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Abstract 
 
Statistical models have been used to quantify the relationship between gene expression and 
transcription factor (TF) binding signals. Here we apply the models to the large-scale data 
generated by the ENCODE project to study transcriptional regulation by TFs. Our results 
reveal notable difference in the prediction accuracy of expression levels of transcription start 
sites (TSSs) captured by different technologies and RNA extraction protocols. In general, the 
expression levels of TSSs with high CpG content are more predictable than those with low 
CpG content. For genes with alternative TSSs, the expression levels of downstream TSSs are 
more predictable than those of the upstream ones. Different TF categories and specific TFs 
vary substantially in their contributions to predicting expression. Between two cell lines, the 
differential expression of TSS can be precisely reflected by the difference of TF binding 
signals in a quantitative manner, arguing against the conventional on-and-off model of TF 
binding. Finally, we explore the relationships between TF binding signals and other 
chromatin features such as histone modifications and DNase hypersensitivity for determining 
expression. The models imply that these features regulate transcription in a highly 
coordinated manner.  

 

Introduction 
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Transcription factors (TFs) are critical for the transcriptional regulation of gene expression 
(Takahashi and Yamanaka 2006; Vaquerizas et al. 2009). In human, they represent the largest 
family of proteins, accounting for around 10% of genes (Babu et al. 2004). There are two 
types of TFs: general and sequence-specific. The former TFs act cooperatively with RNA 
polymerase II and are ubiquitously involved in the transcription of a large fraction of genes 
(Lee and Young 2000). The latter TFs bind specific subsets of target genes, leading to distinct 
spatiotemporal patterns of gene expression (Kadonaga 2004). Although systematic gene 
expression quantification has been available for a decade from microarray experiments 
(Schena et al. 1995), only recently has the genome-wide identification of TF binding sites 
become possible owing to the development of chromatin immunoprecipitation followed by 
microarray (ChIP-chip) and sequencing (ChIP-seq) technologies (Johnson et al. 2007; Ren et 
al. 2000).     
 
In several previous studies, statistical models were constructed to study the regulatory 
functions of TF on gene expression based on the gene expression and TF binding data (Cheng 
and Gerstein 2011; Ouyang et al. 2009). These studies showed that TF binding signals around 
the transcription start sites (TSSs) of genes are predictive of gene expression levels with fairly 
high accuracy. But these studies have the following limitations. First, estimates of gene 
expression have relied on probes (microarray) or sequence reads (RNA-seq) spread across a 
gene, possibly across multiple unknown isoforms of that gene. It is often difficult to 
accurately determine the expression level of each transcript based on such a kind of data, 
which limits the predictive power of these models. Second, the numbers of TFs used in these 
models were quite limited and perhaps not representative (12 TFs in both studies). Third, the 
TF binding data were available for only a single cell line, so it was not possible to investigate 
the specificity of the models by examining the degree to which differential TF binding 
between two conditions affects differential expression of genes in those conditions. 
   
Fortunately, the ENCODE project has generated a large amount of data that enable us to 
overcome all these limitations (The-ENCODE-Consortium 2012). In addition to expression 
quantification of transcripts from RNA-seq (Wang et al. 2009) and RNA-PET experiments 
(Luo et al. 2012; Ruan et al. 2007), the consortium has also used Cap Analysis of Gene 
Expression (CAGE) to quantify the expression levels of >130,000 TSSs (annotated by 
GENCODE). In contrast to RNA-seq, CAGE is a technology that directly measures the 
transcriptional signal at the TSS of genes (Lassmann and Carninci 2012; Shiraki et al. 2003). 
In total, the expression data include 267 expression profiles, representing RNA samples in 
multiple cell lines that are extracted from different cellular components using different RNA 
extraction protocols. Moreover, the ENCODE project has generated >400 TF binding profiles 
for more than 120 human TFs or transcription related proteins, including both general and 
sequence-specific TFs (Gerstein et al. 2012). The completeness of the ENCODE data enable 
us to study the transcriptional regulation of TFs more accurately and comprehensively.    
 
In this study, we apply our previously developed model (Cheng and Gerstein 2011) to the 
ENCODE data to better understand transcriptional regulation. We quantify the relationship 
between TF binding signals around TSS and the expression level of TSS measured by 
different technologies, and we study the relative contribution of different TF categories and of 
individual TFs. We compare the regulatory difference between different types of TSS. We 
also show that differential expression of genes can be determined largely by the differential 
binding of TFs. Finally, we explore how TFs coordinate with other chromatin features (e.g. 
chromatin modifications and DNase hypersensitivity) to regulate transcription.  
 
 

Results 

 
Relating TF binding signals to gene expression levels 
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The ENCODE project has performed a large-scale analysis of gene expression and 
transcription factor (TF) binding in multiple human cell lines. In the gene expression data, the 
transcription levels of ~130,000 GENCODE-annotated TSSs were quantified using three 
different technologies: cap analysis of gene expression (CAGE) RNA-PET and RNA-seq in 
multiple cellular components, and with several different RNA extraction protocols. 
Meanwhile, the binding sites of ~120 TFs in the human genome were determined by ChIP-
seq experiments (Gerstein et al. 2012). These data sets enable us to investigate the 
relationship between TF binding and gene expression in a systematic and quantitative manner.    
 
We have previously shown in mouse that the expression levels of transcripts can be 
accurately reflected by TF binding signals in their TSS regions (Cheng and Gerstein 2011). In 
this study, we aim at validating this result using data from CAGE that directly measures the 
expression levels of TSSs, and to investigate the influences of different technologies and 
RNA extraction methods on TSS expression quantification. We constructed models to 
quantify the ability of TF binding signals to statistically predict the expression levels of 
promoters. Unless stated otherwise, we represent the binding strength of a TF in a promoter 
by its average ChIP-seq signal in a 100bp region centered on the TSS. We combined the TSS 
expression data with TF binding data and then divided them into a training dataset and a test 
dataset. A model was trained on the training dataset and then applied to the test data to predict 
the expression levels of TSSs (see “Methods” for details). The relationship between 
expression and TF binding was quantified by the correlation between predicted and actual 
expression levels (R), or by the coefficient of determination (R2), the percentage of variance 
of gene expression explained by the model. In order to evaluate the stability of our results, we 
built models using four different machine-learning methods: random forest (RF), support 
vector regression (SVR), multivariate adaptive regression splines (MARS) and multiple linear 
regression (MLR). Performance of the first three methods was roughly comparable, and was 
better than MLR, implying a non-linear relationship between TF binding and TSS expression 
(Supplementary Figure S1). In this article, to simplify presentation we focus on results from 
the RF method for models with multiple predictors and the SVR method for models with a 
single predictor (see “Methods” for details). Results from different methods are highly 
consistent and lead to the same conclusions, e.g. the relative importance of different TFs for 
predicting gene expression.   
 
Our results indicate that TF binding signals around the TSS are informative for “predicting” 
their expression levels. For example, Figure 1A shows the consistency between predicted and 
actual expression levels of TSSs measured by CAGE of whole cell Poly A+ RNA in K562 
cells. TF binding accounts for at least 67% of the variance of expression levels (R2=0.67). In 
total, there are 267 promoter expression profiles representing 12 different human cell lines in 
our dataset. The performance of the model is not directly comparable between cell lines, 
because different numbers of TF binding datasets are available for different cell lines. Since 
the most complete data were from K562, we chose this cell line for further analysis. The 
expression levels of a large fraction of TSSs (~50% on average) are not detected (RPKM=0) 
in any of these K562 datasets. Thus, we developed a more complicated model that first 
classifies TSSs into expressed and non-expressed categories and then adopts a regression 
model to predict the expression levels for the expressed TSSs only (The-ENCODE-
Consortium 2012). When applied to the TF data, this model achieves results very consistent 
with the methods without a classification step in terms of the R2 value and the relative 
importance of different TFs. We therefore focus on the classification-free models in the rest 
of this analysis. 
 
We compared the impact of different technologies, cellular components and RNA extraction 
protocols on the “prediction accuracy” of models. We used the binding signals of 40 TFs to 
predict each of the 57 K562 expression profiles and compared the resulting accuracies in 
terms of R2 values.  We found that the highest predictive accuracy was achieved for TSS 
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expression data from CAGE (Figure 1B). RNA-seq, as a method for quantifying expression at 
the transcript level, seems unable to precisely capture the expression levels of TSSs. 
Furthermore, prediction accuracies vary significantly among different RNA extraction 
protocols with Poly A+ > Poly A- > Total RNA (Figure 1C). No obvious difference was 
observed between the prediction accuracies for expression data from different cellular 
components (Figure 1D). It can also be seen that expression levels of promoters with high 
CpG content (HCP) are easier to predict than those with low CpG content (LCP). We will 
investigate the effect of CpG content on gene expression in more detail below.     
 
Contribution of different TFs to the regulation of gene expression 

 
The ENCODE project has generated ChIP-seq data for a large number of DNA binding 
proteins. These proteins can be roughly classified into six different categories, including 
sequence specific TFs (TFSS), general or non-specific TFs (TFNS), chromatin structure 
factors (ChromStr), chromatin remodeling factors (ChromRem), histone methyltransferases 
(HISase) and Pol3-associated factors (Pol3F) (Supplementary Table S1). For each TF, we 
constructed a model of expression prediction using it as the single predictor. We compared 
their capability for predicting expression levels of TSSs in K562 (e.g. whole cell poly A+ 
RNA). We found that individually, TFs in the TFNS category were significantly more 
predictive than proteins in other groups (P=0.004, t-test), whereas proteins from the 
ChromRem and Pol3F categories were significantly less predictive (P=0.0004 and P=0.006, 
respectively, t-test) (Figure 2A and Supplementary Table S1). TFs in the TFNS category are 
implicated in general transcriptional regulation. For instance, the TATA-binding protein (TBP) 
is a common subunit required by all three of the human RNA polymerases, I, II and III 
(Kornberg 2007). Binding of these general TFs is essential for transcriptional initiation of 
most promoters, and therefore it makes sense that their binding signals have the highest 
predictive capabilities for gene expression. In contrast, it is expected that TFs in the Pol3F 
category are in general less predictive, because RNA Pol III is involved in initiating 
transcription of only a small fraction of promoters.  
 
For each of the 40 TFSSs assayed in K562, we investigated its individual predictive power in 
a degenerate model that uses this TF as a single predictor (Figure 2B). Strikingly, each TF 
alone can predict TSS expression levels of all genes with fairly high accuracy. As shown, the 
binding signal of MAX alone can explain 55% of the variance in expression of all TSS, which 
is only ~12% lower than the variance explained by the full model (67%). The R2 in a 
degenerate model indicates the power of a TF for predicting expression individually. In the 
full model, the relative importance of TFs for predicting the expression levels of promoters is 
roughly reflected by their Relative Importance score (RI score, see “Methods”) (Figure 2C). 
We use the standard RI metrics of different machine learning methods, which indicate the 
contribution of TFs after considering their inter-correlations in a model, and thus provide 
complementary information to the individual predictive power. Specifically, in a random 
forest model the RI of a TF is calculated as the increase of prediction error (%IncMSE) when 
binding data for this TF is permuted. In general, highly predictive TFs have more binding 
peaks, particularly in the TSS proximal regions. We found in the full model that the top five 
most important TFs in K562 are YY1, E2F4, MYC, MAX and ELF1. We also examined the 
effect of TF-TF interaction on the predictive accuracy. Our results indicated that including 
interaction terms in the model did not lead to further improvement. 
 
In principle, we would expect the binding of transcriptional activators to positively correlate 
with gene expression levels, and a negative correlation for transcriptional repressors. 
Surprisingly, we observe a positive correlation between the expression level of TSSs and the 
binding signal of most ENCODE TFs (Supplementary Table S2). For instance, the binding of 
REST, which represses neuronal genes in non-neuronal tissues (Schoenherr and Anderson 
1995), is positively correlated with gene expression (ρ=0.70). This implies that TF occupancy 
alone may not be sufficient to determine the function of a TF at a locus, as has been 
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demonstrated in a recent study (Lickwar et al. 2012). For many TFs, their binding signal in a 
DNA region may simply reflect the accessibility of the local chromatin structure.  
 
The effect of promoter CpG content on gene expression  

 
The CpG content of promoters in eukaryotes has been shaped by DNA methylation (Deaton 
and Bird 2011). Cytosines in CpG dinucleotides can be methylated to form 5-methylcytosine, 
which undergoes a high rate of mutation into uracil. Meanwhile, methylation of CpG sites 
within the promoter is a critical regulatory mechanism to inactivate a gene (Pai et al. 2011). 
As a consequence, genes repressed in germ-line cells or early developmental stages tend to 
have lower CpG content in their promoters (Deaton and Bird 2011). When genes are 
repressed by methylation of CpG cytosines in their promoters, those cytosines tend to mutate 
to uracil, so there is a sort of “evolutionary arms race” between CpG-based repression and 
mutation to uracil that lowers CpG content.   
 
We calculated normalized CpG content for all GENCODE promoters (see “Methods”). As 
shown in Figure 3A, normalized CpG content follows a bimodal distribution, based on which 
we divided promoters into two classes: high CpG promoters (HCP) and low CpG promoters 
(LCP). HCP promoters are more highly expressed than LCP promoters as measured by 
CAGE experiments in all expression profiles. For example, in K562 whole cell Poly A+ RNA, 
62% of HCP promoters are expressed, while only 15.5% of LCP promoters are expressed 
(Figure 3B). Furthermore, among the expressed TSSs, the expression level of HCP promoters 
is significantly higher than that of LCP promoters (Figure 3C).          
 
We have shown in Figure 1 that the expression levels of HCP promoters are easier to predict 
than those of LCP promoters. We further compared the relative importance of each TF for 
predicting the expression levels of HCP and LCP promoters. As shown in Figure 3D, the 
relative importance (RI) scores for the HCP model are generally greater than those for the 
LCP model, consistent with the higher predictive accuracy of the HCP model. The orders of 
the RI scores in the two models are roughly consistent, with the exception of E2F4. In the 
HCP model, E2F4 is the second most important TF, but in the LCP model its relative 
importance is very low. Consistently, the average binding signal of E2F4 at the TSS site is 
lower in LCP promoters than in HCP promoters (Figure 3E). The binding signal of E2F4 
alone accounts for 47% of the variance of expression levels for HCP promoters, but only 14% 
for LCP promoters (Figure 3F). This finding implies that the regulation of E2F4 on gene 
expression might be affected by the status of CpG sites. In fact, it has been demonstrated that 
E2F binding can be regulated by CpG methylation (Campanero et al. 2000). 
 
In promoters whose low expression level is mediated by CpG methylation, the methylated 
CpG dinucleotides have a relatively high chance to mutate into UpG. Especially for 
promoters repressed in germ line cells or in early developmental stages, such mutations can 
be passed on to the next generation, resulting in a reduction in CpG content in that promoter 
region in future generations. We examined the correlation coefficient of normalized CpG 
content with expression levels of promoters in different cell lines. We found that the best 
correlation was obtained in H1HESC (H1 human embryonic stem cells), indicating that CpG 
content best reflects promoter expression status in this cell line. This indicates that gene 
expression and DNA methylation in germ line cells or early developmental stages might be 
more similar to H1HESC than other cell lines.  We also examined the effect of using CpG 
content for classifying expressed and non-expressed promoters. As shown in Figure 3H, this 
method of classification achieves its highest accuracy (AUC=0.82, see “Methods” for details) 
in H1HESC, with much lower accuracy in HEPG2 cells.     
 
Regulation of alternative TSS by TFs 
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Many genes have multiple transcriptional start sites. Specifically, ~35% of genes annotated 
by GENCODE possess more than one TSS (Harrow et al. 2012). To investigate whether there 
are systematic differences in the regulation of different classes of TSS, we selected all genes 
with alternative TSSs and collected the first and the second TSS of these genes to form two 
TSS sets (the average distance between the first and the second TSS is 236 bp). Then we 
constructed separate models for the first TSS and the second TSS sets. Using expression data 
from the CAGE and RNA-PET experiments, we achieved higher predictive accuracy for the 
second TSS set (Figure 4). The same trend was observed in RNA-seq data only when the 
short RNA extraction protocol was adopted. Higher prediction accuracy was achieved for the 
first TSS set for RNA-seq data using other RNA extraction protocols. It is unlikely that these 
results are caused by the CpG content issue, because the two TSS sets are similar in their CpG 
contents (56.2% and 55.2 of TSSs in the first and second set, respectively, are HCPs). 
Moreover, there is no significant difference in their expression levels between the two TSS 
sets. Our results imply that expression levels of the downstream TSS might rely more on TF 
regulation, while other chromatin features might have more influence on the transcription of 
the first TSS. In addition, the relative importance of TFs is different between the two models 
(Supplementary Figure S2). For instance, MXI1 is the second most predictive TF in the 
model for the first TSS set, but it shows only a low relative importance in the model for the 
second TSS set. Thus, there might exist distinct regulatory mechanisms between the first and 
the other TSSs as suggested in (Davuluri et al. 2008; Wray et al. 2003). 
 
Correlation of differential gene expression with differential TF binding 

 
TF binding is regulated in a cell-type specific manner, so we expect that in two different cell 
lines, differential TF binding should be correlated with differential TSS expression. We 
investigated this hypothesis using the data in K562 and GM12878, which were derived from 
erythroleukemia cells and normal lymphoblastoid cells, respectively. We selected promoters 
with more than four-fold expression difference between the two cell lines and constructed a 
K562-specific model (K-model) and a GM12878-specific model (G-model) (use 22 shared 
TFs in both models). When applied to whole cell Poly A+ RNA expression data, the K-model 
explains 55% of the variance in expression level of promoters in K562, but only 16% of the 
variance in GM12878 (Figure 5A). Similarly, the G-model accounts for much more variance 
of expression in GM12878 (49%) than in K562 (34%). Moreover, TFs exhibit different 
relative importance in the two cell lines. For example, SP1 shows relatively stronger effect on 
gene expression in GM12878, whereas MAX and ETS1 have stronger effect in K562 (Figure 
5C). 
 
We next examined the effectiveness of predicting differential expression based on differential 
binding of TFs in promoter regions. The binding differences (log2) in K562 versus GM12878 
were calculated for 22 TFs for which the ChIP-seq data were available in both cell lines. A 
model using those differences as predictors explains 53% of the variance in expression 
differences (log2 ratios) of TSSs between K562 and GM12878 (whole cell Poly A+ RNA 
extraction) (Figure 5B). We also explored the relative importance of TFs in the differential 
expression model. Interestingly, we find that the TFs important for differential expression (e.g 
YY1) are in general those that are important in both the K-model and the G-model. TFs with 
higher RI scores in only one cell line (e.g. SP1, MAX and ETS1) show quite limited 
contributions to predicting differential expression of promoters (Figure 5C).  
 
In addition to the regression models, we also constructed classification models. Specifically, 
we selected 4,493 K562 specific (log2(K562/GM12878)>2) and 8,183 GM12878 specific 
(log2(GM12878/K562)>2) TSSs, and examined the capability of each individual TF for 
discriminating these two TSS categories (using the TF as the single classifier). As shown in 
Figure 5D, all of these TFs can classify the two TSS categories, with YY1 achieving the 
highest classification accuracy (AUC=0.86).  Similar results were achieved when different 
thresholds were used to select K562 and GM12878 specific TSSs.  
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Relationship between histone modifications and TF binding signals  

 
We have previously shown that both TF binding and histone modification are predictive of 
expression levels of genes (Cheng and Gerstein 2011; Cheng et al. 2011b). In fact, at 
promoter regions TF binding signals and histone modification signals are highly correlated. 
Active genes are generally bound by transcriptional activators in their promoters, and 
associated with strong signals of active histone marks in their promoters and gene bodies. We 
thus quantified the relationship between histone modifications and TF binding signals using 
the predictive models. We find that histone modification can be predicted accurately by the 
binding signals of TFs at the TSS regions. As shown in Figure 6, the TF binding signal at the 
TSS of genes can predict H3K4me3 signals around the TSS with very high accuracy (R2= 
0.85). It is also highly predictive of the signals of other histone marks, such as H3K9ac and 
H3K79me3 (see Supplementary Figure S3). More interestingly, the TF binding signals can 
predict the patterns of histone marks, i.e. the positions where they are located. For example, 
the best prediction accuracy was achieved right at the TSS for H3K4me3, which is known to 
be a mark for active promoters (Koch et al. 2007). In contrast, high predictive accuracy was 
obtained at the TSS and in the transcribed region of genes for H3K36me3, which is a histone 
mark for the gene body (Kolasinska-Zwierz et al. 2009). The relative importance of TFs is 
different for predicting different histone modification types, but MAX, YY1, ETS1 and E2F6 
are generally the most informative ones (see Supplementary Figure S4 and Supplementary 
Table S3).      
 
Interplay between TF binding and other chromatin features for regulating gene 

expression 

 
The expression levels of promoters are strongly correlated with the local chromatin structure 
around the promoter regions. On one hand, chromatin structure is largely determined by 
nucleosome density (Lee et al. 2007) and histone modifications (Kouzarides 2007), which are 
in turn influenced by TFs (Narlikar et al. 2002). On the other hand, chromatin structure 
influences accessibility of the underlying DNA to TFs (Li et al. 2007). The chromatin 
structure of DNA can be captured by two technologies: DNase hypersensitivity (Follows et al. 
2006; Sabo et al. 2006) and Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE) 
experiments (Giresi et al. 2007). We thus applied models to investigate the relationships 
between gene expression and TF binding (including both TFSSs and TFNSs), histone 
modifications, DNase and FAIRE data generated by ENCODE. Given the TFSS binding data 
and another chromatin feature X (where X can be histone modification, general TF binding, 
DNase, FAIRE, or nucleosome occupancy data), we constructed five models to calculate the 
fractions of variance of promoter expression levels (R2) explained by TFSS binding data 
alone (TFSS model), X data alone (X model), a combination of TFSS binding and X data 
(TFSS+X model), the additional variance explained by TFSS binding data after considering 
the X data (TFSS|X model), and the additional variances explained by X data after 
considering the TFSS binding data (X|TFSS model) (Figure 7 and Supplementary Table S4).       
 
The binding data of sequence specific TFs and general TFs (Pol II, TATA-binding proteins 
etc) account for at least 74% of the variance in gene expression levels (the TFSS+TFNS 
model). The remaining variance of gene expression levels (26%) is mainly determined by 
post-transcriptional regulation. General TFs alone account for 73% of variance (the TFNS 
model), and explain 8% additional variance after considering the sequence specific TF 
binding data (the TFNS|TFSS model). This 8% additional variance is basically what is 
regulated at the transcriptional level but not captured by the binding data of those 40 TFSSs in 
the TFSS model, e.g. distal regulation by enhancers and regulation contributed by other 
factors. After taking into account general TF binding, the additional variance contributed by 
TFSS binding (the TFSS|TFNS model) is very limited (3%).   
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After considering the histone modification data, binding of TFSS accounts for a further 13% 
of additional variance in gene expression levels (the TFSS|HM model), and 8% vice versa 
(the HM|TFSS model). This suggests that the contributions of TFSS binding and histone 
modification to aggregate expression of TSS are highly but not completely redundant. Each 
provides extra information that is not accounted for by the other. We note that here we only 
use histone modification signals at the TSS regions (100bp). Since histone modifications 
affect a broad region around genes, the actual variance that can be explained by the HM 
model should be even larger (Cheng et al. 2011b; Dong et al. 2012).      
 
The additional variance explained by TFSS binding data after considering the data of DNase 
(the TFSS|Dnase model), FAIRE (the TFSS|FAIRE model) and nucleosome occupancy (the 
TFSS|Nucleosome model) are 16, 23 and 37%, respectively. In contrast, after taking into 
account the TFSS binding data, the additional variance further explained by these other 
chromatin features are negligible (<1%), and including them in a model cannot further 
improve the prediction accuracy for TSS expression. In fact, a combined model including all 
these five categories of features leads to an accuracy of R2=0.74. 
 
 

Discussion 

 
TFs and histone modifications are two critical factors that coordinately regulate gene 
transcription. The regulatory mechanisms of these and other factors are summarized in Figure 
8. First, TFs and histone modifications can regulate the initiation of transcription by 
interacting with RNA polymerase and other general TFs and recruiting them to the TSS (see 
points 5,6,7, and 8 in Figure 8), or by changing the accessibility of promoters to them via 
modulating chromatin structure (see points 3 and 4 in Figure 8) (Li et al. 2007; Mitchell and 
Tjian 1989).  This regulation is achieved with the assistance of chromatin modifiers and other 
chromatin- associated proteins, e.g. proteins that specifically recognize and bind modified 
histones (Kouzarides 2007). For these reasons, TF binding data, histone modification data, 
and the data that capture local chromatin structure (e.g. DNase and FAIRE) are all predictive 
of the expression levels of genes (Figure 7). Second, these factors are inter-related and 
coordinately participate in transcriptional regulation. For example, TFs such as YY1 can 
influence histone modifications by recruiting histone modifiers to a DNA region (Yang et al. 
1997); and conversely, histone modifications can affect TF binding by directly recruiting 
them or indirectly by changing the accessibility of DNA regions to them (Li et al. 2007). As a 
consequence, TF binding and histone modification signals are often highly correlated in TSS 
proximal regions. Due to this high coordination, they share a similar amount of information 
for ‘predicting’ gene expression levels (Cheng and Gerstein 2011); i.e., they are redundant. 
Third, the transcription status of genes can in turn affect the TF binding and histone 
modifications by interacting with TFs and histone modifiers (Okitsu et al. 2010). A recent 
study shows that TAF3, the TBP-associated core promoter factor, interact with CTCF to form 
DNA loops that connect core promoters with promoter-distal sites, implying that general TFs 
might be regulate chromatin structure of distal regions (Liu et al. 2011). This feedback 
complicates the cause and effect relationship between TF binding, histone modifications and 
gene expression. Taken together with previous studies, our analysis reveals a highly 
coordinated system for regulation of gene expression that consists of TFs, histone 
modifications, RNA Polymerase and other chromatin-related proteins.   
 
In previous studies, it has been shown that TF binding and histone modifications are 
predictive of expression levels of mRNA transcripts measured by RNA-seq or microarrays 
(Cheng and Gerstein 2011; Ouyang et al. 2009). These studies also showed that expression 
levels from RNA-seq could be more accurately predicted than those from microarrays, 
indicating the higher precision of the former. In eukaryotes, many genes have multiple 
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transcripts, which might start from different TSS. Technically, it is often difficult to quantify 
precisely the expression level of each transcript by RNA-seq or microarray. We overcame this 
problem in this study by focusing on TSS regions, relating TF binding signal around TSS 
with expression levels of TSS. CAGE is by nature the technology to quantify expression 
levels of TSS. For RNA-PET and RNA-seq data, we also calculate the TSS expression levels 
by focusing on TSS proximal regions. Overall, at the TSS level we obtained higher predictive 
accuracy compared to those models for predicting expression of transcripts. Our results also 
suggest that CAGE can best capture the expression levels of TSS. In addition, the accuracy of 
TSS expression quantification is also dependent on the RNA-extraction protocol being used, 
with highest performance achieved in Poly A+ RNA. For RNA-seq data the expression levels 
for TSS and transcript are both available, and we find that the TF models can predict 
transcript expression with a slightly higher accuracy than TSS expression (Supplementary 
Table S5). This indicates that RNA-seq, unlike CAGE, more accurately quantifies the 
expression levels for transcripts than for TSSs.       
  
TF binding signals used in the TF models capture regulatory information at the transcriptional 
level. Gene expression levels, however, are also determined by post-transcriptional factors 
like mRNA degradation. It is therefore more difficult for the TF model to predict the 
expression levels of genes that are regulated strongly at the post-transcriptional level. We 
performed gene ontology (GO) analysis on poorly predicted genes (i.e. genes with the largest 
residuals in the TF model). We find significant enrichment for some GO categories, e.g. 
involvement in cell cycle control (Supplementary Table S6). In addition, TSSs whose 
expression levels are underestimated by the TF model (

฀

y  ) 
y ) tend to have higher expression 

variance across different cell lines.  
 
We have previously shown that the histone modification model for gene expression prediction 
is tissue specific (Cheng and Gerstein 2011). In this work, we show that the TF model is also 
tissue specific, or more precisely cell line specific (Figure 5A). The best prediction accuracy 
is achieved when the TF binding data and TSS expression data from the same cell line are 
used. Note that to predict the expression in a cell line, we always use the TF binding data 
from the same cell line, although the model might be trained from the other cell line. Thus the 
higher performance of the model in the matched cell line is not caused by differential TF 
binding; instead, it reflects the different regulatory mechanisms between K562 and GM12878. 
In addition, TFs show different relative importance in different cell lines. A TF might be 
active and exhibit significant influence on gene expression in K562, but inactive with little 
effect on gene expression in GM12878.  For example, SP1 shows relatively stronger effect on 
gene expression in GM12878 than in K562, while MAX and ETS1 show the opposite trend. 
Conventionally, TF binding is often regarded as an on/off event. However, Figure 5B shows 
that the differential expression of TSS can be precisely reflected by the difference of TF 
binding signals between two cell lines. This suggests that a quantitative way of TF binding 
should be used for studying the TF-gene regulatory relationship (Biggin 2011; Cheng et al. 
2011a).    
 
Based on normalized CpG content, TSSs can be categorized into HCPs and LCPs. TSSs in 
the former class tend to have higher expression levels. Our results show that the expression 
levels of HCPs can be more accurately predicted than those of LCPs by TF binding signals. 
We also find that the relative importance of some TFs is different between HCPs and LCPs. 
Methylation of CpG sites around TSS can represent another mechanism of gene expression 
regulation. In fact, it has been shown that binding of E2F factors was affected by the 
methylation status of their binding sites (Campanero et al. 2000; Landolin et al. 2010). Thus, 
the difference between the HCP model and the LCP model might reflect cooperation between 
TF binding and DNA methylation for transcriptional regulation. 
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The first TSS of a gene might be recognized in a different way from the other TSSs by the 
transcriptional machinery. For instance, it might recognize different TSSs independently, or 
alternatively, it tends to recognize the most upstream TSS but skip it in certain frequency to 
initiate transcription at a downstream TSS. A recent study of the glucocorticoid (GR) and 
estrogen (ER) nuclear receptors (Voss et al. 2011) found that GR is a “driver” TF, while ER 
is a “passenger” TF that benefits from “assisted loading” from GR. It was posited that driver 
TFs bind to closed but breathing chromatin and recruits chromatin remodeling factors to open 
the chromatin fully. Passenger TFs only bind to chromatin that has been opened already by 
driver TFs or some other chromatin remodeling mechanism, so they benefit from assisted 
loading. In our study of the first and second TSS of genes, we were better able to model the 
second TSS from TF binding data. We also found that YY1 best predicts expression of the set 
of first TSS. It is known that YY1 can recruit chromatin remodeling factors as expected from 
a driver TF (Yang et al. 1997). These facts lead us to postulate that, for most genes, driver 
TFs bind to the first TSS and recruit chromatin remodelers, which then open the chromatin 
around the second TSS. This hypothesis can explain the relative predictive power of our 
models: when a passenger TF binds near the second TSS, its power to predict second TSS 
expression is boosted by the fact that chromatin remodeling has already occurred near the first 
TSS. Likewise, some of the predictive power of TF binding at the first TSS goes to predict 
transcription of the second TSS. 
 
We show here that TF binding is highly predictive of gene expression levels using human 
ENCODE data, and we have previously shown the same using mouse data (Cheng and 
Gerstein 2011). In yeast several studies have been performed to relate gene expression with 
motif existence, TF-DNA binding data or histone modification data (Kurdistani et al. 2004; 
Yuan et al. 2006). For example, Yuan et al. constructed a linear regression model to predict 
transcription rates of yeast genes (Yuan et al. 2006). They showed that three types of histone 
acetylations alone accounted for 18% of the variance (R2=0.18) of transcription rates, and the 
R2 increased to 33% if TF binding motif and nucleosome occupancy data were also included 
in the model. Furthermore, Li et al. showed in another study that TF binding was predictive of 
intrinsic expression noise of yeast genes, indicating that TF binding impacts not only the 
levels but also the fluctuation of gene expression (Li et al. 2010). In addition, many other 
studies focused on identifying regulatory motifs or TFs underlying a biological process via 
combining expression data with TF binding data or sequence motif analysis (Conlon et al. 
2003; Li and Zhan 2008; Tsai et al. 2005; Yu et al. 2003). In the future, with more data 
available, it would be more practical to perform similar analysis in higher organisms.    
 

Methods 

 
Data processing 
All of the data used in this work were generated by the ENCODE project. The expression 
data of GENCODE TSSs were produced using three different technologies (CAGE, RNA-
PET, and RNA-seq). The data include a total of 267 expression profiles, representing 
expression profiles for RNA samples in 12 different cell lines extracted from 6 different 
cellular components (whole cell, cytosolic, nuclear and nuclear sub-compartments, namely 
chromatin, nucleoplasm and nucleolus) using 4 different protocols (Poly A+, Poly A-, total, 
and short RNA). Note that the samples are not evenly collected from different cell lines; a 
large fraction of them are from K562 and GM12878.  To facilitate the comparison of data 
from different technologies, the RNA sequencing data were processed to obtain expression 
levels of the TSSs (Lassmann and Carninci 2012). The RNA-PET expression of a TSS is 
defined as the total number of 5’ tags within a 101 bp window centered on the TSS. For 
RNA-seq experiments, the expression level of a TSS is calculated as the sum of expression 
levels of all transcripts initiated from it. TSS expression levels are normalized and represented 
as RPM (reads per million) for CAGE, RNA-PET and short RNA-seq data, or RPKM (reads 
per kilobase per million) for long RNA-seq (Poly A+, Poly A- and total RNA) data. The 
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expression levels of transcripts (based on GENCODE v7 annotation) were measured as 
RPKM and calculated using the software FLUX CAPACITOR.  
      
 
The genome-wide TF binding data were obtained from ChIP-seq experiments. The data 
include >400 binding profiles, representing the binding of >120 TFs and chromatin factors in 
many different cell lines. Again, the most complete data were available from K562 and 
GM12878. We calculated the binding strengths of each TF at all of the GENCODE TSSs. 
Specifically, we calculated and averaged the number of reads covering a 100bp DNA region 
centering on each TSS, resulting in the binding signal for this TSS. We choose the 100bp 
region for two reasons: (1) we have previously shown that TF binding signals in a narrowed 
DNA region around TSS achieves the highest prediction accuracy; (2) for genes with multiple 
TSSs the average distance between the first and the second TSSs is approximately 200bp. In 
fact, when we increased the window size from 100 to 300, 500 until 1500bp, we observed a 
gradual decrease of predictive accuracy by the TF model (Supplementary Figure S5).  
 
The other datasets, including histone modification, DNase I hypersensitivity, FAIRE and 
nucleosome occupation, were also generated by the ENCODE project using high-throughput 
sequencing technologies. The data were processed in the same way as for the TF binding data. 
The human promoters/TSSs were annotated by the GENCODE project, version 7 (Harrow et 
al. 2012). In this work, we focus our analysis on ~130,000 high confidence TSSs.  
 
 
Categorization of DNA binding proteins 

 
In this work, we mainly focus on using sequence specific TFs for predicting the expression 
levels of promoters. In some cases, however, the model was extended to general TFs and 
other DNA binding proteins. Basically, we categorized the DNA binding proteins with ChIP-
seq data available into 6 categories: sequence specific TFs (TFSS), general or non-specific 
TFs (TFNS), chromatin structure factors (ChromStr), chromatin remodeling factors 
(ChromRem), histone methyltransferases (HISase) and Pol3-associated factors (Pol3F) 
 
Models for predicting TSS expression levels 

 
To understand the relationship between TF binding signals and the expression levels of 
promoters, we constructed predictive models based on 4 different machine-learning methods: 
RF (random forest), MARS (multivariate adaptive regression splines), SVR (support vector 
regression) and MLR (multivariate linear regression). In these models, the binding signals 
(the average read coverage at each nucleotide) in a particular bin (e.g. the 100-bp bin at the 
TSS) for a set of TFs (e.g. sequence specific TFs) were used as the predictors to predict the 
response variable Y (i.e. the expression levels of promoters). The promoter expression levels 
are distributed over an exponential range, so to stabilize variance we use log2-transformed 
values as the response variable with 0.03 as pseudo-count.  
 
To evaluate the performance of the predictive models, we randomly selected 2000 promoters 
as the training data and the remaining as the test data. A model was trained on the training 

data and applied to predicting the expression levels of promoters in the test data (

฀

?Y i). The 

predictive accuracy of the model can be measured by the correlation  (R) between the 

predicted values (

฀

?Y i) and the actual experimental expression levels (Yi). Predictive accuracy 

can also be measured by the coefficient of determination (R2), the fraction of variance of gene 
expression explained by the model, which is defined as follows  
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฀

R
2 1

(y i  ?y i)
2

i

(y i  y )2

i


, where 

฀

y  is the mean gene expression level. 

For each model, we generated 10 groups of training and test data, and averaged the resulting 
R or R2 as the predictive accuracy. The variation of R/ R2 is low, indicating that the training 
dataset with 2000 promoters is large enough to achieve stable predictions. 
 
To estimate the predictive power of an individual TF, we predicted the expression levels 
using a SVR model with the binding signal of the TF as the single predictor. It is also 
informative to show the relative contribution of each predictor in a model with multiple 
predictors. We use the “%IncMSE” (increase of mean squared error) calculated from the 
Random Forest method to represent the relative importance (RI) of TFs. Specifically, the 
values of each TF of the test data were permuted and the prediction error (mean squared error 
of all genes) in the test data was re-calculated using the original model. Compared to the un-
permuted data, permutation of a TF will in general result in increase of prediction error. Such 
an increase (i.e. %IncMSE) is used as a measurement of relative importance of a TF in the 
model (Breiman 2001). A TF with higher IncMSE value relative to other TFs in the model 
has higher importance for predicting gene expression level.  
 
The R packages “randomForest”, “earth” and “e1071” were utilized to implement these 
models (CRAN 2011).    
     
Models for predicting differential gene expression 

 
In the differential gene expression model, the response variable ‘Y’ was calculated as the log2 
ratio of the expression levels in K562 versus GM12878 (log2 K562/GM12878); and the 
predictors ‘Xs’ were calculated as the log ratio of binding signals between the two cell lines. 
The predictors in this model are 22 TFs for which the binding data are available for both the 
K562 and GM12878 cell lines. The pseudo-count (0.03) was used during the calculation to 
avoid extreme values caused by small expression levels. The same approaches as described in 
the preceding section were used for evaluating model performance and calculating relative 
importance of TFs. 
 
Classification of promoters specific to K562 and GM12878 

 
In addition to the regression models, we also constructed classification models to examine the 
effectiveness of classifying individual TSS as either K562-specific or GM12878-specific 
TSSs based on the strength of TF binding signals. We first identified K562-specific and 
GM12878-specific TSSs according to their expression in Poly A+ RNA extracted from whole 
cells. Promoters expressed with >4 fold higher levels in one cell line versus the other were 
defined as cell-type specific TSSs. We constructed models using RF and SVM (support 
vector machine) to classify the two types of TSSs. The classification accuracy was measured 
by the AUC (Area Under the ROC curve) in the cross-validation data, where the ROC curve 
(receiver operating characteristic) is a graphic plot of the sensitivity versus 1-specificity. The 
AUC takes a value within [0, 1], with a greater value indicating higher performance of a 
classification model.      
 
Models for predicting histone modifications 

 
We also constructed models to predict histone modification signal at different positions 
relative to the TSS by using the TF binding signal in 100bp bins around the TSS as the 
predictors. With these models, we examined the power of TF binding signals for inferring 
histone modification signals of 12 different types, including H3K4me1, H3K4me2, H3K4me3, 
H3K36me3, H3K9me1, H3K9me3, H3K27me3, H4K20me1, H3K79me2, H3K9ac, H3K27ac 
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and H2az. The DNA regions around TSS ([-4kb, 4kb]) were divided into 80 bins, each of 
100bp in size. For each bin the histone modification signals associated with promoters were 
examined by the models. In these models the response variable Y (histone modification signal) 
was log2 transformed. 
 

Models for understanding the relationships of different chromatin features 

 
The expression levels of promoters are correlated with chromatin structure, which is 
influenced by histone modifications, nucleosome occupancy, and TF binding. Chromatin 
structure can also be captured by DNase I hypersensitivity and FAIRE data. Thus, all of these 
chromatin features are predictive of the expression levels of promoters. Using the ENCODE 
data, we investigated the relationship of five groups of chromatin features (general TF 
binding, histone modification, Nucleosome occupancy, DNase I hypersensitity, and FAIRE 
signals with the TFSS binding features in the context of predicting gene expression levels. 
For each group X, we constructed five different models. Three of the models use chromatin 
features in the group X (the X model), the binding signals of TFSS (the TFSS model), or a 
combination of them (the TFSS+X model) as the predictors, respectively. In the remaining 
two models, we examined the predictive power of features in X after considering the TFSS 
binding signals (the X|TFSS model), and vice versa (the TFSS|X model). Specifically, for the 

X|TFSS model, we first predicted the expression levels of promoters (

฀

?Y ) based on the 

binding signals, and then use the features in X to predict the residuals (

฀

Y  ?Y ). We calculated 
the R2 for each of the five models.  The R2 of the X|TFSS model indicates the additional 
variance explained by the chromatin features in group X after already taking into account the 
TFSS binding signal.  
 

Calculation of normalized CpG content 

 
We calculated the normalized CpG content of all GENCODE promoters in 2kb DNA regions 
centered around their TSSs using the method described in Saxonov et al (Saxonov et al. 2006). 
Briefly, the normalized CpG content is calculated by dividing the observed number of CpG 
dinucleotides by the expected number in a promoter. Normalized CpG contents for promoters 
followed a bimodal distribution (Figure 3A). Setting the cutoff value between low and high 
normalized CpG to 0.4 best separated the two peaks in the distribution. Promoters with a 
normalized CpG content above the cut-off value were classified as high CpG content 
promoters (HCP), and the remaining promoters were classified as low CpG content promoters 
(LCP). Approximately, the normalized CpG content reflects the existence of CpG island 
nearby a TSS or not (e.g. many HCPs are located nearby a CpG island). It considers the CpG 
enrichment in the DNA regions centering directly on the TSS, and thereby is more practical 
than the CpG island based method for classifying promoters.     
 

Data Access 
All data are publicly available on the UCSC genome browser 
(http://genome.ucsc.edu/ENCODE/downloads.html). 
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Figure Captions 
 
Figure 1: Accuracy of the TF model for predicting TSS expression levels. (A) Consistency of 
predicted values with expression levels measured by CAGE in Poly A+ RNA samples 
extracted from whole cells. (B) Comparison of predictive accuracies of the TF model for 
expression data generated by three different technologies: CAGE, RNA-PET and RNASeq. 
(C) Comparison of predictive accuracies of the TF model for expression data from three 
different RNA extraction protocols: Poly A+, Poly A- and total RNA. (D) Comparison of 
predictive accuracies of the TF model for expression data in different cellular components. In 
(B-D), only data sets from K562 are used. The binding signals of 40 TFSSs are used as 
predictors. HCP and LCP are high and low CpG content promoters, respectively. Separate 
models are constructed for ALL, HCP and LCP categories.  
 
Figure 2: The capabilities of different TFs to predict TSS expression level. (A) Comparison of 
the predictive accuracies of individual DNA binding proteins in six different categories. “*” 
indicates that the predictive powers of TFs in a corresponding category are significantly 
different from those of the other TFs. (B) The predictive accuracy of using each individual 
TFSS as the single predictor. (C) The relative importance of each TFSS in the Random Forest 
model. The calculation is based on the CAGE expression data in Poly A+ RNA samples 
extracted from K562 whole cells. Note that TFSS labels are shared by (B) and (C).  
 
Figure 3: The relationship between promoter CpG content and expression level. (A) The 
distribution of normalized CpG content for all human GENCODE TSSs. (B) The fraction of 
expressed TSSs in HCPs and LCPs. (C) The distributions of expression levels of expressed 
HCPs and LCPs. (D) The relative importance of each TF in the HCP- and LCP-specific 
models. (E) The aggregated binding signals of E2F4 around the TSS of HCPs and LCPs. (F) 
The predictive accuracies of HCP- and LCP-specific models using E2F4 as the single 
predictors. (G) The Spearman correlation coefficients between normalized CpG content and 
expression levels in different cell lines (CAGE data for Poly A+ RNA from whole cells). (H) 
The accuracies of using normalized CpG content to classify expressed and nonexpressed 
promoters in H1HESC and HEPG2. In (B-F), the CAGE expression data for RNA extracted 
from K562 whole cells are used. 
 
Figure 4: Comparison of accuracies of the TF model for predicting expression level of the 
first and second TSS of genes. The binding signals of 40 TFSSs are used as the predictors and 
only promoters from genes with at least two TSS are included in the models. The calculation 
is based on expression data from K562. RNA-seq (s) and RNA-seq (o) represent RNA-seq 
data using small-RNA extraction protocol and other protocols, respectively. 
 
Figure 5: Cell line specificity of the TF model. (A) Models trained and tested on data from the 
same cell line result in higher predictive accuracies. K Model and G Model represent models 
trained with data from K562 and GM12878, respectively. (B) Consistency of predicted log2 
fold changes with the experimentally measured differences between K562 and GM12878. 
Differential binding of 22 TFs are used as the predictors in a predictive model of differential 
expression. (C) The relative importance of TFs in K562- and GM12878-specific models as 
well as the predictive model for differential expression. (D) The power of each individual TF 
for classifying K562- and GM12878-specific promoters (log2 fold change >2). CAGE 
expression data in Poly A+ RNA extracted from K562 and GM12878 whole cells were used 
in the calculation. 
Figure 6: The effectiveness of TF binding signals for predicting histone modification patterns 
around the TSS of promoters. The binding signals of 40 TFSSs are used as the predictors. 
Both the TF binding and the histone modification data are from K562. 
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Figure 7: The relationship of the TFSS binding data with five types of chromatin features for 
predicting promoter expression. For each type of chromatin feature, we constructed five 
models to calculate the fraction of variance of promoter expression levels explained by the 
TFSS alone (TFSS), by each feature alone (X), by a combination of TFSS and feature X 
(TFSS+X), as well as the additional variance explained by TFSS after taking feature X into 
account (TFSS|X) and vice versa (X|TFSS). Feature X represents general transcription factors 
(TFNS), histone modifications (HM), DNase signal, FAIRE signal, or nucleosome occupancy. 
CAGE expression data in Poly A+ RNA extracted from K562 whole cells were used in the 
calculation. 
 
Figure 8: Regulatory mechanism of TF binding, histone modification and other chromatin 
features on gene expression. 
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Figure  1:  Accuracy  of  the  TF  model  for  predicting  the  expression  levels  of  promoters.  (A) 

Consistency  of  predicted  values  with  CAGE  measured  expression  levels  in  Poly  A+  RNA  sample 

extracted  from  the  whole  cells.  (B)  Comparison  of  predictive  accuracies  of  the  TF  model  for 

expression  data  by  three  technologies:  CAGE,  diTAG  and  RNA­Seq.  (C)  Comparison  of  predictive 

accuracies of the TF model for expression data from three different RNA extraction protocols: Poly 

A+, Poly A­ and total RNA. (D) Comparison of predictive accuracies of  the TF model  for expression 

data  in  different  cellular  components.  In  (B­D),  only  data  sets  from  K562  are  used.  The  binding 

signals of 40 TFSSs are used as predictors. HCP and LCP are high and  low CpG content promoters, 

respectively. 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Figure  2:  The  Capabilities  of  different  TFs  for  predict  expression  levels  of  promoters.  (A) 

Comparison  of  the  predictive  accuracies  of  individual  DNA  binding  protein  in  six  different 

categories. (B) The predictive accuracy of using each individual TFSS as the single predictor. (C) The 

relative importance of each TFSS in the RF based model. Calculation is based on the CAGE expression 

data in Poly A+ RNA sample extracted from the K562 whole cells. 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Figure  3:    The  relationship  between  CpG  contents  and  expression  levels  of  promoters.  (A)  The 

distribution  normalized  CpG  content  for  all  human  Gencode  promoters.  (B)  The  fractions  of 

expressed promoters in HCPs and LCPs. (C) The distributions of expression levels of the expressed 

HCPs and LCPs. (C) The relative importance of each TF in the HCP and LCP specific models. (E) The 

aggregated binding signals of E2F4 around the TSS of HCPs and LCPs. (F) The predictive accuracies 

of HCP and LCP specific models using E2F4 as  the single predictors.  (G) The Spearman correlation 

coefficients between normalized CpG content and expression levels in different cell lines (CAGE data 

for Poly A+ RNA from whole cells).  (H) The accuracies of using normalized CpG content  to classify 

expressed and non­expressed promoters in H1HESC and HEPG2. In (B­F), the CAGE expression data 

for RNA extracted from K562 whole cells are used. 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Figure 4: Comparison of accuracies of the TF model for predictive the first and the second promoters 

of genes. The binding signals of 40 TFSSs are used as the predictors and only promoters from genes 

with  at  least  two  TSSs  are  included  in  the models.  Calculation  is  based  on  expression  data  from 

K562. 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Figure 5: Cell  line  specificity of  the TF model.  (A) Models  trained with data  from  the matched cell 

lines result in higher predictive accuracies. K Model and G Model represent model trained with data 

in  K562  and  GM12878,  respectively.  (B)  Consistency  of  predicted  log2  fold  changes  with  the 

experimental measured differences between K562 and GM12878. The differential binding of 22 TFs 

are used as the predictors in differential expression predictive model. (C) The relative importance of 

TFs  in K562, GM12878 specific models as well as  the differential expression predictive model.  (D) 

The power  of  each  individual TF  for  classifying K562  and GM12878  specific  promoters  (log2  fold 

change  >2).  CAGE  expression  data  in  Poly  A+  RNA  extracted  from  the  whole  cells  of  K562  and 

GM12878 are used in the calculation. 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Figure  6:  The  effectiveness  of  the  TF  binding  signals  for  predicting  histone modification  patterns 

around the TSS of promoters. The binding signals of 40 TFSSs are used as the predictors. Both the TF 

binding and the histone modification data are from K562. 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Figure  7:  The  relationship  of  the  TFSS  binding  data  with  five  types  of  chromatin  features  for 

expression  prediction  of  promoters.    For  each  type  of  chromatin  features,  we  constructed  five 

models to calculated the fraction of variance of promoter expression levels explained by the TFSSs 

alone (T), by the X features alone (X), by a combination of TFSSs and X features (T+X), as well as the 

additional  variance  explained  by  TFSSs  after  taking  X  features  into  account  (T|X)  and  vice  versa 

(X|T). The CAGE expression data in Poly A+ RNA extracted from the K562 whole cells are used in the 

calculation. 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Figure 8: A biological model of transcriptional regulation.   

 

 

 


