In the topological approach, we approximate a user’s
address book with the list of numbers the user com-
municated with during the 12 weeks of observation. As
shown in Figure 3, the size of user’s address book N fol-
lows a power-law distribution defined as P (N) = N−λ

with an exponent λ = 4.5. The measured average ad-
dress book size 〈N〉 is 9.17 (Figure 3).
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Fig. 3 The distribution of user’s address book size P (N)
follows a power-law for a wide range of N .

To understand the spreading dynamics, we assign
an initial virus to a randomly chosen handset, which in
turn will send infected MMSs to its identified contacts.
The MMS service is not instantaneous, there is time
delay on receiving a MMS. In our simulation we choose
2 minutes as the time required for a MMS virus to be
received by another handset and to install itself [3]. The
simulation time step is also chosen as 2 minutes.

In the scanning behavior, we need to estimate the ef-
fective scanning probability p. This is necessary because
one can expect that a large number of scans will reach
mobile numbers that are not active (ineffective scan).
To get an educated estimate of this probability, we di-
vided 6 million (an approximation of the mobile-phone
user base) by 100 million (the total phone numbers that
8 digits can generate), obtaining an effective scanning
probability p = 0.06.

To quantify the topological/scanning behavioral level
in the spread of MMS viruses, we define the random at-
tack probability, ρ, that a virus will attack a random
phone number rather than a number listed in the ad-
dress book. The value of ρ varies from zero to one, show-
ing viruses’ different attack strategies: from completely
topological to completely scan based. Lastly, we define
the maximum attack number s for each infected hand-
set, viruses generally limit and control the number of
times they attack to prevent them from being detected
due to abnormal MMS volume caused by the attacks.

2.4 The Naive and Temporal Spread Models

In this paper, we study two spreading models: naive
and temporal. The difference between them is on their
ability to utilize temporal patterns of MMS volume to
prevent being detected. Given the information about
MMS volume during a day, the temporal spread model
enable us to understand viruses that try to avoid detec-
tion by phone providers. The model can simulate the in-

terplay between MMS viruses’ spreading strategies and
phone providers’ ability to monitor global MMS vol-
ume. On the other hand, the naive model is studied
to understand the worst-case scenario of a viral out-
break, ignoring MMS temporal usage patterns and pos-
sible monitoring by phone providers. We use OS market
share values of m = 0.30 and m = 0.03 to study the
viral spread in different types of call graphs [19,7,17,
20]. When the market share m = 0.3 there is a giant
component in the call graph and in the small m = 0.03
case no giant component exists and the call graph is
fragmented into small isolated clusters. In the follow-
ing sections, we describe that topological and scanning
behavior are more effective in high market-share OS
and low market-share OS respectively.

3 Experimental Results

3.1 The Effect of Scanning

To understand the effect of the scanning behavior of
mobile virus, we first use an illustrative example based
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Fig. 4 Illustrative example of the effect of scanning behavior in mobile viruses (this picture is presented to exemplify the
effect of scans and does not depict the real data used in the simulations).

on a small neighborhood of the call graph (approx. 600
nodes and 1,000 links). The graph was generated by
starting from a randomly chosen phone and including
all mobile-phone contacts up distance 4 from the initial
one. The nodes in Figure 4 are represented using two
colors that correspond to the two kinds of OSs used in
the simulation, with market shares 0.25 (25%) repre-
sented by dark nodes and 0.75 (75%) in lighter color.
Because a virus can only infect the OS it was designed
for, the largest components [11,6,10,4,8,5] formed by
the same color connected nodes represent the maximum
number of handsets that a virus can infect. Without
random scans, the dark nodes are fragmented into small

islands and the largest cluster size represents only 6%
of the total number of dark nodes (see Figure 4(b)). To
simulate the continuous attacks of scanning behavior,
we randomly add 800 links between the nodes in this
local network. The dashed lines shown in Figure 4(c)
represent links generated from scanning behavior—they
connect the originally disconnected small clusters. One
can see that the structure of the call graph changes
significantly, the largest component (35% of the total
number of dark nodes) is about 6 times bigger than
its counterpart without random links. In this illustra-
tive example, we densely add random links to make the
effect of scanning more prominent. In what follows, we

show that the addition of scanning also makes the virus
more dangerous under realistic conditions.

3.2 Naive Viral Spread (Worst-Case Scenario)

In the naive viral spread model, where we disregard
the possibility of monitoring of abnormal MMS activ-
ity, a phone handset sends out viral MMS messages

every 2 minutes from the time it gets infected. This ap-
proach can be easily detected by phone users or phone
providers. However, this model is interesting as a study
of the worst-case of a virus spread, given that it helps
us understand how OS market share, maximum attack
number, and attacking strategy influence the spreading
dynamics of MMS viruses.

After looking at the worst case, we move to a study
on how the OS market share m influences the spread
of MMS viruses. The solid and dashed lines in Figure 5
represent the average (solid line), maximum (dashed
line) and minimum (dashed line) infection fraction (I/N)
respectively. Different symbols correspond to different
maximum-attack numbers s. The average (I/N) is ob-
tained from 10 simulations where the virus starts at
a randomly chosen mobile-phone user. For a small OS
market share m = 0.03, independently of what attack
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Fig. 5 Spread behavior using the naive viral spread model.

strategies (ρ value) that the viruses utilize, they can-
not spread if the maximum attack number (s) is small
(Figure 5(b)). In contrast, for a large OS market share

m = 0.30, a MMS virus can infect a large fraction of
susceptible handsets even when the maximum-attack
number (s) is as small as 10, showing that large market-
share OS handsets are much more vulnerable (Figure
5(a)). These results strengthen the results in Wang et
al. [25], revealing again the crucial role of market share
in the spread of mobile-phone viruses. We also explore

the effect of maximum-attack number (s) in the spread
of MMS viruses. As shown in Figure 5, the increase of
s makes MMS viruses reach more susceptible handsets.
This shows that the maximum-attack number (s) also
plays a key role in the spreading process.

Intuitively, one can see the different characteristics
of topological and scanning behaviors. Topological at-
tacks always reach active phone numbers but they are
sometimes trapped in isolated clusters of the underly-
ing fragmented call graph. In contrast, scanning has a
much lower probability to reach active phone numbers,

but just a few of them can link the isolated clusters
together. As depicted in Figure 5(a), for an OS with
high market share, when the maximum-attack number
(s) is small, MMS viruses with more topological at-
tacks can infect more phones. This is because given the
small maximum-attack number, scanning has a limited
ability to reach active phone numbers. For a large max-
imum attack number (s = 50), MMS viruses with a
random attack probability ρ ≈ 0.6 can potentially cause
the most damage. This situation occurs because with a
large s, topological attacks can be ineffective by reach-
ing already infected phone numbers. In Figure 5(b) we

find that MMS viruses with a big random attack prob-
ability ρ can infect more susceptible handsets in an OS
with a low market share m = 0.03. This can be ex-

plained by the scanning viruses’ ability to connect iso-
lated clusters. However, pure scanning may result in
the failure of spread due to its low probability to reach
active phone numbers.
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Fig. 6 The distribution of cluster sizes in the call graph.

According to Figure 5, under specific conditions of
OS market share and maximum-attack number, the
combination of topological and scanning behaviors in
mobile virus can cause the most damage. Generally, we
notice that MMS viruses with a high scanning rate are
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more dangerous for an OS with low market share, while
MMS viruses with a low scanning rate are more danger-
ous for an OS with high market share. These findings
can be addressed by the topological properties of the
underlying call graph. As depicted in Figure 6, given
that there is already a giant component in the call graph
formed by the handsets using a high market share OS,

attacks virus with scanning behavior are not able to
help significantly increase the size of the giant compo-
nent. Furthermore, when the maximum-attack number
(s) is limited (small), scanning will create too many in-
effective attacks that make the virus fail to spread. For
an OS with low market share (m = 0.03) no giant com-
ponent exists in the call graph (Figure 6), making the
effect of scanning in connecting isolated communities
more prominent. Thus, we find that MMS viruses with
high scanning rate are more effective for an OS with
low market share. The different spreading pattens of
MMS viruses in OSs with high and low market shares
can be explained by the different structural properties
of the call graphs formed in the two situations. Inter-
estingly, in next section we also find similar results in
the temporal volume-based spread model.

In this section, our simulations provided an indica-
tion of the values for market share as well as maximum-
attack number in which the mobile-phone base becomes

susceptible to global epidemics. Unfortunately, this is
not the entire story as viruses are being written to be
more stealth to detection. In the next section we delve
into a spread mode that attempts to be stealth by using
the patterns in MMS volume on different times of the
day and different days of the week.

3.3 Temporal Volume-based Viral Spread (Stealth
Mode)

Given that the pattern of people sending MMS can be
analysed and predicted, a MMS virus may utilize la-
tent periods of usage to avoid detection by the phone
providers. One of the common ways virus can do the
above is by using an approach based on the time of
the day and day of the week, as well as limiting the
virus’ attack frequency. Therefore estimating the real
danger posed by these kinds of viruses becomes an im-
portant problem. In the model proposed here, MMS
viruses spread solely during the daytime according to
the temporal MMS volume pattern—during the day the
volume of messages make detection of virus harder. We
calculate the probability of the infected phone sending
out a viral message each 2 minutes [3]. For example:

1. If 2% of the weekly MMS volume is generated be-
tween 6pm and 8pm on Tuesday and each infected

phone sends out one viral MMS per day on average
(T = 1 day), an infected handset would send out
7 viral MMSs per week. Thus the infected handset
has a probability of 7 × 0.02 = 0.14 to send out a
viral MMS between 6pm and 8pm on Tuesday.

2. Between 6pm and 8pm (2 hours) there are sixty two-
minutes time steps, thus we get that the infected

handset has a probability of 0.14/60 = 0.0023 to
send out a viral MMS in each two-minutes during
6pm and 8pm on Tuesday.

In the temporal, volume-based spread model, we set
s = 100 and s = 1000 for the high market share case
and low market share case respectively, because these
values have been shown to be the most dangerous in the
study of worst case scenario. In Figure 7, we predict the
amount of spreading (I/N) for MMS viruses using dif-
ferent average attack periods T . The different symbols
in Figure 7 show the results under different values of T .

Figure 7(a)-(d) corresponds to four scenarios respec-
tively: (a) high market share m = 0.30, low scanning
rate ρ = 0.2. (b) high market share m = 0.30, high scan-
ning rate ρ = 0.8. (c) low market share m = 0.03, low
scanning rate ρ = 0.2 (d) low market share m = 0.03,
high scanning rate ρ = 0.8. The pictures show, the ra-
tio of infected handsets (I/N) decreases with the attack

frequency, revealing that the average attack period T
controls the speed of a MMS virus’ spread.

An important question we would like to answer is
whether MMS viruses could infect a large population
of susceptible handsets without being detected by the
phone provider. We can see in Figure 7, the smaller the
average attack period T , the faster the virus spreads but
that would make it very easily detectable. The dashed
lines with different colors mark the time when MMS
viruses utilizing different attacking frequencies are de-
tected by the phone provider via an abnormal MMS
volume check. At the time of being detected, the overall
volume of the viral MMS exceeds the threshold volume
∆V (Figure 2). For example, if a MMS virus infects the
handsets with an OS market share m = 0.30 and uses
a scanning rate ρ = 0.2, a maximum attack number

s = 100 and an average attack period T = 12 hours, it
can infect 15% of the overall susceptible handsets (ap-
prox. 0.27 million handsets) in 37 days without being
detected (circles in Figure 7(a)).

In Figure 8, we show the ratios of infected hand-
sets when the virus is detected for different average at-
tack period T . We find that under phone provider’s
monitoring (using the value ∆V ), the spread of MMS
viruses is well constrained independently of what at-
tacking strategies that MMS viruses use. Interestingly,
the spreading patterns show different characteristics for

high market share case and low market share case. Sim-
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Fig. 7 The spreading behavior of MMS viruses under the monitoring of phone providers. The dashed line corresponds to the
time that a MMS virus is detected.

ilar to what we found in the naive model, a virus with
low scanning rate ρ is more dangerous for a high market

share OS, a virus with high scanning rate ρ is more dan-
gerous for a low market share OS (see the circles and
squares in Figure 8). This result can also be explained
by the properties of the underlying call graphs.

3.4 Containing the Spread of MMS Viruses

Without having phone providers monitoring the sys-
tem, a MMS virus can potentially infect a large fraction
of susceptible handsets in just a few hours [25]. How-
ever, in our simulation MMS viruses can at most infect
0.55 million handsets without being detected by the
phone provider in 123 days (the red dashed line in Fig-
ure 7(a)). The long latent period offers ample time for

identifying the virus earlier by other approaches and de-
ploying antiviral software and patches. This finding re-

minds us of an important countermeasure to protect the
communication system: improve our monitoring abil-
ity to detect the virus. We perform the experiments
on condition of m = 0.30 and ρ = 0.2, which corre-
sponds to the experiments performed in Figure 7(a).
This scenario is selected because it is the most danger-
ous case we find in the temporal volume-based model.
We study the ratios of infected handsets (I/N) under
new detecting thresholds 0.75∆V , 0.5∆V and 0.25∆V .
Figure 9 quantitatively shows that if phone providers
successfully decrease the detecting threshold ∆V , the
viral spread can be better restrained. However, one has
to be careful with decreasing this threshold because it
may lead to false positives. One should allow for some
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Fig. 8 The ratio of infected handsets I/N when the virus is detected in the four scenarios described in Figure 7. The dashed
lines correspond to the ratio of infected handsets I/N without monitoring.

flexibility in the ∆V so that users can change their pat-
tern of MMS usage.
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0.25 ∆V

Fig. 9 The ratio of infected handsets I/N when the virus
is detected in the scenario described in Figure 7(a) with im-
proved monitoring ability of phone providers.

We next study the effect of patches installations in
mitigating the damages. Again we perform the exper-
iments on scenario with m = 0.30 and ρ = 0.2. In
this simulation, an infected handset changes to removed
state (R) by installing a patch after a certain time pe-
riod from 1 week to 4 weeks (Figure 10 and Figure 11).
We find that installing patches can mitigate the dam-
ages caused by the virus. The faster the infected phones

receive the patches, the better the virus is restrained.
Hence the installation patches on infected phones in
time is also a good way to restrain the spread of MMS
viruses. This installation is time sensitive and should
be done at the earlier stages of the outbreak whenever
possible.
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0.8

0.9

1

t (days)

I/
N

 

 

without patch

patch after 4 weeks

patch after 2 weeks

patch after 1 week

Fig. 10 The spreading behavior of MMS viruses with
patches installed on infected handsets after a certain period.

4 Discussion and Conclusion

We demonstrated that the addition of random scans to
the behavior of mobile viruses can increase the possibil-
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Fig. 11 The ratio of infected handsets I/N when the virus is
detected in the scenario described in Figure 7(a) with patches
installed on infected phones after a certain period.

ity of an epidemic outbreak in mobile phones. Interest-
ingly, we discovered that the topological and scanning
behaviors of MMS viruses cause more damage in high
and low market-share OS respectively. We investigated
the interplay between attack strategies of MMS viruses
and abnormal MMS volume monitoring by phone pro-
viders. We found that given enough time, sophisticated
viruses can infect a large fraction of susceptible phones
without being detected by phone providers. Fortunately,
independent of the attack strategy used, the epidemics
would still be limited by the market share of handsets
and providers’ monitoring ability. When phone providers
improve their monitoring ability and install necessary
patches on infected phones quickly, MMS viruses can
be better restrained. We believe our findings could pro-
vide mobile-phone providers with a guide to put in place
proper countermeasures to avoid the costly impact of
major outbreaks. Added to a good understanding of the
network formed from connections between users, smart

anomaly detection schemes may be able to prevent mo-
bile phones to become the next platform for virus writ-
ers hence avoiding the situation typical in computer
systems where virus writers seem to be winning the
battle.
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