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Abstract: Although it has been experimentally shown that the addition of short-fibers slows the stress

relaxation process in composites, the underlying phenomenon is complex and not well understood.

Previous studies have proposed that fibers slow the relaxation process by either hindering the

movement of nearby polymeric chains or by creating additional covalent bonds at the fiber-matrix

interface that must be broken before bulk relaxation can occur. In this study, we propose a simplified

analytical model that explicitly accounts for the influence of polymer viscoelasticity on shear

stress transfer to the fibers. This model adequately explains the effect of fiber addition on the

relaxation behavior without the need to postulate structural changes at the fiber-matrix interface. The

model predictions were compared to those from Monte Carlo finite-element simulations, and good

agreement between the two was observed.
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1. Introduction

The interaction between the fiber and the matrix in a short-fiber composite is quite complex.

Although the effect of fibers on static properties such as modulus and strength is well understood,

it has been a challenge to understand the effect of fibers on the viscoelastic properties of short-fiber

composites. These properties are extremely important in load bearing applications where there is the

potential for creep or stress relaxation, or where the composites are exposed to any sort of dynamic

loading, and hence it is important to be able to predict the influence of fiber reinforcement on the

viscoelasticity. Composite viscoelasticity can also influence fatigue behavior [1], and the temperature

dependence of various mechanical properties, including creep resistance [2].

Stress relaxation experiments, in which a specimen is strained to a fixed level and the slow decay

of stress is monitored, present a simple method of investigating the time-dependent modulus of

reinforced polymers. In practice, stress relaxation influences the residual stress and warpage of molded

short-fiber composite parts, and is critical in many applications including fasteners and gaskets. During

the stress relaxation of polymer composites, the modulus of the material typically decays from an

initial value E0, to a final stable value E∞. The speed of this process, which has practical implications,

is characterized in terms of a relaxation time constant τ. The time constant is usually defined as the

time needed for the modulus to decrease to 1/e of the interval between E0 and E∞

In continuous fiber composites, such as laminated carbon fiber composites, the values of E0 and

E∞ depend on fiber loading, but the value of τ should not. However, it has been widely observed that

short elastic fibers (which do not themselves relax with time) alter the stress relaxation behavior of

the composite, and in particular, change the value of τ. Early research into this phenomenon showed
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that short-fibers expedited the relaxation response, and many researchers proposed mechanistic

explanations, in which the fibers affect the structure of the polymer matrix near the interface and hence

modify its stress relaxation behavior. For example, Blackley and Pike proposed that the relaxation

of composites was affected by the additional covalent bonds between the fibers and the matrix and

that the rupture of these bonds during stress relaxation caused an accelerated response, changing the

relaxation time constant [3]. In this and other early investigations, both the reinforcing fibers and

the matrix were viscoelastic materials, and although these early studies showed that the addition of

short-fibers increased the relaxation rate, almost all the more recent studies have shown the opposite

effect [4,5].

Kutty and Nando investigated the effect of short Kevlar fibers on polyurethanes and found

that increases in fiber content slowed the stress relaxation rate [6]. Many other studies support this

observation. For example, Suhara, Kutty, and Nando also showed that increasing the loading of

short polyester fibers in polyurethane resulted in slower stress relaxation [7]. Pothan et al. found

that increased loading of banana fibers reduced the stress relaxation rate of polyester composites [8].

Bhattacharyya et al. also showed that increasing the content of wood fibers reduces the relaxation

of polypropylene composites [9]. Saeed et al. suggested that the presence of glass fibers resulted in

decreased chain mobility in high-density polyethylene [10]. Boukettaya et al. evaluated the stress

relaxation behavior of polypropylene composites reinforced with date palm fibers [11]. It was observed

that increasing the fiber content resulted in a decrease in the relaxation rate. Wan et al. showed that

the addition of wood flour reduced the stress relaxation rate of propylene [12].

Several studies have also investigated the stress relaxation of hybrid composites containing more

than one type of fiber. Sreekala et al. found that increasing the content of short oil-palm fibers in a

phenol formaldehyde matrix resulted in slower stress relaxation [13]. The rate of decay could be further

decreased upon hybridization with glass fibers. Stan and Fetecau investigated the stress relaxation

in polytetrafluoroethylene composites [14]. Unfilled polytetrafluoroethylene (PTFE) was compared

to one that was reinforced with 15% graphite particles and a hybrid containing 32% carbon and 3%

graphite. It was found that unfilled PTFE had the fastest relaxation rate and that the addition of fillers

slowed the relaxation process.

In summary, the literature shows that the addition of fibers to a viscoelastic polymer generally

slows the relaxation process, increasing the time constant. Two main explanations have been put

forward to explain this phenomenon. The first explanation is that the presence of fibers hinders

molecular flow in the polymer near the interface, resulting in slower relaxation of the matrix [15].

Geethamma et al. found that short coir fibers reduced the stress relaxation rate of rubber and this was

attributed to fibers constraining the polymeric chains thereby preventing relaxation [16]. Mirzaei et al.

investigated the effect of adding various types of natural fibers in high-density polyethylene and drew

similar conclusions [17].

An alternative explanation suggested in a number of studies centers on the potential for chemical

bonding at the fiber/matrix interface. These studies propose that breaking the additional covalent

bonds at the fiber-matrix interface is a prerequisite to polymer mobility and relaxation. To test this

idea, a number of researchers have examined the effect of various coupling agents and their effect on

stress relaxation behavior. George et al. observed that chemical modifications via coupling agents

resulted in lower rates of relaxation and hypothesized that the surface treatment produces additional

chemical bonds that hinder the movement of the polymer [15]. Pothan et al. also showed that the stress

relaxation rate is reduced with the use of a coupling agent [7]. Boukettaya et al. proposed that from a

chemical bonding perspective, the polymeric chains are initially constrained by the fiber; however,

over time, the damage of the intermolecular linking causes the chains to once again become mobile [11].

Thus, it was proposed that the rate of stress relaxation in a composite was related to how quickly the

bonds can be broken and, therefore, how quickly the polymer could become mobile again.

Experimental studies have confirmed that the viscoelasticity of short fiber composites is a

significant and complex phenomenon. Although a number of qualitative explanations for the observed
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phenomenon have been proposed, as discussed previously, there have been relatively few attempts to

derive a predictive model. Somashekar et al. and Safraoui et al. used conventional spring/dashpot

models to characterize viscoelasticity, but although these phenomenological models can be used to

characterize the behaviour of particular composites, they do not provide any guidance for optimizing

material structure [18,19]. Drozdov et al. approached the viscoelasticity of composites by using an

energy balance approach [20]. Several other groups including Naik et al., Brinson et al., and Fisher et

al. have used finite element models incorporating viscoelastic matrices and short elastic fibers [21–23].

These models highlight the importance of matrix viscoelasticity, but do not obviate the need for a

simple analytical model.

The application of shear-lag models to describe composite viscoelasticity is very limited. Zhang

and He examined the effect of nanofibers on the viscoelasticity of polymer-based composites; however,

their work was focused on the assumption that the presence of nanofibers results in the creation of

a third interfacial phase, and the shear-lag stress transfer in the resultant three-layer structure was

modelled [24].

Recently, Smith et al. derived shear-lag stress transfer equations from first principles in a

discontinuous fiber composite with a viscoelastic polymer matrix [25]. Because of the complexity of the

Laplace transform arising from the derivation, it could not be inverted to produce a useable analytical

model, which is a common issue [26,27]. A numerical solution was used to make predictions of stress

along the length of the short fiber for only one set of parameters. Merodio used tensor analysis to

derive 18 invariants associated with non-linear viscoelastic composite deformation [28]. Neither study

yielded a simple, closed-form solution for stress relaxation, and hence they did not provide a way of

investigating critical issues such as the effect of the fiber/matrix modulus ratio and fiber aspect ratio

on the stress relaxation behavior.

The present study consists of two parts. We will first develop an analytical model by explicitly

considering the stress relaxation of the matrix in both tension, and critically, in the shear stress transfer

region. Through this approach, we will show that it is not necessary to infer structural changes at the

interface to explain polymer composite stress relaxation. The success of this analytical model does not

preclude the possibility that chemical or physical structural changes at or near the interface have an

effect, but it does mean that these changes might not be important. The analytical model generated in

this paper can be used to parametrically study the response of short-fiber composites with various

fiber volume fractions and aspect ratios without reliance on numerical integration or finite element

analysis. In the second part of this paper, we will compare the predictions from the analytical model to

the results obtained from the Monte Carlo finite-element simulations.

1.1. Polymer Viscoelasticity

In order to develop a simple model, the basic principles of polymer viscoelasticity and short-fiber

reinforcement must be reviewed briefly. A stress relaxation test is a simple means of investigating the

viscoelasticity of a polymer. To perform this test, a fixed tensile or compressive strain is applied to a

sample, and the stress, which decays over time, is monitored. The decrease in stress at a constant strain

corresponds to a decrease in the apparent modulus of the polymer. The modulus of a viscoelastic

material during a stress relaxation test is often modeled using Equation (1) below:

E(t) = E∞ + (E0 − E∞) exp

(

−

t

τ

)

(1)

where (E0) and (E∞) are the instantaneous and long-term elastic modulus of the material respectively, t

is time, and τ is the relaxation time constant. As discussed previously, the uncertainty in the literature

concerns the origin of changes in the time constant commonly observed when fibers are added to

a polymer.

In an isotropic solid, the shear modulus (G) and elastic modulus (E) are related by Poisson’s

ratio (ν) as shown in Equation (2a). For an isotropic, viscoelastic material, at each point in time, the
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same relationship should hold, as shown in Equation (2b). Poisson’s ratio is usually considered to be

constant in this treatment.

E = 2G(1 + v) (2a)

E(t) = 2G(t)(1 + v) (2b)

Thus, Equations (1) and (2) can be used to obtain the time-dependence of the shear modulus of a

viscoelastic material, as shown in Equation (3).

2G(t)(1 + v) = 2G∞(1 + v) + 2(1 + v)(G0 − G∞) exp

(

−

t

τ

)

(3a)

G(t) = G∞ + (G0 − G∞) exp

(

−

t

τ

)

(3b)

1.2. Micromechanics of Short-Fiber Composites

The mechanism of fiber reinforcement in a composite depends on the aspect ratio of the fibers.

Figure 1 compares the micromechanical structure of a composite reinforced with continuous and

discontinuous fibers. When a continuous-fiber composite is stressed in tension, both the fiber and the

matrix are equally strained. In a short-fiber composite, however, the stress required to strain the fibers

is transferred through interfacial shearing (Figure 2), with the ends of the fiber being entirely unloaded.

Cox developed a widely cited analytical model for the modulus of an elastic composite based on this

assumption [29].

Cox’s model, which is commonly referred to as a “shear-lag” model, proposes that the

effectiveness of load transfer in a short-fiber composite is related to the modulus of both the fiber and

the matrix, as shown in Equations (4) and (5).

Ec = Vf E f

(

1 −
tanh(ns)

ns

)

+ VmEm (4)

n =







4Gm

E f ln
(

Pf

Vf

)







1
2

(5)

This model relates the elastic modulus of the composite (Ec) to the elastic modulus of the fiber

(Ef) and matrix (Em). The contribution of each component in the composite is based on its volume

fraction (Vf and Vm). In this equation, the contribution of the fiber is scaled by a multiplication factor

(n) which represents the effectiveness of the load transfer to the fibers with a specified aspect ratio (s)

and packing (Pf). The load transfer depends on the ratio of the tensile modulus of the fiber to the shear

modulus (Gm) of the matrix, as well as the fiber aspect ratio.

Nairn identified some limitations of Cox’s shear-lag model and derived an alternate effectiveness

factor [30]. However, when the ratio of the matrix to fiber modulus is sufficiently high that the

shear deformation within the fiber is not significant, the predictions of Cox’s shear-lag model have

been found to be reasonably accurate [31,32] and have shown good agreement with the widely used

Halpin-Tsai model [33–35]. In this study, the matrix to fiber modulus ratio was very high, and thus

Cox’s shear-lag model was deemed to be adequate for the present purposes.
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𝐸 = 2𝐺(1 + 𝑣)𝐸(𝑡) = 2𝐺(𝑡)(1 + 𝑣)
2𝐺(𝑡)(1 + 𝑣) = 2𝐺∞(1 + 𝑣) + 2(1 + 𝑣)(𝐺0 − 𝐺∞) exp (− 𝑡𝜏)

𝐺(𝑡) = 𝐺∞ + (𝐺0 − 𝐺∞) exp (− 𝑡𝜏)

  
(a) (b) 

(a) 
Figure 1. A comparison between (a) continuous fiber composites and (b) discontinuous fiber composites.

𝐸 = 2𝐺(1 + 𝑣)𝐸(𝑡) = 2𝐺(𝑡)(1 + 𝑣)
2𝐺(𝑡)(1 + 𝑣) = 2𝐺∞(1 + 𝑣) + 2(1 + 𝑣)(𝐺0 − 𝐺∞) exp (− 𝑡𝜏)

𝐺(𝑡) = 𝐺∞ + (𝐺0 − 𝐺∞) exp (− 𝑡𝜏)

 

(a) 

 

(b) 

Figure 2. In a short-fiber composite, the matrix adjacent to the fiber is at a different stress state than

the bulk matrix, resulting in a shear force along the interface. These interfacial shear stresses are

responsible for stress transfer to the fibers in the composite. (a) Unstressed State; (b) Displacement

under uniaxial tension.

1.3. Modelling Approach

The shear lag model makes it clear that the shear modulus of the matrix is a critical factor in

determining the effectiveness of fiber reinforcement and hence the modulus of a short-fiber composite.

In a viscoelastic polymer, it is well known that the effective tensile modulus decays with time in stress

relaxation, and it is obvious that the effective shear modulus must also decay. It is extremely surprising

therefore that virtually all previous studies of the stress relaxation of short-fiber composites have

overlooked the time-dependence of the shear modulus.

In this paper, we show that the stress-relaxation behaviour in a short-fiber composite is

significantly affected by the relaxation of the shear modulus of the matrix. In addition to a decay in

matrix modulus over time, relaxation of the shear modulus means that the load transfer to the fibers is

decreased over time, decreasing their contribution, even when the fibers are purely elastic. However,

this typically happens more slowly than the relaxation of the polymer tensile modulus, leading to a

predicted increase in the effective time constant for the composite without any need to hypothesize

chemical or physical structural changes at the interface.

2. Proposed Model

The modulus of a perfectly bonded short-fiber composite (with a fiber aspect ratio and Ef/Em

ratio sufficiently high that shear deformation within the fiber can be ignored) can be calculated using

Equations (4) and (5).
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The time-dependence of the elastic and shear moduli can be calculating using Equations (1) and

(3b) assuming that the matrix is an isotropic, viscoelastic material.

Combining Equations (1) and (4), the time-dependent elastic modulus of the composite can be

written as Equation (6b).

Ec(t) = Vf E f

(

1 −
tanh(ns)

ns

)

+ VmEm(t) (6a)

Ec(t) = Vf E f

(

1 −
tanh(ns)

ns

)

+ Vm

[

Ein f + (E0 − E∞) exp

(

−

t

τ

)]

(6b)

However, the stress-transfer to the fiber is also time-dependent due to the time-dependence of

the matrix shear modulus. Thus, the stress-transfer coefficient in Equation (5) can be combined with

Equation (3b) as shown in Equation (7).

n =







4

E f ln
(

Pf

Vf

)







1
2

[Gm(t)]
1
2 (7a)

n =







4

E f ln
(

Pf

Vf

)







1
2
[

G∞ + (G0 − G∞) exp

(

−

t

τ

)]
1
2

(7b)

The time-dependent elastic modulus of a short-fiber composite is therefore fully characterized by

Equation (8).

Ec(t) = Vf E f

(

1 −
tanh(n(t)s)

n(t)s

)

+ Vm

[

Ein f + (E0 − E∞) exp

(

−

t

τ

)]

(8a)

n(t) =







4

E f ln
(

Pf

Vf

)







1
2
[

G∞ + (G0 − G∞) exp

(

−

t

τ

)]
1
2

(8b)

Equation (8) predicts the composite modulus decay, Ec(t), as a function of the time dependent

tensile and shear moduli of the matrix.

3. Parametric Study

3.1. Properties of the Matrix and Fiber

Equation (8) was used to make modulus predictions for a glass-fiber reinforced polyurethane

composite. The glass fiber was assigned an elastic modulus of 80 GPa, typical of that reported in the

literature. For simplicity, the fibers were assumed to have a packing factor of 1 (hexagonal packing).

The Poisson’s ratio of the matrix was assumed to be 0.3. The fiber modulus was two orders of

magnitude above that of the PU matrix, and hence the Cox model was sufficient for the shear lag

computations needed in this study.

3.2. Effect of Fiber Content

The modulus of the composite at various fiber fractions was calculated using Equation (8) and is

shown in Figure 3. In order to further examine the rate of relaxation, the predicted values were fitted

to Equation (1) to determine the relaxation rate constant (τ) and the fractional deterioration in the

modulus of the composite (E0 − E∞)/E0, as shown in Figure 4. For this part of the study, the matrix

was assumed to have an instantaneous modulus of 450 MPa, a long-term elastic modulus of 100 MPa,

and a relaxation time constant of 150 s. The fiber was assumed to have an aspect ratio of 10.
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Figure 3. The normalized elastic modulus of the polyurethane-glass composites under stress-relaxation.

The fiber content ranges from 0% to 50%. The initial elastic modulus depends on the fiber content, but

the data here have been normalized by the modulus of the unreinforced polymer so that the stress

relaxation is highlighted.

Figure 4. Higher fiber contents resulted in an increase in the relaxation time constant indicating that

the rate of relaxation had slowed. This showed that increasing the fiber fraction slowed the relaxation

of the composite.

Figure 3 shows that the model predicts a change in the shape of the stress-relaxation curve upon

the addition of purely elastic fibers to a viscoelastic matrix, affecting the rate at which the modulus

deteriorates. If the elastic fibers did not introduce any additional viscoelastic effects, their presence

would result in equal reinforcement at each instant in time causing no change in the relaxation time

constant (τ) [36]. However, the model shows that increasing the fiber content resulted in a longer

relaxation time constant, indicating that the presence of fibers slowed the rate of relaxation. It is
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precisely this change that elicited the various mechanistic explanations previously reported in the

literature, but Figure 4 demonstrates that the change is a simple consequence of time dependent shear

stress transfer to short-fibers. Of course, these results do not prove that there are no structural changes

at the fiber interface, only that they are not necessary to produce the observed behaviour.

3.3. Effect of Fiber Aspect Ratio

We also investigated the effect of the fiber aspect ratio on stress relaxation of the polyurethane-glass

fiber composites. For this part of the study, the matrix was assumed to have an instantaneous modulus

of 450 MPa, a long-term elastic modulus of 100 MPa, and a relaxation time constant of 150 s. The

normalized relaxation modulus with various fiber contents and fiber aspect ratios is shown in Figure 5.

 

 

Figure 5. This graph depicts the change in normalized elastic modulus with fiber content at various

fiber aspect ratios including (a) aspect ratio of 10; (b) aspect ratio of 50; (c) aspect ratio of 100 and

(d) aspect ratio of 100,000. It can be observed that as the fiber aspect ratio is increased, the long-term

modulus increases because the longer fibers are more efficient reinforcements.

It was observed that increasing the fiber aspect ratio resulted in an increase in the long-term

relaxation modulus of the composite (in comparison to the modulus of the unreinforced polymer, all

the data is normalized). This indicated that higher aspect ratio fibers more effectively reduce the stress

relaxation. As the aspect ratio of the fibers increases, the behavior of the composite approaches that of

a continuous fiber composite.
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The effect of the fiber aspect ratio on the relaxation time constant was extracted from the data in

Figure 5 and is shown in Figures 6 and 7.

 

The numerical value of a “low” aspect ratio depend

Figure 6. As the aspect ratio of the fiber increases, more load is transferred from the matrix to the fiber.

This increased shear force on the fiber results in a higher relaxation time.

 

The numerical value of a “low” aspect ratio depend

Figure 7. As the aspect ratio is continually increased, a larger fraction of the fiber is under tensile

loading and the influence of the shear loading zone decreases. At very high aspect ratios, the composite

begins to approach the properties of a continuous fiber composite, with no change in the relaxation time.

It appears that changing the fiber aspect ratio results in two regimes: for a fiber aspect ratio below

a critical value, increasing the aspect ratio increases the relaxation time. However, the model also

predicts that when the aspect ratio is above a critical value, the opposite effect will occur. For the

modulus ratio (Ef/Gm) used here, the transition occurs at an aspect ratio of ~100. The critical aspect ratio

for viscoelasticity may now be defined as the aspect ratio corresponding to the maximum relaxation

time. Expressed another way, this is the aspect ratio for which the shear stress transfer into the fibers is

the most critical to stress relaxation of the composite. This result is surprising, but is a simple outcome

of shear lag analysis incorporating a time dependent shear modulus.

For very low aspect fibers, there is little stress transfer to the fiber. Consequently, the matrix

dominates the behaviour, and the addition of fibers has little effect on the composite viscoelasticity. The

numerical value of a “low” aspect ratio depends entirely on the modulus ratio Ef/Gm, but simply means

that the fiber is not effective because it is not long enough to be strained effectively (see Figure 8).
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t of 100 seconds, and a Poisson’s ratio of 0.5. The fibers were defined 
glass fibers having an elastic modulus of 80 GPa and a Poisson’s ratio of 0.2; these values were 

Figure 8. The tensile stresses in the fiber are dependent on its aspect ratio. The aspect ratio (B) is the

value at which the maximum stress transfer begins to occur in the fiber. If the aspect ratio of the fibers

is too low (A), there is inadequate stress transfer between the fiber and matrix. If the aspect ratio is too

high (C), the properties of the composite approach that of a long-fiber composite.

As the fiber aspect ratio increases, the fiber takes a larger fraction of the composite load, and the

time-dependent shear stress transfer between the matrix and fiber becomes important, so there is a

significant change in the time constant as we add more fibers to the mix.

As the aspect ratio increases further, the composite begins to resemble a long fiber composite, and

the shear stress transfer is no longer important since it is confined to end sections that are a trivial

fraction of the overall fiber length [29]. Once the shear modulus of the matrix is not important, the

model developed here is not needed, and as expected, the relaxation time constant for a continuous

fiber composite (aspect ratio of 100,000 in Figure 7) is not affected by fiber content.

None of this behaviour has anything to do with chemical bonding or chain mobility hindrance at

the fiber matrix interface; these phenomena are not affected by the fiber aspect ratio, and of course, are

not part of the model.

4. Monte Carlo Finite-Element Analysis

4.1. Modelling Approach

To confirm the analytical results, finite element analysis using multiple trials with randomly

deposited short fibers was conducted in Abaqus CAE. For this work, the matrix was defined as a

viscoelastic material with an instantaneous elastic modulus of 1000 MPa, a long-term modulus of

500 MPa, a relaxation-time constant of 100 s, and a Poisson’s ratio of 0.5. The fibers were defined as

E-glass fibers having an elastic modulus of 80 GPa and a Poisson’s ratio of 0.2; these values were

obtained from the literature [37]. The fibers selected for this study had a diameter of 16 microns and a

length of 260 microns.

The model consisted of a three-component system including a matrix, fibers, and a rigid body

used to apply fixed displacement to the upper surface of the specimens, corresponding to a stress

relaxation experiment. The matrix was defined as a 3D deformable object while the fibers were defined

as beam elements with circular cross-sections for computational efficiency. An embedded constraint

was applied between the matrix and fibers representing a perfect bond. The total number of fibers

dispersed in the system was adjusted to represent various fiber volume fractions. The matrix mesh

consisted of 2211 3D standard quadratic (C3D20R) elements while the fiber mesh consisted of 40

standard quadratic beam elements (B32) per fiber.

For each finite-element run, the positions of the fiber centres were randomly generated using a

Python script. All fibers were aligned in the load direction. Five replicate simulations with differing

but random fiber locations were conducted for each volume fraction.
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The finite-element analysis stress-relaxation test consisted of two analysis steps: the instantaneous

application of strain, followed by 400 s of stress decay monitoring, while the mesh was held at fixed

deformation. The modulus of the composite was determined in the conventional way using the

cross sectional area, and the applied force and displacement of the rigid body. This approach was

validated by comparing the input modulus to the calculated modulus from the simulation outputs for

an isotropic one-phase system. The data was obtained at 10-s intervals with a minimum increment

time step of 0.004 s.

4.2. FEA Results

The analytical model was re-evaluated using a set of material properties identical to that used in

the finite-element simulations (see Section 4.1) and a comparison of the results is shown in Figure 9.

Excellent agreement is observed between the finite-element simulations and the predictions made

using the analytical model for fiber contents up to 15% (by volume). This agreement supports the

validity of the analytical model, and a key finding is that both the FEA and the analytical model yielded

changes in the relaxation time constant with fiber loading.

 

▪

Figure 9. A comparison of the overall stress relaxation profile of short-fiber composites shows excellent

agreement between the predictions of the analytical model (-) and the results obtained from the

finite-element simulations (�). The error bars represent the standard deviation resulting from five runs

of the FEA model material with differing random fiber placements.

In Figure 9, it is apparent that the analytical model overpredicts the modulus at all times for fiber

loadings greater than 15%. The Cox shear lag model, upon which the current model is based, assumes

that each fiber is sitting in an isolated pocket of resin, and that everywhere within the perimeter of

the pocket is experiencing the remote strain. At higher volume fractions, the situation is clearly more

complex than this, as fibers approach and even touch each other, and the model is not expected to be

accurate. In fact, studies that have compared the elastic modulus for composites have shown that the

shear-lag model often overpredicts the actual modulus [38].
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The fit was also examined by comparing the analytical model predictions to the finite element

simulation results at the each point in time. For a good fit between the two, the two values should be

almost equal, resulting in a slope close to one. Thus, closer proximity to a y = x line can represent a

better fit between the two approaches (see Figure 10).

 

(●)

Figure 10. Comparison of the analytical model predictions to the finite-element simulation results

shows good agreement between the two at low volume fraction; however, at volume fractions equal to

20% and greater, the finite-element results deviate from the predictions of the analytical model.

Figure 10 shows a strong agreement between the analytical model and the finite-element

simulations at low fiber volume fractions as observed by their proximity to the y = x line. Since it has

been determined that the shear-lag model is not applicable for fiber volume fractions greater than 20%,

composites with fiber volume fractions above this threshold have not been used in further analysis.

The results from both the analytical model and finite-element results were fit to a simple Prony

Series, and three key parameters were obtained: the instantaneous modulus, the long-term modulus,

and the stress relaxation constant. The addition of elastic fibers results in an increase in both moduli as

expected and there was excellent agreement between the analytical and finite element models (see

Figure 11).

  
(a) (b) 

(●)
Figure 11. Good agreement is obtained between the instantaneous (a) and long-term (b) modulus

values obtained from the analytical model (-) and the finite-element simulations ( ).
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In Figure 12, the clear dependency of the relaxation rate constant on fiber content is illustrated.

Both the FEA and the analytical model predicted this trend. It is important to note that the analytical

model indicated that the change in relaxation rate constant stemmed from the time-dependent shear

modulus of the matrix, which resulted in time-dependent shear stress transfer to the fibers, causing the

stress within the fiber to be time-dependent, and thus, having an indirect effect on the stress relaxation

of a short-fiber composite.

(●).
Figure 12. Good agreement is obtained between the relaxation time constant obtained from the

analytical model (-) and the finite-element simulations ( ).

5. Conclusions

Although it has been experimentally shown that the presence of short-fibers slows the relaxation

process in composites, the underlying phenomenon is complex and was not well understood. Previous

studies have postulated either microstructural or chemical interactions between the fiber and matrix

on a molecular scale in order to explain the observed changes in relaxation, but in this study, we have

shown that the effect of fibers on the stress relaxation behaviour of a composite can be explained

by simply considering the fundamentals of shear stress-transfer at the fiber-matrix interface in

short-fiber composites. The fiber-matrix interface is simply considered to be an infinitely thin, perfectly

bonded zone.

This study shows that the stress relaxation of a composite is influenced by two phenomena:

firstly, the elastic modulus of the matrix is time-dependent, and secondly, the shear modulus of the

matrix is also time-dependent and causes a time-dependent stress-transfer between the fiber and the

matrix. As the fiber content increases, the relative importance of the shear stress transfer zone increases,

causing an increase in the time constant for relaxation. This effect is largest for intermediate aspect

ratios where the fibers are long enough to carry a significant fraction of the load, but short enough to

be affected by the shear stress transfer from the matrix over a significant portion of their length.

The concept of a critical fiber length (or aspect ratio) is widely used with respect to the strength,

modulus, and toughness of short fiber composites. We have identified a critical fiber aspect ratio for

viscoelasticity as the aspect ratio for which the shear lag stress transfer zone is most influential in

determining the overall load carrying ability of the composite, and hence most critical in determining

the effect of fiber loading on the time constant for stress relaxation.

In summary, an explicit accounting of the relaxation of shear modulus and the effect of this on the

reinforcement efficiency factor can adequately explain the effect of short fibers on stress relaxation in

polymer composites without any inference of structural changes at the interface. Since viscoelastic
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behaviour of short fiber composites is extremely important in many applications, this model should

find wide applications.
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