
RNA is a unique informational molecule. In addition to 
carrying information in their linear sequences of nucleo-
tides (that is, their primary structure), RNA molecules 
fold into intricate shapes. Pairing of local nucleotides 
can create secondary structures, such as hairpins and 
stem–loops, and interactions among distantly located 
sequences can create tertiary structures. RNA structures 
influence the transcription, splicing, cellular localiza-
tion, translation and turnover of the RNA. The topic 
of RNA structures in different cellular processes has 
been covered in several excellent reviews1–5. Although 
the structures of multiple RNAs have been studied in 
detail, structural information for most RNAs — such 
as mRNAs — is missing owing to the low-throughput 
nature of RNA structure probing and the difficulty in 
probing long RNAs. Classic techniques require indi-
vidually cloned RNA sequences, and only a few hun-
dred bases can be interrogated per experiment. As most 
RNA structures are studied on a case-by-case basis, 
it is difficult to determine the full impact of an RNA’s 
structure on cellular biology. To close this gap, genome-
wide RNA structure determination has relied heavily on 
computational predictions to create structural models 
for hypothesis testing. Computational RNA predic-
tion algorithms have greatly advanced in their ability to 
predict more accurate secondary structures from both 
primary sequences and sequence covariation. These pre-
dicted structures are typically confirmed by secondary-
structure probing, which still serves as the gold standard 
of RNA structure determination.

The advent of high-throughput sequencing tech-
nologies has enabled the sequencing of hundreds of 
millions of bases at a time and has greatly increased 
the speed of acquisition and precision of genomic data. 
High-throughput sequencing has been successfully 
applied in many applications, including genome dis-
covery, transcriptome annotation and global mapping 
of DNA–protein interactions6–8. Coupling RNA struc-
ture probing to high-throughput sequencing yields 
genome-scale RNA structural information, providing 
insights into the secondary structures of thousands 
of transcripts in the cell. Here, we briefly summarize 
the importance of RNA structure in various cellular 
processes by highlighting a few recently discovered 
examples, and we review advances in computational 
structure predictions. We then focus on experimental 
approaches to derive large-scale RNA structure maps 
and discuss the potential impact of this new kind of 
transcriptomic information.

Biological relevance of RNA structures

RNA secondary and tertiary structures influence 
the function of almost all classes of RNAs, includ-
ing mRNAs and non-coding RNAs (ncRNAs), such 
as riboswitches, ribozymes, long non-coding RNAs 
(lncRNAs) and microRNAs (miRNAs). RNA struc-
tures have roles in nearly every step of gene expres-
sion (TABLE  1). RNA structures enable an RNA to 
interact with itself, with other RNAs, with ligands 
and with RNA-binding proteins (RBPs). Many of 
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Sequence covariation

Nucleotide substitutions that 

differ between two or more 

homologous genes but retain 

the potential for Watson–

Crick base pairing in an RNA 

molecule in each sequence, 

thus suggesting a selective 

pressure to retain those  

base pairings.
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Abstract | RNA structure is crucial for gene regulation and function. In the past, 

transcriptomes have largely been parsed by primary sequences and expression levels,  

but it is now becoming feasible to annotate and compare transcriptomes based on RNA 

structure. In addition to computational prediction methods, the recent advent of 

experimental techniques to probe RNA structure by high-throughput sequencing has 

enabled genome-wide measurements of RNA structure and has provided the first picture 

of the structural organization of a eukaryotic transcriptome — the ‘RNA structurome’. 

With additional advances in method refinement and interpretation, structural views of 

the transcriptome should help to identify and validate regulatory RNA motifs that are 

involved in diverse cellular processes and thereby increase understanding of RNA function.
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Table 1 | Examples of the diverse roles of RNA structure in gene expression 

RNA type Examples Example roles of RNA structures Refs

Transcription

Long and short 
ncRNAs

Xist, HOTAIR, ANRIL, 
promoter associated 
RNAs

Double stem–loop and other structural motifs 
recruit Polycomb complex for gene silencing 
(mammals)

111–115

Mitochondrial 
RNA

G-quadruplex structures cause transcription 
termination (mammals)

116

Riboswitch Adenine, guanine, lysine, 
glycine, T box, TPP, SAM, 
pre-Q1

Structure change upon ligand binding results in either 
transcription termination or activation (bacteria)

5,117–122

Splicing

mRNAs Tau, cardiac troponin Protein binding to stem–loop regulates alternative 
splicing (mammals)

123,124 

CD59, XBP1 IRE1α recognizes stem–loop for splicing (mammals) 125

14-3-3ξ Inter-intronic RNA pairing results in mutually exclusive 
splicing (Drosophila melanogaster)

126

Riboswitch Group I ribozyme, TPP Binding to metabolites alters splicing (bacteria, fungi, 
plants)

127,128

RNA localization

mRNAs Hac1 Localization to yeast endoplasmic reticulum 
membrane

129

ATP2, ATM1 Localization to yeast mitochondria 130

fs(1)K10 A-form helix causes localization to anterior of 
Drosophila oocyte

131

PSD95/CaMKIIa G-quadruplex in 3′UTR targeting to neuritis 
(mammals)

132

β-actin Localizes to the leading edge of fibroblasts or neurons 
(mammals)

133,134

ncRNA Promoter RNA Stem–loop results in nucleoli localization (mammals) 135

Translation

mRNAs p27, VEGFA Protein binding causes structural changes (mammals) 20,22

Collagen genes, amyloid 
precursor protein, ferritin

Stem–loop at 5′UTR (mammals) 136–138

BCL2, ERA, TRF2 G-quadruplex in 5′UTR affects translation (mammals) 139–141

URE2 Stem–loop as internal ribosomal entry site (yeast) 142

ncRNA rRNA Binding of Z-DNA-binding domain to rRNA structures 
block translation (bacteria and mammals)

143

Riboswitch FourU, ROSE element, 
CSPA, TPP,  SAM

Structure change on ligand binding and temperature 
variance changes accessibility of Shine–Dalgarno 
sequence for ribosomal recognition (bacteria)

9,102, 
144–146

RNA decay

mRNAs RPS28B Structure recruits decapping proteins for decay (yeast) 147

Cth2 Adenosine or uridine-rich (ARE) elements in 3′UTR 
(yeast)

148 

BDNF Stem–loop in 3′UTR prevents decay in presence of 
Ca2+ (mammals)

149

Riboswitch GlcN6P riboswitches Ligand binding results in cleavage of RNA (bacteria) 150,151

ANRIL, antisense non-coding RNA in the INK locus; ATM1, ABC transporter mitochondrial; ATP2, ATP-synthase subunit 
β-mitochondrial; BCL2, B-cell lymphoma 2; BDNF, brain-derived neurotrophic factor; CSPA, cold shock protein A; Cth2, 
cysteine-three-histidine protein 2; CaMKIIa, calmodulin-dependent protein kinase II; ERA, oestrogen receptor-α; fs(1)K10, 
female sterile (1) K10; GlcN6P, glucosamine-6-phosphate; Hac1, homologous to ATF/CREB1; HOTAIR, Hox transcript antisense 
RNA; IRE1α, serine/threonine-protein kinase/endoribonuclease IRE1; ncRNA, non-coding RNA; pre-Q1, pre-queuosine 1; 
PSD95, post-synaptic density protein 95; ROSE, repression of heat shock gene expression; RPS28B, ribosomal protein S28B; 
rRNA, ribosomal RNA; SAM, S-adenosylmethione; TPP, thiamine pyrophosphate; TRF2. telomeric repeat-binding factor 2; 
VEGFA, vascular endothelial growth factor A; XBP1, X box binding protein 1; Xist, X-inactive specific transcript.
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SELEX

(Systematic evolution of ligands 

by exponential enrichment).  

In the context of RNA, this  

is a method for identifying 

consensus protein binding 

sequences on RNA substrates 

by in vitro selection of short 

RNAs that bind preferentially 

to RNA-binding proteins.

RNAcompete

An in vitro method to identify 

the structural and linear 

sequence motifs of RNAs  

that interact strongly with 

RNA-binding proteins in a 

complex pool of k-mer RNAs.

these structures can exert their influence by helping 
to provide specific binding sites for RBPs, as well as 
restricting protein binding by altering accessibility. 
Identifying RBP binding sites and RBP consensus 
motifs is an area of intense study (BOX 1).

Multiple RNA structures can potentially be formed 
from a long linear sequence. RNA structures are fre-
quently dynamic and RNAs can undergo different 
conformational changes based on their solvent con-
ditions. RNAs can react to various inputs — includ-
ing differences in protein binding, changes in ligand 
and salt concentrations and variance in temperature 
— that result in changes in gene expression, which 
adds an additional layer of complexity to gene regula-
tion. This role of RNA as a molecular sensor requires 
that RNA structures are highly specific, so that dis-
tinct RNA structures can respond to specific cellular 
stimuli, and that RNA structures are dynamic, so that 
the cellular response can be rapid. Below we elaborate 
on a few examples that demonstrate the specificity 
and dynamic character of RNA structures and how 
identifying such structures in a transcriptome-wide 
manner can enhance our understanding of RNA  
function.

The specificity and dynamics of riboswitches. One 
of the best examples demonstrating the specific-
ity and dynamics of RNA structures is a riboswitch. 
Riboswitches are RNA sensors that can detect changes 
in cellular stimuli in the absence of other cofactors, such 
as proteins5,9. As such, some of the first riboswitches 
were discovered based on changes in RNA structure that 
had been induced by specific ligands5,10: sequence align-
ment with established riboswitches allowed subsequent  
identification of riboswitch families11,12.

 A riboswitch typically consists of two domains: an 
aptamer domain that recognizes its specific ligand and 

an expression domain. Upon interacting with a ligand, 
the riboswitch undergoes a conformational change 
that results in gene-expression changes. Multiple 
classes of riboswitch exist that respond to a wide range 
of cellular stimuli, including amino acids, nucleotides, 
metal ions, coenzymes and temperature, which allows 
them to regulate processes such as transcription termi-
nation, changes in translation rate, splicing and mRNA 
decay13–16. Although first discovered in bacteria, ribo-
switches have been found in other organisms, such 
as yeast, algae and plants, indicating the prevalence 
of this important regulatory mechanism in multi-
ple kingdoms of life17,18. However, only the thiamine 
pyrophosphate riboswitch has been found outside 
eubacteria, and no riboswitches have been found in  
mammals12.

The aptamer domain of a riboswitch binds to a 
ligand through multiple interactions, such as hydrogen 
bonding and electrostatic interactions. Riboswitches 
that bind metabolites are typically very specific for cer-
tain metabolites and can discriminate between their 
true ligands and other similarly structured molecules5. 
This specificity for its metabolite enables a riboswitch 
to serve as a cellular sensor. An example of this is the 
adenine riboswitch, whereby a single base-pair change 
from U to C in the ligand binding site changes the 
affinity of the riboswitch from adenine to guanine19. 
The aptamer is found in the 5′UTR of the bacteria 
ydhL mRNA and forms a secondary structure when 
bound to adenine. This prevents the formation of a 
transcription terminator loop and so transcription 
occurs. High levels of adenine hence result in high lev-
els of YdhL, which is a purine efflux pump, and so ade-
nine can be pumped out of the cell. Another example 
is the S-adenosylmethione (SAM) riboswitch. Distinct 
classes of the SAM riboswitches can distinguish 
between SAM — a coenzyme for methylation reactions 
— and S-adenosylcytosine (SAH) — a by-product  
of the methylation reaction — even though SAM and 
SAH are highly similar in structure. This distinction 
is important to prevent the accumulation of toxic 
SAH and to recycle SAH to form SAM5. The diversity 
of SAM riboswitches, as shown by high-resolution 
crystal structures (FIG. 1a), also illustrates the possibil-
ity of multiple RNA structural solutions to the same  
biochemical challenge. The presence of diverse RNA 
structures also shows the need to experimentally probe 
RNA structural dynamics rather than relying purely on 
sequence conservation.

Dynamics of RNA structures in mammals. The 
dynamics of RNA structure is also a recurring theme 
in mammalian RNAs. The binding of protein factors 
to specific RNA elements has been extensively studied,  
and it is emerging that this binding can result in a cor-
responding change in RNA structure, which affects 
gene expression. The human vascular endothelial 
growth factor A (VEGFA) mRNA contains a 125-base 
hypoxia-stability region in its 3′UTR. The structure 
of this region changes depending on whether the 
cell is exposed to normoxic conditions or whether it 

Box 1 | RNA-binding proteins: motif identification and prediction

RNA-binding proteins (RBPs) interact with RNAs to regulate diverse cellular 

processes. Although many of these interactions are mediated by linear sequence 

motifs, RNA structural motifs — as well as the structure context in which linear motifs 

are embedded — also influence RBP binding. Different strategies have been 

developed to identify RNA consensus motifs. Transcripts that are associated with 

RBPs can be computationally searched for consensus nucleotide sequences that are 

selectively enriched in bound versus unbound transcripts using programs such as 

MEME, FIRE and REFINE103–105. Experimentally, SELEX and RNAcompete enable the 

determination of RNA consensus motifs by incubating an RBP with a complex pool of 

randomized short RNA sequences to selectively identify the sequences that have 

stronger binding affinities to the RBP104,106. The development of new methods, such as 

high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation 

(HITS-CLIP) and photoactivatable ribonucleoside enhanced crosslinking and immu-

noprecipitation (PAR-CLIP), allows the identification of both RBP-bound transcripts, 

as well as the protein binding site, thus greatly reducing the search space for 

consensus motif finding in RBP-bound targets24,25. Importantly, incorporation of 

predicted RNA secondary structure can substantially increase the explanatory power 

of some linear RBP binding motifs; for instance, several motifs are shown to bind RBP 

only when the motif occurs in the context of a single-stranded, accessible region of 

mRNA107. Combined with an increased amount of available RNA structure data, it 

would be possible to predict consensus RNA structural motifs and assess the impact 

of RNA structures in RNA–protein interactions.
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Figure 1 | Diversity and dynamics of RNA structures. 

a | Different classes of S-adenosylmethione (SAM) 

riboswitches bind specifically to SAM. The backbone of 
the riboswitch is in grey and the SAM molecule is 

coloured. The three classes shown here are: SAM‑I108 

(Protein Data Bank (PDB) number 2GIS); SAM-II109 (PDB 

number 2QWY); and SAM-III110 (also known as S(MK)) 

(PDB number 3E5C). Images are generated using 

PyMOL software. b | Dynamic changes in p27 mRNA 

structure upon PUF binding results in changes in p27 

gene expression. Left panel: during quiescence, the 
miRNA binding site in the 3′UTR of p27 is in a folded 

structure and is not accessible to miRNA. Translation of 
p27 mRNA results in high p27 protein levels to maintain 

quiescence. Right panel: during cellular proliferation, 
binding of PUF proteins to p27 mRNA causes a 

structural change that allows microRNA (miRNA) 

binding sites to be accessible to miR-221 and miR-222, 

resulting in translation repression of p27. Low p27 levels 
allow the cells to exit cellular quiescence and enter  

the cell cycle. RISC, RNA-induced silencing complex.  

Part b modified, with permission, from REF. 22  (2010) 

Macmillan Publishers Ltd. All rights reserved.

PUF

(Pumilio family). This is a  

family of evolutionarily 

conserved RNA-binding 

proteins. They preferentially 

bind to the 3′UTR of mRNAs  

to regulate gene expression. 

is exposed to hypoxic conditions in the presence of 
interferon-γ (IFNγ)20. During normoxia, the presence 
of the IFNγ-activated inhibitor of translation (GAIT) 
complex causes the VEGFA mRNA to form a structure 
that is not permissive to translation. However, during 
hypoxia, the binding of heterogenous nuclear ribonu-
cleoprotein L (HNRNPL) results in the RNA confor-
mation switching to a different structure that permits 
protein translation.

An miRNA is a ~23 nt short RNA that modulates 
gene expression in normal development and disease 
pathogenesis. The interaction between miRNAs and 
3′UTRs of their target mRNAs can lead to mRNA desta-
bilization and/or translation inhibition. Recently, RNA 
conformations within a transcript have been found to 
be one of the determinants of whether a transcript 
is targeted by specific miRNAs; target sites that are 
buried in secondary structures may sterically hinder 
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Small nucleolar RNAs

(snoRNAs). RNAs that are 

involved in guiding the 

modification of other RNAs, 

such as ribosomal  

RNAs, tRNAs and  

small nuclear RNAs.

Dynamic programming

A method for solving complex 

problems by breaking  

them down into simpler 

‘sub-problems’. This method  

is used by most RNA structure-

prediction algorithms to 

efficiently scan the entire 

landscape of possible 

secondary structures.

Stochastic context-free 

grammars

(SCFGs). Mathematical models 

in which base pairings in an 

RNA molecule are described as 

a set of production rules, each 

augmented with a probability.

Machine learning methods

Algorithms that use empirical 

data (called the training set)  

to capture characteristics of 

unknown underlying 

phenomena and improve 

predictions about new data 

(called the test set).

their interaction with miRNAs21. Interestingly, acces-
sibility of miRNA target sites can change in different 
biological states, indicating an additional layer of gene 
regulation22. One prime example is the regulation of 
levels of p27, a cyclin-dependent kinase inhibitor, dur-
ing different stages of the cell cycle. Levels of p27 are 
low in dividing cells but high in non-dividing, quies-
cent cells. Upon growth-factor stimulation, Pumilio 1  
is activated, binds to the p27 mRNA 3′UTR and results 
in an RNA structural change. This structural change 
exposes the miRNA target sites in the 3′UTR of p27, 
allowing miR-221 and miR-222 to interact with the 
p27 3′UTR, causing translation repression and a 
reduction in p27 levels (FIG. 1b).

Genome-wide data sets that identify RBP targets 
and where these proteins bind to mRNAs are increas-
ing23–25. Probing RNA structures in a genome-wide 
manner both in vitro and in vivo would enable us to 
study the structural context that determines protein 
binding to RNAs and would also enable us to iden-
tify regions of RNA structural changes that occur 
in the presence and absence of protein binding. As 
many such structural changes result in meaningful 
functional outputs, such as changes in translation or 
decay, this would enrich our mechanistic understand-
ing of how RNA structures have an impact on cellular 
function.

RNA structure — computational approaches

Given the experimental difficulties in measuring RNA 
structure, algorithms for predicting RNA structure 
from primary sequence have been developed and 
applied in many settings26–31. When accurate, these 
approaches have clear advantages, as they do not 
require experimentation and can also be used to pre-
dict the structure of any arbitrary transcript, includ-
ing hypothetical transcripts with designed mutations. 
Indeed, approaches based on computational predictions 
have led to many biological discoveries and insights. 
For example, for specific classes of ncRNAs whose 
members share structural properties that are essen-
tial for their function, computational methods using 
secondary-structure predictions were successfully 
used to annotate new members of that ncRNA class. 
Examples include methods for predicting tRNAs32,33, 
small nucleolar RNAs (snoRNAs)32 and miRNAs34.  
By combining RNA structure predictions with com-
parative genomic analysis, the more general task of 
identifying novel ncRNAs from a genome sequence 
has also been addressed in many organisms35–37. Finally, 
several methods have been developed for identifying 
structural motifs that are common to multiple RNAs 
and that may have a role in the subcellular localiza-
tion, stability or function of the RNA in which they are  
embedded30,38–41 (FIG. 2a,b).

Covariation. Several different approaches exist for 
predicting RNA secondary structure. Methods based 
on comparative sequence analysis rely on the fact 
that many of the known functional RNA structures 
are conserved in evolution. Examples include tRNAs, 

ribosomal RNAs (rRNAs) and group I and group II 
introns42,43. Covariation methods determine secondary 
structure by examining conservation patterns of base 
pairs among orthologous or paralogous genes. These 
methods search for two distinct genomic sequences 
in which evolutionary sequence changes in one 
sequence are accompanied by compensatory sequence 
changes in the other sequence, thus preserving RNA 
structure42. For example, the pairing of G-C nucleo-
tides between two distinct genomic sequences can be 
maintained at the structural level in another species if 
the G-C nucleotides have changed to A-U nucleotides 
(FIG. 2c). The structure can be determined from the pat-
tern of conserved pairings when enough homologous 
sequences are available, and several methods exist for 
this27,44–47. In other cases, a combination of a covaria-
tion method and a thermodynamic method (discussed 
below) can be used48.

Thermodynamic modelling. When only a single 
sequence is available, an accurate and popular method 
is thermodynamic computation of the minimal free-
energy structure. This method uses efficient dynamic 

programming algorithms in conjunction with experi-
mentally derived energy parameters to scan the entire 
landscape of possible secondary-structure configura-
tions and to identify the most thermodynamically sta-
ble structure26,49,50. For sequences that are shorter than 
700 bp, ~70% of the base pairs that are determined by 
experimental methods are correctly predicted by these 
methods. However, for longer sequences, the accuracy 
drops to ~20–60% when the predicted structures are 
compared with high-resolution crystal structures and 
structural predictions obtained using comparative 
analysis51,52. As an alternative to free-energy minimiza-
tion methods, algorithms based on probabilistic mod-
elling using stochastic context-free grammars (SCFGs) 
were also developed, but as their accuracy is lower, 
they have not thus far replaced free-energy minimiza-
tion methods28. Another recent, improved strategy was 
developed using both thermodynamic modelling and 
machine learning methods, and the strategy was based on 
choosing the nucleotide set with the maximal sum of  
pairing probabilities53,54. An interesting application  
of thermodynamic modelling techniques is the evalu-
ation of potential RNA structural changes caused by 
non-coding SNPs that are associated with human dis-
eases. Laederach and colleagues55 identified multiple 
disease-associated mutations in UTRs that alter the 
mRNA structure, providing new hypotheses for causes 
of human disease and variation.

Incorporating experimental data. Another success-
ful approach has been to incorporate experimentally 
derived structural information into computational 
predictions. This approach has been developed over 
many years since the first prediction algorithms 
became available29,56–59. In cases in which the experi-
ment can only derive binary information for each 
nucleotide — namely whether the nucleotide was 
paired or unpaired — the dynamic programming 
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Figure 2 | Predicting structural motifs for RNA-binding-protein targets in mRNAs from different organisms.  

a | A stem–loop structural motif that was found in the eight known targets of the human RNA-binding protein  

(RBP) SAM68 (also known as KHDRBS1; not to be confused with S-adenosylmethione) using an RNA motif finder 

(RNApromo)30. b | The same RNA motif finder was used to analyse data collected from a large study of mRNA 

localization during fly embryonic development to predict significant motifs in six sets of colocalized maternal 

transcripts30. Shown is the structural motif enriched in each set of mRNAs. c | Conservation of base pairs in 

homologous sequences directs structure prediction. Sequence covariation is found at aligned positions. Shown is 

an example alignment of seven RNA sequences. In the example, sequence covariation in between the two sets of 

marked columns suggests that these bases might interact, which could give the motif shown on the right. Parts a 

and b are modified, with permission, from REF.  30  (2008) National Academy of Sciences, USA.

Pseudoknots

RNA topologies that contain 

non-nested nucleotide pairings.

algorithm can be modified such that large, positive 
free-energy terms are added to nucleotides that are 
known to be unpaired. This thereby restricts the algo-
rithm from marking them as paired57. More recently, 
methods that use quantitative, nucleotide-resolution 
experimental data (discussed below) to direct the pre-
diction of a folding algorithm have been introduced59. 
By integrating an additional per-nucleotide pseudo-
free-energy term into the dynamic programming algo-
rithm, this method was shown to significantly increase 
the accuracy of structure prediction.

Ongoing challenges. Despite their many successes, cur-
rent prediction algorithms have several limitations. 
First, RNA molecules in solution may adopt second-
ary structures that are only partially determined by 
thermodynamics, as RNA molecules can undergo 
conformational changes upon interaction with other 
RNAs and RBPs. These environment-dependent 
interactions are extremely complex to model and are 

thus excluded from prediction algorithms. Second, 
although our knowledge of thermodynamic rules and 
parameters has greatly improved, it is far from being 
complete29,57,60,61. Finally, most folding algorithms use 
approximations in order to efficiently scan the vast 
landscape of possible secondary structures.

Important limitations are the difficulty encoun-
tered in predicting pseudoknots or in taking into 
account long-range and tertiary-structure interac-
tions. Although those more complicated aspects of 
RNA structure are computationally hard to predict, 
some algorithms have been developed that allow for 
pseudoknots or are able to predict tertiary struc-
ture62–64. Pseudoknots have been observed in a number 
of functional RNA sequences, such as rRNAs, tRNAs 
or the genomes of viral RNAs65, in which they have 
been shown to be involved in unique mechanisms 
of viral translation initiation and elongation66. Thus, 
ignoring pseudoknots results in inaccurate struc-
ture predictions65,67. In contrast to the prediction of 
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Heuristics

An experience-based method 

of problem solving that is used 

in cases in which an exhaustive 

search is impractical to speed 

up the process of finding a 

solution. There is usually some 

loss of accuracy.

Single-hit kinetics

The kinetics of reactions 

involving chemical and 

enzymatic probes that react 

with RNA, such that, on 

average, there is only one  

cut per molecule.

nested structures (that is, structures that are free of 
pseudoknots), which can be efficiently solved using 
dynamic programming, predicting structures that con-
tain pseudoknots is very challenging computationally. 
There are no efficient algorithms for the prediction 
of most classes of pseudoknot68. As a result, several 
methods have been developed that focus on specific 
types of pseudoknots69–71 or use heuristics72–76 to bring 
down running time. Nonetheless, computational pre-
diction of pseudoknots still scales exponentially with 
the length of the RNA on the order of n4 to n6, where 
n is the length of the RNA sequence.

Thus, although the extensive research and devel-
opment of RNA structure-prediction tools has led to 
many successes and discoveries, further experimen-
tal data are needed. Furthermore, the accumulation 
of additional experimental data should lead to better 
optimization of existing algorithms and to the devel-
opment of new strategies, some of which may combine 
experimental and computational approaches.

RNA structure maps — the first steps

Probing RNA structures in solution by RNA footprint-

ing. RNA footprinting is a method that probes RNA 
in solution using a variety of chemical and enzymatic 
probes77. With in vitro footprinting, an RNA of inter-
est is typically transcribed in vitro and folded in solu-
tion before being subjected to a battery of different 
structural probes that determine which of the bases 
are single-stranded, double-stranded or solvent-
exposed77,78. Numerous reagents interact with single-
stranded or flexible bases to modify or cleave them79–83, 
including chemicals such as dimethyl sulphide (DMS), 
1-cyclohexyl-(2-morpholinoethyl)carbodiimide 
metho-p-toluene sulphonate (CMCT), kethoxal, Pb2+ 
and N-methylisatoic anhydride (NMIA), as well as 
nucleases such as RNases I, T1 and A and S1 nuclease. 
Enzymes such as RNase V1 recognize and cleave at 
double-stranded bases84, and hydroxyl radicals cleave 
at RNA bases that are solvent-exposed85,86. Chemical 
and enzymatic probes are frequently used ‘hand-in-
hand’ to provide structural information. The enzyme 
RNase V1 is the only structural probe that recognizes 
and preferentially cleaves at double-stranded regions. 
Chemical probes are frequently used to provide struc-
tural information on single-stranded regions. Because 
they are much smaller in size than enzymes, chemical 
probes encounter less steric hindrance and are able  
to probe more bases in a folded RNA. Different chemi-
cals can also react with different moieties on unpaired 
bases; thus, comparing the patterns of reactivity of 
multiple chemical probes can provide additional 
insight into RNA structure. Upon cleavage or modi-
fication, the reaction sites can be detected by autora-
diography or reverse transcription followed by gel or 
capillary electrophoresis (FIG. 3). In the case of gel elec-
trophoresis, the location of the cleavage is determined 
from the migration pattern of the bands, and the 
intensity of the bands can be quantified using image-
processing tools, such as the program semi-automated  
footprinting analysis (SAFA)87.

The application of capillary electrophoresis to RNA 
structure probing is an important step in increasing 
the throughput of RNA structure data. Although RNA 
probing in solution can be readily implemented for 
short RNAs, probing of long RNAs can be challeng-
ing. Gel electrophoresis typically resolves about a 
hundred bases of RNA at a time, and hence probing 
an RNA of several kilobases in length would require 
running tens to hundreds of gels. Capillary electro-
phoresis allows the resolution of 300–650 bases from a 
structure-probing experiment, and multiple lanes can 
be run at the same time to increase its throughput of 
RNA structure probing88,89. The readout of the probing 
experiment is typically achieved through the reverse 
transcription of a 5′ fluorescently labelled DNA primer 
that specifically anneals to the RNA of interest. If the 
RNA is several kilobases long, multiple primers are 
designed to anneal along the length of the transcript. 
Modification or cleavage of the RNA template results 
in premature stops in the primer extension reac-
tion, leading to different lengths of the cDNA prod-
uct, which are resolved by capillary electrophoresis. 
Software tools such as capillary-automated footprint-
ing analysis (CAFA) and ShapeFinder can automate 
the data acquisition from capillary electrophoresis and 
can further improve speed and accuracy88,89 (FIG. 3).

RNA footprinting can also be performed in vivo90,91. 
Because some RNAs are able to fold into conforma-
tions in vitro that do not reflect their in vivo bio-
logical conformations, structure probing in vivo may  
provide more accurate information on biologically 
relevant RNA structures92. RNA footprinting can  
be carried out inside cells using chemicals that  
can penetrate the cell membrane, such as Pb2+ and 
DMS, or with high-energy X-rays85,91,93. Lead prob-
ing has been successfully applied to in vivo structure 
probing in bacteria, whereas DMS has been applied 
to both prokaryotic and eukaryotic cells91,93. However, 
in vivo RNA footprinting may not be able to interro-
gate all regions of an RNA of interest owing to steric 
hindrance from protein interactions. The dynamic 
cellular environment also presents RNA in hetero-
geneous states: RNA is present in all of the different 
stages of its life cycle, including transcription, transla-
tion and decay. Averaging the structural signal from 
heterogeneous states provides inaccurate models. 
As such, structural probing in vitro and in vivo pro-
vides complementary information about RNA struc-
tures. In all footprinting experiments, it is important 
to titrate the correct amount of structural probe to 
achieve ‘single-hit kinetics’, such that, on average, the 
RNA of interest is only cleaved once per molecule. 
This ensures that the footprinting is performed on 
the original folded RNA instead of on RNA that has 
refolded incorrectly after it has been cleaved.

SHAPE and its applications to long RNAs. The selec-
tive 2-hydroxyl acylation analysed by primer exten-
sion (SHAPE) method uses the chemical NMIA and 
its derivatives to interrogate flexible regions in RNA 
secondary structure83. The 2′OHs of flexible bases are 
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Figure 3 | Structure probing by RNA footprinting followed by gel or capillary electrophoresis. An RNA of 

interest is typically transcribed in vitro, folded and subjected to a combination of single- and double-stranded 

structural probes in solution. Cleavages in double- or single-stranded regions can either be identified by running  

a gel electrophoresis (RNA needs to be radioactively labelled at one end) or by primer extension followed by 

capillary electrophoresis (the primer needs to be fluorescently labelled). The bands from gel electrophoresis  

can be quantified using a program called semi-automated footprinting analysis (SAFA), and bands in capillary 

electrophoresis are identified and quantified using capillary-automated footprinting analysis (CAFA) or 

ShapeFinder. In the illustrated example of data from gel electrophoresis, the green lines on the graph refer to  

the intensity (quantified by SAFA) of S1 nuclease cleavages and the red lines refer to the intensity of RNase V1 

cleavages. The positions of these cleaved bases are determined from the RNase T1 ladder and alkaline hydrolysis 

ladder, which are run alongside the samples. In the example of capillary electrophoresis, the red line of the graph 

indicates the intensity of structure probing sites that are detected by reverse transcription, and the blue line 

corresponds to a ladder that positions the RNA bases. CMCT, 1-cyclohexyl-(2-morpholinoethyl)carbodiimide 

metho-p-toluene sulphonate; DMS, dimethyl sulphide; NMIA, N-methylisatoic anhydride.

able to orient themselves more readily for attack by the 
electrophile NMIA, resulting in the formation of 2-O 
adducts. These 2-O adducts can be detected by reverse 
transcription followed by capillary electrophoresis, 
because they cause termination of the reverse tran-
scription reaction. As every ribonucleotide contains a 
2′OH, SHAPE has the advantage of being able to probe 
most bases in an RNA. With its coupling to capillary 
sequencing, SHAPE has been applied to interrogate 
the secondary structures of long RNAs, such as the 16S 
rRNA and the RNA genome of HIV59,94,95.

The construction of the secondary structure of 
the HIV genome using SHAPE was a landmark that 
demonstrated the substantial value of comprehensive 
RNA structure analysis94. The HIV genome is a 9 kb 
long single-stranded RNA that encodes nine ORFs, 
which are translated into 15 proteins that are impor-
tant for HIV infection and replication. Initial probing 
of the first 900 bases of the HIV genome across four 
different biological states showed highly similar sec-
ondary structures in virio and ex virio95. Regulatory 
regions within the 900 bases are found to be more 
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Nucleocapsid

A coat of proteins that 

surrounds the genomic  

content of a virus.

Gag-Pol

The Gag polyprotein is 

processed into several proteins 

including the matrix, capsid, 

spacer peptides, p6 and 

nucleocapsid proteins.  

Pol includes reverse 

transcriptase, integrase  

and protease.

Env

(Envelope protein). This is 

found on the surface of the 

retroviruses and contains 

glycoproteins that enable the 

virus to recognize and enter 

host cells.

Ash1 localization elements

Sequences that are required to 

properly localize Ash1 mRNAs 

to the yeast bud tip.

structured than protein-coding regions, and multiple 
regions within the RNA are found to interact with the  
nucleocapsid proteins. Structure probing of the entire 
9 kb HIV genome ex virio by SHAPE further found 
numerous regions within the genome that have func-
tional roles in HIV replication94. These structured 
RNA domains provide insights into Gag-Pol frame 
shifting, hyper-variable domains and translocation of 
the Env protein. Interestingly, the nucleotides between 
independently folded protein domains are more struc-
tured than surrounding bases and are able to fold into 
secondary structures that retard ribosome progression 
to facilitate co-translational protein folding of modular 
domains94.

Coupling RNA footprinting, such as SHAPE, to 
capillary sequencing has opened the door to struc-
ture probing of large RNAs, and it is likely that more 
RNA genomes, such as the polio virus and the hep-
atitis C virus (HCV), will be structurally probed to 
understand the role of RNA structures in viral replica-
tion. Furthermore, RNA structure probing is likely to  
be extended to families of viral genomes in order  
to discover conserved or rapidly evolving structural 
elements that have the potential to be functionally 
important in viral biology or pathogenicity. To facili-
tate this, the throughput of RNA structure probing can 
be greatly enhanced by coupling RNA footprinting to 
high-throughput sequencing, which provides orders 
of magnitude more sequencing information than  
capillary sequencing.

Genome-wide RNA structure maps

Parallel analysis of RNA structure, fragmentation 

sequencing and SHAPE sequencing. Next-generation 
sequencing has enabled the next major advance 
in genome-wide measurements of RNA structure, 
because millions of sequence reads can be obtained in a 
single experiment (FIG. 4). Cleavages or modifications at 
double- or single-stranded bases from structure prob-
ing can be captured and converted into cDNA librar-
ies that are sequencing-compatible. These sequencing 
reads are mapped back to the genome or the transcrip-
tome to identify the transcript and the locations along 
the transcript at which the cleavages or modifications 
occurred. The frequency of the cleavage or modifi-
cation at a base can also be estimated by summing 
the reads that are mapped to the base. This strategy 
allows the simultaneous identification of double- or 
single-stranded (or flexible) bases in thousands of 
RNAs in one experiment. In a strategy termed parallel  
analysis of RNA structure (PARS), deep-sequencing 
reads of double- or single-stranded regions of RNAs 
generated by RNase V1 and S1 nuclease, respectively, 
are compared21. An alternative strategy, named frag-
mentation sequencing (Frag-seq), quantifies deep 
sequencing reads generated specifically by RNase P1, a 
single-strand specific nuclease96. Recently, SHAPE has 
also been coupled to deep sequencing (SHAPE-seq)97.

PARS was used to measure the secondary structure 
of the yeast transcriptome through generating struc-
tural information on ~4.2 million bases in over 3,000 

yeast transcripts21. Mapping PARS scores to known 
structures of regulatory motifs, such as Ash1 localization  

elements and the internal ribosomal entry site of 
URE2 mRNA, indicates that PARS is able to capture 
the structural information in these elements. The 
large amount of PARS data provides insights into  
the global structural organization of mRNAs, includ-
ing the presence of more secondary structure in coding 
regions than in UTRs, a three-nucleotide periodicity 
of secondary structure along the coding regions and 
an anti-correlation between mRNA translation effi-
ciency and structure over the mRNA translation start  
site (FIG. 5). Frag-seq was used to reconstruct the sec-
ondary structure of snoRNAs in mouse cells96. Both 
Frag-seq and PARS data can be integrated into structure- 
prediction programs for more accurate RNA second-
ary-structure prediction. For example, PARS data were 
used to constrain a thermodynamic RNA structure-
prediction algorithm as binary inputs (paired versus 
unpaired), and a custom algorithm was developed to  
accommodate Frag-seq data.

Comparison of PARS and Frag-seq reveals the com-
plementary nature of the information that they provide. 
First, because Frag-seq isolates RNAs that are 20–100 
bases long after P1 nuclease cleavage without an addi-
tional fragmentation step, many sequence reads come 
from small nuclear RNAs (snRNAs), such as snoRNAs, 
and larger RNAs may be under-represented. Second, 
structured regions appear as ‘blanks’ in Fraq-seq data, 
and other information is thus necessary to ensure that 
these regions are not being missed owing to mapping or 
cloning difficulties. Third, PARS compares the cleavage 
sites of single- versus double-strand-specific enzymes, 
whereas Fraq-seq uses the endogenous 5′OH and 5′P 
within the transcriptome as a background. Capturing 
the endogenous 5′P allows filtering of reads that result 
from molecule ends that are already present in the tran-
scriptome and are not a result of P1 nuclease cleavage. 
The 5′OH control identifies regions that vary in their 
ability to be cloned and amplified during library pro-
duction. Thus, by combining features from PARS and 
Frag-seq, future experiments can exploit the strengths 
of each to improve the accuracy of genome-scale  
measurements of RNA structure.

In a SHAPE-seq experiment, seven short RNAs 
were transcribed in vitro, and then each was appended 
with a unique sequence tag (a barcode)97. These RNAs 
were then treated with the chemical 1-methyl-7-nitroi-
satoic anhydride (1M7) — a derivative of NMIA — to 
acylate flexible bases. The reacted bases were indi-
rectly detected by their ability to terminate the reverse 
transcription reaction, as assessed by sequencing the 
cDNAs. Because of the barcode, multiple sequences — 
even those with extensive sequence similarity — can 
be probed simultaneously. For RNAs such as RNase P 
and pT181 attenuator, SHAPE-seq data correlate well 
with data obtained from SHAPE followed by capillary 
sequencing. SHAPE-seq is likely to be useful for study-
ing multiple mutants of one RNA or multiple mem-
bers of a closely related RNA family. Comparison of 
SHAPE-seq with PARS or Frag-seq illustrates several 
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Figure 4 | PARS and Frag-seq methods. a | Parallel analysis 

of RNA structure (PARS) strategy. In PARS, poly(A) 

selected RNA is folded in vitro and incubated with either 

RNase V1 or S1 nuclease to probe for double- and 

single-stranded regions, respectively. RNase V1 and  

S1 nuclease cleave, resulting in a 5′P leaving group.  

The enzymatically probed RNA is then fragmented. As 

enzymatic cleavage products contain 5′P, whereas 

fragmentation and degradation products have 5′OH, 

only true structure-probing sites can be ligated to 

adaptors and reverse transcribed. The cDNA library is 

sequenced using high-throughput sequencing and the 

resulting reads are mapped to the genome to identify 

double- or single-stranded regions in the transcriptome. 

A PARS score can be calculated at each base, whereby a 

positive PARS score indicates that a base is 

double-stranded, and a negative PARS score indicates 

that a base is single-stranded. b | Fragmentation 

sequencing (Frag-seq) strategy. Nuclear RNA is folded 

in vitro and probed in solution with P1 endonuclease.  

P1 cleaves at single-stranded regions, resulting in a 5′P 

leaving group. This 5′P can be captured by adaptor 

ligation followed by reverse transcription and 

high-throughput sequencing. Sequencing reads are 

mapped back to the genome to identify where 

single-stranded bases are located in the transcriptome. 

Frag-seq also contains controls that include sequencing 

of endogenous 5′P and 5′OH that are originally present 

in the untreated RNA samples. A cutting score can be 

calculated at each base that incorporates reads from P1 

nuclease and reads from endogenous degradation or 

fragmentation products. A positive cutting score 

indicates that the base is single-stranded. Part a is 

modified, with permission, from REF. 21  (2010) 

Macmillan Publishers Ltd. All rights reserved.

▶trade-offs in experimental design. The use of indi-
vidual barcodes to assign identity to RNAs enables 
studies of highly related RNAs but limits the ability 
to achieve genome-wide scale, particularly when RNA 
sequences are not known a priori. Because SHAPE-seq 
measures the cDNA product rather than cloned RNA 
fragments (as in PARS and Frag-seq), the processivity 
of reverse transcription needs to be taken into account 
in SHAPE-seq data processing and RNA secondary-
structure modelling. The SHAPE-seq signal progres-
sively decays from the 3′ end to the 5′ end of the RNA 
template (the direction of reverse transcription), so 
a detailed mathematical model has been developed 
to correct for this signal decay98. Such models, and 
the use of many more internal primers, may allow  
full-length mRNAs to be assessed by SHAPE-seq.

Advances relative to prior methods. The genome-scale 
RNA structure maps have three important advantages 
over prior methods. The first advantage is the amount 
of data that can be measured by deep sequencing, 
an amount that is still rapidly increasing. Although 
RNA footprinting with capillary sequencing is still 
very much directed at interrogating a single RNA of 
interest, methods based on high-throughput sequenc-
ing have the power to probe entire transcriptomes. 
Second, the degree of parallel multiplexing is much 
enhanced in the new methods. Capillary sequencing 
is typically performed with one purified RNA product 
and one primer per well. Thus, to study multiple genes, 
an investigator needs to clone each of these genes, as 
well as prepare unique primers that span the length 
of the transcripts. By contrast, owing to the massively 
parallel nature of deep-sequencing technology, thou-
sands of distinct RNAs that are many kilobases long 
can easily be probed by high-throughput sequencing, 
as long as the RNAs are fragmented to a size that is 
captured by the library preparation. This genome-
wide approach allows biologists to easily compare  
the structural profile of one transcript with another 
in the transcriptome, enabling them to classify  
transcripts according to specific structural features.

Finally, PARS and Frag-seq can also perform 
de novo transcript discovery and probe the structures 
of RNAs that were either not previously known or 
that have undergone post-transcriptional modifica-
tions, such as alternative splicing or RNA editing. By 
contrast, for capillary sequencing (or SHAPE-seq,  
as is currently practised), the nucleotide sequence, as 
well as how the RNA is spliced, needs to be known 
to enable primer design along the length of the RNA. 
This process is tedious and also restricts capillary 
sequencing to structure probing of transcripts that are  
well-annotated in the transcriptome.

Despite these potential advantages, care and 
thoughtful controls are necessary to design and inter-
pret genome-scale RNA structure maps, as has been 
done with RNA footprinting by capillary sequenc-
ing99. Key points to consider in experimental design 
include replicates to examine reproducibility, titration 
of structural probes to maintain single-hit kinetics and 

controls to assess various biases that may arise from 
library preparation, deep sequencing or mapping100. 
The addition of positive control RNAs with well-known 
structures to genome-scale reactions is a useful meas-
ure of assessing the quality of structural information  
generated by deep sequencing.

Future directions

Much remains to be done and learned from genome-
wide maps of RNA structure. First, it is likely that 
many technical advances will improve the quality of 
the maps. With classic RNA footprinting, multiple 
enzymes and chemical reagents are used to generate 
a consensus picture of RNA structure, and it is likely 
that several of these reagents, including DMS, Pb2+ and 
others, will be adapted to deep-sequencing readouts. 
The use of third-generation, single-molecule sequenc-
ing platforms that do not require amplification and are 
capable of reading hundreds to thousands of nucleo-
tides may also expand the range of questions that 
can be addressed. For instance, long-range structural 
effects of alternative splicing of exons that are located 
hundreds or thousands of bases apart from each other 
can be more simply evaluated.

Second, in vivo and dynamic RNA structure maps 
will yield a crucial understanding of how RNA struc-
tures may change and will help to regulate different 
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Figure 5 | Structural organization of the mRNA transcriptome. Thousands of yeast mRNAs are structurally 

probed in parallel analysis of RNA structure (PARS) and aligned according to their start and stop codons. The 

average PARS score of the coding sequence (CDS) is shown in blue, the 5′UTR is shown in yellow and the 3′UTR is 

shown in red. The organization of secondary structures within the transcriptome revealed an increased 

accessibility of RNA structure near the start codon that is important for translation efficiency (shown by the 

negative spike). The coding sequence is more structured than the UTRs, as shown by the higher average (blue line) 

compared to the UTRs (orange and purple lines). Some of these structures are important for cellular processes such 

as mRNA transport. A three-nucleotide periodicity (top inset box) in RNA is also seen in the coding region and is 

absent from the UTRs. RBP, RNA-binding protein. This figure is modified, with permission, from REF. 21  (2010) 
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FURTHER INFORMATION
Eran Segal’s homepage: http://genie.weizmann.ac.il
Howard Chang’s homepage: http://changlab.stanford.edu/
CAFA and SNPfold: http://ribosnitch.bio.unc.edu/ 

The_Laederach_Lab/Software.html

iPARS application for iPhone and iPad: http://itunes.apple.
com/us/app/ipars/id394343332?mt=8
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