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Understanding the Structure of the Turbulent Mixing Layer

in Hydrodynamic Instabilities

D. Laney, P.-T. Bremer, Member, IEEE, A. Mascarenhas, P. Miller, and V. Pascucci, Member, IEEE

Abstract—
When a heavy fluid is placed above a light fluid, tiny vertical perturbations in the interface create a characteristic structure of rising
bubbles and falling spikes known as Rayleigh-Taylor instability. Rayleigh-Taylor instabilities have received much attention over the
past half-century because of their importance in understanding many natural and man-made phenomena, ranging from the rate of
formation of heavy elements in supernovae to the design of capsules for Inertial Confinement Fusion.
We present a new approach to analyze Rayleigh-Taylor instabilities in which we extract a hierarchical segmentation of the mixing
envelope surface to identify bubbles and analyze analogous segmentations of fields on the original interface plane. We compute
meaningful statistical information that reveals the evolution of topological features and corroborates the observations made by
scientists. We also use geometric tracking to follow the evolution of single bubbles and highlight merge/split events leading to the
formation of the large and complex structures characteristic of the later stages. In particular we (i) Provide a formal definition of
a bubble; (ii) Segment the envelope surface to identify bubbles; (iii) Provide a multi-scale analysis technique to produce statistical
measures of bubble growth; (iv) Correlate bubble measurements with analysis of fields on the interface plane; (v) Track the evolution
of individual bubbles over time. Our approach is based on the rigorous mathematical foundations of Morse theory and can be applied
to a more general class of applications.

Index Terms—topology, multi-resolution, Morse theory

✦

1 Introduction

I.3.8 Computer Graphics Applications J.2 [Physical Sciences and En-
gineering]: Physics;

Understanding the turbulent mixing of fluids is one of the funda-
mental research problems in the area of fluid dynamics. Turbulent
mixing occurs in a broad spectrum of phenomena ranging from boil-
ing water to astrophysics and nuclear fusion. In the present work we
apply topological techniques to the analysis of Rayleigh-Taylor insta-
bilities.

Rayleigh-Taylor instability (RTI) occurs when two fluids of differ-
ent density are accelerated opposite the mean density gradient. That
is, a heavier fluid is accelerated against a lighter fluid. In this paper,
the RTI occurs under the force of gravity, when a heavy fluid is placed
above a light fluid and the plane initially separating them (hereafter
called the midplane) is seeded with perturbations. Figure 1 shows the
midplane and the progression of the mixing process for one of the
simulations analyzed in this paper. The heavy fluid accelerates down-
ward, forming ”spikes,” while the light fluid moves upward forming
”bubbles.” The bubbles and spikes are thought to be one way to char-
acterize the large-scale behavior of the mixing process. At the same
time, all bubbles and spikes are the result of fluid passing through the
midplane, so understanding the properties of fields on the midplane is
also an important goal.

Scientists analyzing these simulations are particularly interested in
the number of bubbles (and spikes) and their respective evolution.
Large-scale models have been proposed based on bubble dynamics in
which bubble growth, movement, and interaction are modeled [1]. It is
important to understand whether bubbles grow by merging with their
neighbors or whether certain bubbles survive and continue to grow
while others die-off. A key problem is to create a precise definition
of a bubble given the multiscale nature of the fluid flow. Cook et. al.
[7] observe four phases in the mixing process resulting from the in-
teraction of entrainment (the influx of unmixed fluid into the mixing
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region) and diffusion:

I Independent growth: The initial perturbations grow indepen-
dently and no coupling occurs between them.

II Weak turbulence: Coupling between modes occurs as insta-
bilities develop, causing the fluid to begin taking on distinctive
mushroom-cap (early bubble) shapes.

III Mixing transition: The mixing rate dominates the entrainment
rate, slowing the growth of the mixing layer.

IV Strong turbulence: Mixing and entrainment become balanced,
resulting in faster growth of the mixing layer.

These mixing phases affect the shape and number of bubbles. At suf-
ficiently late times the width of the mixing layer has been assumed to
be proportional to t2, where t is time [8, 6]. Thus, we expect that a
study of bubble dynamics and bubble counts will show the effect of
the different observed phases in the mixing process.

Analysis of the simulation data poses challenges at several levels:

1. Theoretical definitions: There exist no prevalent technical def-
initions of the “features,” e.g. bubbles. How can we develop a
theoretically sound definition of bubbles amenable to analysis
by efficient and robust algorithms?

2. Time-tracking: How do we track bubbles over time to study
their birth, merges, splits, or death?

3. Complexity: The late stage mixing creates extremely complex
structures and degenerate configurations. How do we avoid nu-
merical problems and exhaustive case-by-case study of degen-
eracies in the analysis of these structures?

4. Scale: The features of interest can change size drastically over
time and must be analyzed independent of scale.

5. Data size: The simulations use high resolution regular grids
(11523 and 30723 in our case) over a large number of time steps
(here 755 and 224 respectively). Such large-sized data can render
in-core implementations infeasible.

This paper makes contributions to address each of these challenges.
Our analysis is performed on two kinds of surfaces: envelope surfaces
describing the boundary between undisturbed and “mixed” fluids, and
height functions defined on the midplane.
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t = 0 t = 300 t = 600 t = 757

Fig. 1. An overview of a simulation (periodic in x and y) of Rayleigh-Taylor instability at four time steps on a 11523 grid. The light fluid has a
density of 1.0, the heavy fluid has a density of 3.0. Two envelope surfaces (at densities 1.02 and 2.98) capture the mixing region. The boundaries
of the box show the density field in pseudocolor. The heavy fluid is red and the light fluid is blue. Other colors represent intermediate compositions
of mixed fluid. We analyze the upper envelope (red) to study bubble structures and the midplanes to study mixing trends.
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Fig. 2. Processing pipeline for topological data analysis: (a) Extract
one isosurface or midplane per time-step; (b) Compute and simplify the
MS complex at time ti; (c) Store relevant statistical data, e.g. number
of critical points; (d) Perform geometric tracking and build merge-split
graph.

For both types of surfaces, our definitions and algorithms are based
on the mathematical foundations of Morse theory [21] which we
present in Section 4. For envelope surfaces, we define bubbles using
the constructs of the hierarchical Morse-Smale(MS) complex, imple-
ment a robust combinatorial algorithm to construct this complex, and
use topological persistence to automatically clean-up noise and iden-
tify bubbles at any user-defined scale. We track bubbles over time
using a geometric approach to connect the critical points of succes-
sive isosurfaces. Section 5 describes the algorithms used to extract
and track bubbles and the different types of topological information
gathered. We emphasize that all our algorithms are combinatorial in
nature and are therefore robust in the presence of noise and degenera-
cies. The hierarchical nature of our constructions enable us to analyze
the data at several scales in both space and time.

For analyzing midplanes, we take advantage of the hierarchical
Morse-Smale complex in order to provide persistence-based metrics.
We note that Cook et. al. [7] propose a model for the rate of growth
of the mixing layer based on the net mass flux through the midplane.
Their approach relates the growth rate, in the absence of diffusive ef-
fects, to a correlation between density and the Z-component of the
velocity at the midplane. In this paper, we analyze the topology of the
density and velocity fields on the midplane in order to determine if the
mixing phases are discernible and to examine asymptotic behavior in
late time. Investigating the topology of these fields constitutes a novel
approach.

2 Overview of our approach

The different stages of the analysis are pipelined as shown in Figure 2,
allowing us to stream through the original data and avoid storing inter-
mediate results. In stage (a), we extract one isosurface per time-step
of the data. This sequence of isosurfaces is then fed into stage (b)
where we construct the hierarchical MS-complex for each time-step.
The hierarchy information from this stage is used in stages (c) and (d)
which can operate in parallel. In stage (c), we compute and store the
required topological statistics, e.g., bubble counts. In stage (d), we
use the hierarchy computed in stage (b) to perform geometric tracking
of bubbles over time to produce a graph that indicates how bubbles

evolve by merging and splitting. Only the abstract information result-
ing from the topological analysis is ultimately stored. For example,
when generating bubble counts we store the number of bubbles at all
topological scales (see Section 4) for each time step. This information
is several orders of magnitude smaller than the original raw data and
can easily be queried and processed further on an off-the-shelf PC.

During the course of this work we spent several hours with fluid
dynamics researchers interactively visualizing the topological features
of the envelope surfaces. To accomplish this we computed the iso-
surfaces – stage (a) – as a preprocess. For small subsets of the data
(e.g. 2563) an interactive version of the topological analysis tool al-
lowed us to investigate the topological structures of these surfaces. In
order to interact with the MS-complex of the envelope surface at full
resolution we also precomputed the MS-complex and stored a com-
pact binary representation of the complex to disk. We modified the
streaming mesh viewer of Isenburg et. al. [18] such that a full reso-
lution envelope surface could be simplified and viewed along with its
Morse-Smale complex. We describe the specifics of this process in
Section 5.

In this way, visualization was used throughout the project to build
up intuition about the mixing behavior of the fluids, and to determine
an appropriate model for bubbles (defined in Section 5). Visualization
was also used to determine the persistence threshold that segmented
the envelope surfaces into bubbles as described in Section 5. For the fi-
nal data analysis, the work was parallelized over time steps on a Linux
cluster, with each node receiving a subset of the time steps to process.
In this case, the entire pipeline was executed so that no intermediate
isosurface files needed to be stored to disk.

Contributions. We develop:

1. A formal mathematical definition of a bubble based on the con-
struct of a Morse-Smale complex;

2. A hierarchical segmentation of the mixing envelope surface
into bubbles. We analyze the surface at several scales based on
persistence and produce statistical measures that corroborate pre-
vious observations and independent analysis [7].

3. A method to identify and track individual bubbles over time to
study their merge/split/birth/death behavior.

3 Prior Work

While models of RT mixing based on bubble interactions have been
proposed [1], the direct analysis of bubbles has only recently become
a research focus. Kartoon et. al. [9] segment bubbles from a set
of small simulations using a vertical velocity criterion. Their method
is not fully described in their paper, making it difficult to assess its
robustness. They focus on early time dynamics and appear to use a
single resolution strategy. Thus, it is likely their method would require
significant modification to handle the multiscale late-time behavior ob-
served in the present work.

Topology based methods have become increasingly popular in the
area of visualization. They are used directly as a means to provide
an abstract visualization as well as to guide traditional visualization
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(a) (b) (c) (d) (e) (f)

Fig. 3. MS-complex construction, simplification and topologically valid approximation: (a) Small portion of the mixing layer of a Rayleigh-Taylor
instability at an early time step; (b) Stable manifolds; (c) Unstable manifolds; (d) MS-complex; (e) Stable manifolds of a simplified complex; (f)
Approximation of f corresponding to the topology of (e). Maxima are drawn red, minima blue, and saddles green.

techniques such as isosurfacing or volume rendering. In [14], Edels-
brunner et al. describe the first algorithm to compute the Morse-Smale
complex of a function on a 2-manifold, and an algorithm to simplify
the function using the notion of topological persistence. In [3] Bremer
et al. improve the initial algorithm and propose a hierarchical struc-
ture making the algorithm easier to apply and the simplification more
flexible. Extensions to 3D can be found in [13] and [16]. Examples
of techniques to guide visualization algorithms are the flexible isosur-
faces of Carr et al. [5] and automatic design of transfer functions by
Weber et al. [32].

Similar work exists for vector field visualization based on the sem-
inal paper of Helman and Hesselink [17]. An overview can be found
in [24] and some recent work in [28]. There also exist methods to sim-
plify vector field topology in 2D [10, 30] and three-dimensions [33].

The second aspect of the research presented here is the tracking
of features in isosurfaces over time. Samtaney et al. [23] describe a
general feature tracking algorithm based on extracting features at each
time step, computing descriptive attributes, e.g. center of gravity, size,
etc., and solving a best matching problem to create time correspon-
dences. The results are presented as a graph encoding the birth, death,
merging, and splitting of features. In some follow-up work they also
use the volume overlap of features to decide correspondences [25, 26].
Reinders et al. [22] use very similar ideas combined with motion pre-
diction to improve matching accuracy.

Edelsbrunner et al. [12] develop theory and algorithms to compute
time-varying Reeb graphs by connecting them using Jacobi sets [11]
which are the paths traced by critical points. Ji et al. [19, 20] track
the evolution of isosurfaces in a time-dependent volume by extracting
(2D) isosurfaces within each time slice and define two such surfaces as
linked if they are part of the same three dimensional space-time isosur-
face. Sohn and Bajaj [2] compute correspondences between contour
trees at successive time-steps by using volume matching as in [25]
rather than the topological analysis used in [12] and [27]. They use
this correspondence to encode the evolution of the isosurface of a fixed
isovalue over time in the Topology Change Graph.

Tracking of critical points and/or features is also common in
flow field analysis typically based on integrating streamlines/surfaces
through space-time. Work on 2D flow fields can be found in [31]
and [29] and three dimensional extensions in [15] and [33].

4 Background: Morse theory

This section reviews the formal definition of the Morse-Smale com-
plex [21, 3] and algorithms to compute and simplify it.

4.1 Morse-Smale complex

Given a smooth 2-manifold M and a smooth function f : M → R, a
point x ∈ M is critical when its gradient ▽ f (x) vanishes; it is regular
otherwise. A critical point x is non-degenerate if the Hessian of f at
x has full rank. Finally, a function is Morse if all critical points are
non-degenerate and have distinct function values.

An integral line is a maximal path on M whose tangent vectors
agree with the gradient of f . The integral lines define a natural seg-

mentation of M because each point in M has a single integral line
passing through it. The stable manifold S(x) of a critical point x is
the union of x and all integral lines that end at x. The unstable mani-
fold U(x) of x is defined symmetrically as the union of a critical point x
and all integral lines that start at x. Assuming that no integral line both
starts and ends at a saddle one can superimpose the stable and unsta-
ble manifolds of all critical points to create the Morse-Smale complex
(or MS complex) of f [14, 3], see Figure 3(a)–(d). The nodes of this
complex are the critical points of f , its arcs are integral lines starting
or ending at saddles and its regions are the non-empty intersections of
stable and unstable 2-manifolds. By definition, all integral lines within
a region start at the same minimum and end at the same maximum and
f is monotone. Therefore, the MS complex of f completely describes
the topology of f . More details on the definition of the MS-complex
on 2-manifold triangle meshes and algorithms to compute it are given
by Bremer et al. [3].

Simplification. It is often useful to simplify an MS-complex in or-
der to remove noise as well as to analyze functions on multiple scales.
Following [3] we use cancellations of connected critical point pairs
to simplify an MS-complex. The two possible cases are a maximum-
saddle and a minimum-saddle cancellation, examples of the former are
shown in Figure 4.

Cancellations are ranked by their persistence —the absolute differ-
ence in function value between the two critical points they remove. It
can be shown that greedily canceling the the pair with smallest per-
sistence simplifies the topology of f in an L∞-optimal manner. Fig-
ures 3(e) and (f) shows an example of a topological simplification and
a corresponding approximation of f .

v

w wu
saddle

maximum

minimum

Fig. 4. Morse-Smale complex before and after canceling u,v. One
saddle, one extremum, four arcs, and two regions are removed.

Computation. In practice, one usually deals with piece-wise lin-
ear (PL)-functions given at the vertices of a triangulation. A detailed
discussion on how the smooth theory discussed above is transfered to
PL-functions can be found in [3]. In particular, we use a slightly modi-
fied version of the algorithms by Bremer and Pascucci [4] to efficiently
compute and simplify MS-complexes. Starting from saddles, the arcs
of the MS-complex are computed as steepest monotone lines that do
not cross each other. We avoid all mesh refinement by directly dealing
with merged lines as well as multi-saddles. As a result we can use
efficient static data structures to store the triangulation allowing us to
compute MS-complexes of large data sets common in simulation.
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5 Analysis

The focus of our research is to provide a set of dependable tools that
scientists can use to analyze mixing behavior. We cannot assume that
there exists a particular objective other than to “better understand” the
physics involved. Traditionally, application scientists provide some
definition of interesting features (a tumor, a vortex core, etc.) and vi-
sualization aims to extract and highlight the particular object of inter-
est. In the case of Rayleigh-Taylor simulations however, few concrete
objectives exist besides the intuitive notion that the behavior of bub-
bles and spikes is important. Therefore, our goal is no longer primarily
to provide a visualization of the data but to support the data analysis
process in general.

An important consequence of analyzing little known phenomena
is that results are difficult to validate. Therefore, techniques which
cannot be independently proved to work as expected are of little use as
they cannot necessarily be trusted. This section describes the various
techniques we use to analyze different aspects of the data.

Data. We analyze data from two simulations. Both data sets are
defined on regular grids that are periodic in the X and Y dimensions
and closed in the Z dimension. The first data set, denoted as Borg,
contains data defined on an 11523 grid at 759 distinct times. It utilizes
a sub-grid scale model for diffusivity and viscosity. The larger simu-
lation, denoted as BGL since it was computed on the BlueGene/L su-
percomputer, is defined on a 30723 grid at 223 time steps and directly
models all relevant physical quantities with no subgrid-scale approx-
imations. For each grid point the data contains 4-byte floating point
values for density, pressure, and the three velocity components.

Segmentation of bubbles. One of the challenges in analyzing the
mixing behavior is that there exists no prevalent mathematical defini-
tion for what constitutes a bubble/spike. In general, a bubble can be
understood as a three dimensional feature composed of lighter density
fluid moving upwards (in the Z-direction) into a heavier density fluid.
Scalable 3-D Morse-Smale analysis is not yet available, so in con-
sultation with physicists we have determined that segmenting bubbles
based on the mixing envelope surface is a reasonable first step. We
use the topological concepts introduced in Section 4 to define bubbles,
spikes and other features of interest. Consider the images of the seg-
mented mixing envelope surface at different times shown to the left,
bottom, and right of the plot in Figure 7. During early time steps (7
upper left and middle left) it is natural to consider the mixing enve-
lope as a time-varying functional surface defined over the XY -plane
and associate local maxima with bubbles. This analogy fails at later
time steps because the surface becomes non-functional. However, we
can generalize this approach by treating the envelope surface as the
domain of a function whose value at a point x is the Z-coordinate of
x. It is natural to connect the maxima of this function to bubbles and
compute the stable manifold of each maximum as a segmentation of
the surface into bubbles. As can be seen in Figure 7, this segmentation
corresponds very well to the human notion of a bubble. Symmetrically,
we use the unstable manifolds of minima to define spikes. Potentially,
other functions could be defined on the envelope surface that would
result in a robust segmentation as well. For example, the Z-velocity
at all of the points on the envelope surface could be incorporated to
capture the fact that bubbles should be moving upwards into the heavy
fluid. Given the complexity of the problem, it has been determined to
use the simplest most intuitive segmentation.

In general, topological based segmentations are often linked to im-
portant features: Maximal and minimal Z-velocities on the midplanes
correspond to cores of rising and falling sections of fluids; Density ex-
trema correspond to pockets of unmixed fluids. This makes topologi-
cal methods flexible and allows us to analyze a variety of phenomena
using the same methodology. Furthermore, the MS-complex can be
computed combinatorially [14, 3] which translates into provably cor-
rect and stable algorithms which are crucial when dealing with large
and complex data.

Multi-Scale analysis and persistence selection. The MS-
complex, just as any other segmentation, captures noise as well as
features. A simplification scheme can be used to remove noise and

construct a series of approximations at decreasing resolution. Unlike
many other techniques, topological segmentations allow a simplifica-
tion scheme that is optimal in the L∞-norm. One can formulate the
problem of coarsening a segmentation in the following manner: Given
a function f and a segmentation S of the domain of f , what is the
minimal change on f such that S is coarsened? If the segmentation
one considers is the MS-complex of f , then it can be shown [3] that
canceling a critical point pair with persistence p in f requires an ap-
proximation f̂ with || f − f̂ ||∞ ≥ p/2. Therefore, canceling critical
points in order of increasing persistence corresponds to an L∞-optimal
simplification.

For each MS-complex we compute a sequence of cancellations
which optimally simplifies the complex down to its minimal config-
uration. We can thus define a family of segmentations of the envelope
surface ranging from persistence p = 0.0, where both signal and noise
features are segmented, to persistence p = 1.0 (full function range),
where the entire surface is collapsed into a single component. We can
then create statistics showing the number of bubbles over time using
a range of persistence thresholds. As shown in Section 6 the mixing
behavior can differ significantly across scales and using the simpli-
fication sequences we capture the behavior on all scales without re-
computing the MS-complex. Domain scientists interact with a visual-
ization of the segmented surface and select an appropriate persistence
value based on their physical intuition of a correct segmentation of
bubbles.

Application specifics. The techniques described so far are a di-
rect application of Morse theory to automatically analyze scientific
data. However, in some cases more application specific notions can be
helpful. We apply two main adaptations: First, exclusive maxima or
minima hierarchies, and second, oriented persistences.

The first case arises when one is only interested in either the max-
ima or the minima. For example, when segmenting and counting bub-
bles in the mixing layer the number and location of minima (spikes)
is of no interest. In this case we restrict the simplification to only
consider maximum-saddle pairs for cancellation. This saves some
computation and disk-space but more importantly makes the simpli-
fication of maxima more flexible. Considering Figure 4, imagine v
being canceled with one of its neighboring minima. Once v is can-
celed, u and w are no longer connected. As a result their correspond-
ing bubbles cannot merge (at least not directly). By disallowing all
minimum-saddle cancellation we ensure that the maxima/bubble sim-
plification is as flexible as possible. The segmentation of interest is no
longer the full MS-complex but only the complex of stable manifolds
(called Morse complex). Because the Morse complex only changes at
maximum-saddle configurations, canceling the maximum-saddle pair
with smallest persistence still corresponds to the L∞-optimal simplifi-
cation.

The concept of oriented persistences is a special adaptation to the
problem of analyzing the mixing layer. The mixing layer often de-
velops inverted maxima below the primary surface. They are called
inverted since the surface normal and the function gradient (in the am-
bient 3D space) point in opposite directions. Such maxima clearly do
not correspond to bubbles and therefore should not be counted. In-
verted maxima are removed by artificially defining their persistence to
be negative guaranteeing that they are removed before any other max-
imum. Since we never count critical points with persistence equal or
below zero (such points represent topological noise) this effectively
removes inverted maxima from all considerations without changing
the pipeline. Inversions are detected during the isosurface extraction
by labeling every vertex as either inverted (when light fluid is above
heavy fluid) or non-inverted (heavy fluid above light fluid).

Temporal tracking. In addition to gathering statistics on the num-
ber of topological structures, understanding how these structures relate
to each other is equally important. The case of a collection of N bub-
bles growing in time is qualitatively different than the case of N/2
bubbles dying and the remaining N/2 bubbles splitting. Counting bub-
bles does not reveal this difference. We track bubbles over time using
a method similar to Samtaney et al. [23].
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Given a persistence threshold, we simplify the MS-complex of the
envelope surface of each time step by repeated maximum-saddle can-
cellations. We view these cancellations as merging the two bubbles
represented by the stable manifolds of the two maxima (the canceled
maxima and its existing pair in the Morse complex). For example, in
Figure 4, critical point u merges with w becoming its child. Given this
parent-child information, a bubble is represented by the union of its
stable manifold with those of its children. For each bubble we compute
the centroids of its faces in the envelope surface and compute corre-
spondences between centroids in adjacent time steps using Euclidean
distance. We create a graph whose nodes are the parent maxima over
all time steps. For each correspondence between face centroids we in-
sert an edge between the parent maxima in the graph. Thus, the edges
of the graph are weighted according to the number of corresponding
face centroids. By selecting different criteria for merge/split events we
can construct a family of graphs, one of which is shown in Figure 8.

Interaction. We can visualize the bubble structure of an envelope
surface at a given persistence by coloring all triangles in the stable
manifold representing a bubble with the same color. In order to in-
teract with the MS-complex of an envelope surface at full resolution
we store the parent-child information described in the previous para-
graph in a separate file for each time step. This file contains one 16-bit
integer for each triangle indicating the stable-manifold of lowest per-
sistence to which it belongs, and a list of records, one for each stable
manifold in the Morse complex. Each stable manifold record contains
the position of its maximum, the persistence at which it is simplified,
and the index of its parent in the hierarchy. For a given persistence
threshold, the index of the stable manifold of each triangle is obtained
by starting at its initial maximum and traversing that maximum’s chain
of parents until the threshold is reached. We modified the streaming
mesh viewer of Isenburg et. al. [18] to read the parent-child infor-
mation and simplify it along with an input mesh. The simplifier is
grid-based, so that each cell in the grid ends up with a single vertex
and only a subset of triangles survive in the simplified mesh. We sim-
ply keep the parent-child information of these simplified triangles so
that each triangle can be colored appropriately at an interactively set
persistence threshold.

6 Results

We present results for both Borg (11523, 5.8GB per time step) and
BGL (30723, 9.1GB-109GB per time step). Because of the extreme
data sizes and limited available disk space we use every second time
step in each simulation. The analysis was performed on 68 dual-
processor nodes of a Linux based visualization cluster. In most cases
jobs were parallelized over time across the nodes of the cluster. The

Borg BGL

T = 0 T = 758 T = 0 T = 246

Midplane Ext. 37s / 5MB 37s / 5MB 127s / 36MB 127s / 36MB

Midplane Seg. 10s / 361KB 10s / 504KB 62s / 180KB 66s / 1.4MB

Isosurface Ext. 14s / 7.9MB 27s / 154MB n.a. n.a.

Isosurface Seg. 2s / 62KB 25s / 144KB n.a. n.a.

Table 1. Performance data for different stages of the pipeline shown in
Figure 2. Execution times as well as resulting file sizes are shown for
both the first and last time step of both datasets.

data was reblocked in a preprocess because of the large number of files
written by the simulation code (1728 files/time-step for Borg and up to
65536 files/time-step for BGL). The reblocking time was highly vari-
able, depending on file system load. In most cases a Borg time step
required at least 20 minutes to reblock, while a BGL time step required
at least 3 hours.

Table 1 shows the running times and resulting file sizes for extrac-
tion and segmentation of midplane and isosurfaces on a single node
of the cluster. Each operation is shown on the first and last time-
step of the corresponding dataset which is roughly equivalent to the
fastest and slowest execution across the temporal range. The size of
the isosurface refers to a standard ASCII obj file. All other formats are
uncompressed binary. The midplanes are extracted from the raw sim-
ulation data, and the large number of files accessed caused longer run

times. Once the envelope surfaces of all available time steps have been
segmented, the combined statistics on all bubble counts at all time
steps using any persistence is represented in a single uncompressed
binary file of 14Mb for the Borg and 2Mb for BGL. Similar files are
created for the density and Z velocity information of Figures 5 and 6.

Figures 5 and 6 show critical point counts for Z velocity maxima
and density minima at the midplane versus time. The correlation be-
tween Z velocity and density is used in the model presented in [7] to
predict the late-time growth rate of the mixing layer. Qualitatively, the
Z velocity and density curves have similar features indicating a degree
of correlation. The hierarchical approach based on persistence filtra-
tion of the MS complex introduces the ability to explore features at
multiple scales. As the plots show, counting the strongest extrema ap-
pears to extract the expected phases in the mixing. These phases were
described in [8] and evidence for phase III (the mixing transition) were
observed in [7] in the probability density function of the fraction of the
heavy fluid.

In Figure 5 the mixing transition (phase III) appears to be quite ab-
breviated compared to the mixing transition in the BGL plot (fig. 6
left). It is not clear if the actual onset of phase IV occurs much later
in time and is not discernible from visual inspection of the plots. The
asymptotic behavior, as illustrated by the curve fits, shows a slower
rate of decrease in bubble counts (indicating a slowing in the increase
in bubble size) in the Borg data in contrast to the BGL data. The
asymptotic behavior of the large persistence curves does not appear
to be tending to the t−4 behavior expected from a purely dimensional
analysis [8, 6]. However, it may be necessary to run the BGL simula-
tion to later time to discern whether the slope will continue decreasing.
Furthermore, the presence of a subgrid-scale model for diffusivity used
to create Borg may change the properties of the mixing transition since
the diffusion and mixing of the two fluids dominates the entrainment
rate in that regime.

For Borg, we also tracked bubbles, as defined by a Morse-Smale
segmentation of the upper envelope (defined as the 98% density iso-
surface). The dataset was subsampled in X and Y by 2 and subsampled
in Z by 1. In experiments with subsets of the data the subsampling rate
did not appear to affect bubble counts except at very early times.

Figure 7 illustrates the bubble segmentation process. The images
on the right side of the plot are all taken at the same time step for dif-
ferent persistences, showing that choosing the persistence threshold is
important for getting an intuitively correct bubble segmentation. The
images to the left and below are from the same curve, showing the
increase in size of the bubbles, as indicated by the surface area of the
set of Morse-Smale cells of all child maxima grouped with the parent
maxima of each bubble.

The 2.39% persistence-threshold curve in Figure 7 shows three lin-
ear (power-law) regimes. Comparing this curve to the curve in Figure
5 shows that the pattern of slopes is inverted. The rate of decrease
in the number of bubbles (which is correlated with increasing mixing
width) is slow, then fast, then slow in Figure 7. In Figure 5 the rate
of decrease in density minima is fast, slow, fast, which coincides with
the phases observed in [7]. There is an intriguing tail-off on all three
curves in Figure 7, although it is not clear that running the simulation
to later time was practical given the grid resolution and the subgrid-
scale numerical models used.

To develop a better understanding of the evolution of the bubbles
we also tracked their birth,deaths, merges, and splits. Figure 8 shows
results for a small part (1/27th) of the upper envelope surface of Borg
at a persistence of 2%. Using the maxima tracking discussed in Sec-
tion 5 we compute a history of bubble births, deaths, merges, and
splits and encode this information in a traditional merge-split graph.
The rendered images are created by picking bubbles in the last time
step and coloring them consistently through out the simulation by a
simple majority-wins algorithm based on edge weights. As expected,
the merge-split graph is dominated by merges rather than deaths and
contains very few splits. This suggests that bubbles at the late stage
mixing are created by the merging of smaller bubbles instead of the
independent growth of a single bubble. However, visual examination
of movies of the mixing layer indicates that bubble stagnation may
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Fig. 5. Critical point counts for the 11523 Borg simulation, showing density minima (left) and Z velocity maxima (right) at the midplane versus
time. Density minima indicate the locations where light fluid is intersecting the midplane. At left, the four phases of the mixing are suggested
by four lines at distinct times in the middle of each phase and arrows indicating the corresponding XZ slices of the density field, where white
denotes the heavy fluid. The linear regions of the high persistence curves suggest power-law behavior. Recall that reductions in the number of
high persistence critical points is correlated with the structures in the flow becoming larger. Thus, larger structures are indicative of growth of the
mixing region. The asymptotic behavior is fitted for late time.

also play an important role. Some death events may require additional
information (such as the Z location or velocity) to disambiguate them
from merge events.

7 Conclusion

In this paper we have demonstrated how topological segmentation
based on Morse theory can be used to analyze the properties of mixing
flow. We have presented a novel definition of bubbles in the mix-
ing layer as stable manifolds of maxima of the height function. Fur-
thermore, we have developed a suite of efficient algorithms forming
a complete pipeline to perform multi-scale analysis of large and com-
plex datasets. Except for the tracking, all algorithms are combinatorial
making them stable even under extreme circumstances. It should be
noted that the techniques described in this paper are in no-way limited
to fluid dynamics research. On the contrary, the tools described here
can be applied to any domain in which features can be indicated by the
critical points of a function defined on a manifold.

We have extracted counts of critical points that correlate with
growth of the mixing layer and the associated growth in the size (and
therefore reduction in number) of features in the flow. Our results
match previously observed phases of the mixing process which sug-
gests that our topological approach is valid. However, there are differ-
ences in the power-law behavior of the bubble counts derived from the
envelope surfaces and the density minima counts on the midplanes. It
is not clear at this time what accounts for these differences. We believe
a better tracking system might shed more light on the late time steps
when bubbles become complicated multi-scale structures.

Our geometrically based temporal tracking approach achieves the
expected qualitative results. By corresponding every face in the sur-
face, a simple majority-win algorithm reduces mis-identification of
events, except some death events which require additional informa-
tion. We expect that the merge-split graph will be an important tool in
the analysis of mixing behavior.

The results presented here highlight the need to develop more so-
phisticated metrics which do not require a qualitative approach to se-
lecting a persistence threshold. It is clear that the flow features of
interest are multi-scale, but it is not clear how to combine the different
scales into a fully quantitative metric.

There exist some real limitations to attempting to track 3-D struc-
tures like bubbles using 2-D envelope surfaces. As the midplane im-
ages in Figure 6 show, the internal structure of bubbles at late time is
complex. It appears that a robust and scalable implementation of 3-D
Morse-Smale complexes is required to capture all relevant information
in the mixing process. Finally, temporal-aware topological algorithms
are an area of future research when analyzing time-varying problems.
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Fig. 7. The plot depicts bubble counts of the envelope surface for three persistence values. Three regions of power-law behavior are shown by the
curve fits in gray to the 2.39% persistence curve. To the right of the plot, the MS-segmentation at three persistence values for time 700. To the
left and below the plot, the bubble segmentation along the 2.39% persistence curve at various times. Each maximum along with the Morse cells
of its child-maxima are colored the same.

death

merge

split

birth

Fig. 8. A subset of the merge-split graph of bubbles over time at a persistence of 2%. Edges with normalized weight less than 40% are discarded.
The three images at bottom show ten bubbles colored consistently at three time steps indicated by the curved arrows. The graph is dominated
by merges, which implies either that late stage bubbles are created by the joining of smaller bubbles or that smaller bubbles stagnate and are
subsumed into the larger bubbles.
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