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User mobility has given rise to a variety of Web applications, in which the global positioning
system (GPS) plays many important roles in bridging between these applications and end users.
As a kind of human behavior, transportation modes, such as walking and driving, can provide
pervasive computing systems with more contextual information and enrich a user’s mobility with
informative knowledge. In this article, we report on an approach based on supervised learning to
automatically infer users’ transportation modes, including driving, walking, taking a bus and riding
a bike, from raw GPS logs. Our approach consists of three parts: a change point-based segmentation
method, an inference model and a graph-based post-processing algorithm. First, we propose a
change point-based segmentation method to partition each GPS trajectory into separate segments
of different transportation modes. Second, from each segment, we identify a set of sophisticated
features, which are not affected by differing traffic conditions (e.g., a person’s direction when in a
car is constrained more by the road than any change in traffic conditions). Later, these features are
fed to a generative inference model to classify the segments of different modes. Third, we conduct
graph-based postprocessing to further improve the inference performance. This postprocessing
algorithm considers both the commonsense constraints of the real world and typical user behaviors
based on locations in a probabilistic manner. The advantages of our method over the related works
include three aspects. (1) Our approach can effectively segment trajectories containing multiple
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transportation modes. (2) Our work mined the location constraints from user-generated GPS logs,
while being independent of additional sensor data and map information like road networks and
bus stops. (3) The model learned from the dataset of some users can be applied to infer GPS data
from others. Using the GPS logs collected by 65 people over a period of 10 months, we evaluated
our approach via a set of experiments. As a result, based on the change-point-based segmentation
method and Decision Tree-based inference model, we achieved prediction accuracy greater than
71 percent. Further, using the graph-based post-processing algorithm, the performance attained a
4-percent enhancement.

Categories and Subject Descriptors: I.5.2 [Pattern Recognition]: Design Methodology—Classifier

design and evaluation; H.2.8 [Database Management]: Database Applications—Data mining

General Terms: Algorithm, Design, Experimentation
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1. INTRODUCTION

The increasing pervasiveness of location-acquisition technologies, such as GPS
and GSM network, is leading to the large collection of spatio-temporal datasets.
Such datasets have supported a variety of novel Web applications, in which lo-
cality and mobility usually connect to one another closely. For instance, people
can tag user-generated contents like photos with locations [Toyama et al. 2003];
trace their outdoor mobility [Ashbrook and Starner 2003]; and use location-
based services [Chen and Kotz 2000]. Recently, a branch of GPS-track-sharing
applications using Web maps appeared on the Internet. In this category of Web
applications [Counts and Smith 2007], people can record their travel routes us-
ing a GPS-equipped device and then share travel experiences among each other
by publishing these GPS tracks in a Web community. GPS-track-sharing offer a
more fancy and interactive approach than text-based articles to better express
people’s travel experiences, which provide users with valuable references when
planning a travel itinerary.

However, so far, these applications require people either to manually la-
bel their own trajectories or to use raw GPS data such as GPS coordinates
and timestamps without much understanding. Neither of these methods is op-
timal to the development of such applications. Actually, users become easily
frustrated by the additional data-labeling effort, and then give up uploading
their data. Moreover, people intend to understand an individual’s mobility, and
learn information about user behaviors as well as user intentions behind the
raw data.

Being an important kind of human behavior, transportation modes, such as
walking, driving, and taking a bus, can enrich their mobility with knowledge
and provide pervasive computing systems with more contexts.

—For users. The information of transportation modes helps individuals ef-
fectively reflect on their past events, and deeply understand their own life
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pattern as well. Also, with the transportation modes of a GPS track, people
are facilitated to share life experience among each other in Web communi-
ties, and obtain more reference knowledge from others’ trajectories. Users
can know not only where other people have been but also how these people
reach each location.

—For the service providers. Such knowledge enables the application systems
to classify GPS tracks into different categories of transportation mode.
Therefore, systems are capable of performing smart route recommenda-
tions/designs for a person based on the person’s needs. For instance, a system
should return a bus line rather than a driving route to an individual intend-
ing to move to somewhere by a bus.

Moreover, a transportation mode can feature many pervasive computing sys-
tems aiming to recognize human activities from GPS data. Such high-level
activities would both enable the creation of new computing services that au-
tonomously respond to a person’s unspoken needs and support more accurate
predictions about future behaviors, such as moving direction [Liao et al. 2004],
destination [Krumm et al. 2003], and life pattern [Patterson et al 2003]. In turn,
the knowledge learned from these works can be leveraged to further enhance
many innovative local/mobile applications on the Web.

Unfortunately, the identification methods based on simple rules, such as a
velocity-based approach, cannot handle this problem with great effect due to the
following reasons: 1) people usually change their transportation modes during
a trip, that is, a GPS trajectory may contain multiple modes. 2) The velocity of
different transportation modes is usually vulnerable to traffic conditions and
weather. Intuitively, in congestion, the mean velocity of driving would be as
slow as riding a bike.

In this article, we aim to automatically infer transportation modes, including
driving, walking, taking a bus, and riding a bicycle, from raw GPS logs based
on supervised learning. It is a step toward recognizing human behavior and
understanding user mobility for pervasive computing systems. Also, it is a step
toward improving local/mobile applications on the Web and enhancing the con-
nection between mobility and locality by mining knowledge from raw GPS data
with minimal user efforts. The contributions of this work lie in the following
three areas.

First, we propose a change point-based segmentation method. This method
aims to partition each GPS trajectory into separate segments of different trans-
portation modes, while maintaining a segment of one mode as long as possible.
In addition, this segmentation method is capable of enhancing the reliability
of our methodology facing the variable traffic conditions.

Second, from each segment, we identify a set of sophisticated features, such
as direction change rate, velocity change rate, and stop rate. These features have
few correlations with the velocity, hence are not affected by differing traffic con-
ditions. These set of features can also be extended to other pervasive computing
systems aiming to recognize human behavior and understand user mobility.

Third, we conduct a graph-based postprocessing algorithm to further im-
prove the inference performance. In this algorithm, we mine the commonsense
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constraints of the real world and typical user behaviors on a location from user-
generated GPS logs. Therefore, we are able to leverage this location-constrained
knowledge as probabilistic cues, while maintaining our methodology being in-
dependent of an additional database of road networks or points of interests.

Overall, the advantages of our method over the related works include two
parts. (1) Our method is independent of other sensor data like GSM signal and
heart rate, and map information, for example, road networks and bus stops,
etc. Thus, it is generic to be deployed in a broad range of Web applications. 2)
The model learned from the dataset of some users can be applied to infer GPS
data from others; that is, it is not a user-specific model.

The rest of this article is organized as follows. In Section 2, we justify the
motivation of inferring transportation mode using two application scenarios.
Section 3 first describes the framework of our approach, and then introduces
each component of the proposed method in details. In Section 4, we conduct a set
of experiments, which evaluate our approach based on a GPS dataset collected
by 65 people over a period of 10 months. The major experimental results, as
well as the corresponding discussion, are also reported here. Finally, after in-
troducing some related works in Section 5, we draw our conclusion in Section 6.

2. APPLICATION SCENARIOS

The work reported in this article is a part of research into our project GeoLife,
which focuses on lively visualization [Zheng et al. 2008c, 2008d], fast retrieval
[Wang et al. 2008] and a deep understanding [Zheng et al. 2008a, 2008b] of GPS
track logs for both personal and public use. Our approach has been deployed
in the website of GeoLife to automatically tag transportation modes to GPS
tracks submitted by users. Leveraging the following two cases, we differentiate
between the significance of a GPS track with and without the information of
transportation modes.

2.1 Improving Sharing and Interactions between Users

Using a GPS trajectory generated by an individual, Figure 1 presents an ex-
ample to distinguish the different Web experiences with and without trans-
portation modes. Without the tag of transportation modes, the track shown in
the Figure 1(a) provides us nothing but a ploy-line. However, as illustrated in
Figure 1(b) and (c), after conducting inference, we realize that the individual
first drives downtown, and then switches to walking at a parking lot. Based on
this observation, a place where we are allowed to park a car was discovered,
and how long we might spend on the way by driving was correctly suggested.
Meanwhile, this track may also offer a reference experience to walking down-
town from the parking lot. In this way, we are more likely to avoid heavy traffic,
and enjoy shopping when passing the street side. Regardless of the fact that
this track is a compound trajectory containing driving and walking, the mean
velocity of the whole track would be quite slow given the relatively long dura-
tion consumed by walking. Therefore, the route might be deemed as a way that
suffered from heavy traffic. In other words, we might ignore it when searching
for an efficient way to drive downtown.
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Fig. 1. An example of inferring transportation modes from raw GPS data.

Fig. 2. Route recommendation according to users’ preferences on transportation modes.

2.2 GPS Trajectories Classification

Using a set of GPS trajectories generated in the real world, Figure 2 further
demonstrates the contribution of our work to route planning/recommendation
systems. In Figure 2 (a), there are many route candidates for our selection when
we attempt to find a way from the bottom right to the top left. Intuitively, peo-
ple have various preferences on transportation modes when planning a travel
route. For instance, some individuals like riding a bike, while others prefer
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Fig. 3. GPS log, segment and change point.

driving or taking buses. Unfortunately, these routes are less discriminative
from one another before being inferred. Actually, as shown in Figure 2(b), these
routes are generated by different users taking different transportation modes,
such as driving and riding a bike. Thus, if a user wants to ride a bike to their des-
tination, we should recommend the route shown in Figure 2(c). Likewise, when
the person needs to drive, we should present the route depicted in Figure 2(d).

3. INFER TRANSPORTATION MODES

In this section, we first define some preliminary concept about GPS data, and
then give an overview on the framework of our methodology. Subsequently, the
four steps, consisting of segmentation, feature extraction, inference and post-
processing, of our approach are respectively described in detail.

3.1 Preliminary

Before describing the framework of our approach, we have to define the fol-
lowing terms: GPS log, GPS trajectory, Walk Segment, non-Walk Segment, and
change point. Basically, as depicted in the left part of Figure 3, a GPS log is a se-
quence of GPS points, pi ∈ P , P = {p1, p2, . . . , pn}. Each GPS point pi contains
latitude, longitude and a timestamp. On a two dimensional plane, we can se-
quentially connect these GPS points into a GPS trajectory, and then divide the
GPS trajectory into trips if the time interval between the consecutive points
exceeds a certain threshold. A change point stands for a place where a user
changes their transportation mode in a trajectory. For instance, in the right
part of Figure 3, a change point was generated when an individual transferred
from driving to walking.

For simplicity’s sake, we name the segments users traveled on foot as Walk

Segments, while the segments of other transportation modes are called non-

Walk Segments. Further, we call the GPS point from a Walk Segment, such
as Pn−1, a Walk Point, while the GPS points like P2 from non-Walk Segments

are coined in non-Walk Points. In short, as depicted in Figure 3, a trip can be
partitioned into a Walk Segment and a non-Walk Segment by a change point
where the user transfers from driving to walking. In the remainder of this
article, we use {Bike, Bus, Driving, Walk} to respectively represent the following
four kinds of transportation modes: riding a bike; taking a bus; driving or taking
a taxi; traveling on foot.

Figure 4 depicts how we calculate features from GPS logs. Given two con-
secutive GPS points, for example, p1 and p2, we can calculate the spatial dis-
tance L1, temporal interval T1 and heading direction (p1.head) between them.
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Fig. 4. Feature calculation based on GPS logs.

Fig. 5. Architecture of our approach.

Subsequently, the velocity of p1 can be computed as Equation (1).

p1.V1 = L1/T1. (1)

Then, the heading change, such as H1,of three consecutive points like p1, p2

and p3 can be calculated as Equation (2).

H1 = |p1.head − p2.head|. (2)

Further, more features, such as acceleration and expectation of velocity, can be
calculated in this manner.

3.2 Architecture of Our Approach

As shown in Figure 5, the architecture of our approach includes two parts,
offline learning and online inference.

In the offline learning section, on one hand, we first partition GPS trajectories
into segments based on change points and extract features from each segment.
Then, the features and corresponding ground truths are employed to train a
classification model for online inference.

On the other hand, using a density-based clustering algorithm, we group
the change points detected from all users’ GPS logs into clusters. Subsequently,
a graph based on these clusters and user-generated GPS trajectories is built.
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Table I. Transition Matrix among Transportation Modes

Transportation Modes Walk Driving Bus Bike

Walk / 41.0% 49.0% 9.0%

Driving 99.7% / 0% 0.3%

Bus 98.7% 0.8% / 0.5%

Bike 99.8% 0% 0.2% /

From this graph we can mine some location-constrained knowledge, such as
the probability distribution of different transportation modes on each edge.
The knowledge can be employed as probabilistic cues to improve the inference
performance in the postprocessing. In addition, a spatial index is built over the
detected spatial knowledge to enhance the processing efficiency.

In the online operation, when a GPS trajectory comes, like the offline train-
ing process, we first partition it into segments and extract the same features
from each segment. Second, given the features, the generative inference model
will predict the transportation mode of each segment in a probabilistic man-
ner. Third, given the probabilities of a segment being different transportation
modes, a post-processing algorithm is used to improve the inference accuracy
by leveraging the spatial knowledge mined from the training data. Finally, the
transportation mode with maximum posterior probability will be selected as
the ultimate result.

3.3 Change Point-Based Segmentation

In this section, we will demonstrate how change points can be detected auto-
matically from a given GPS log. This detecting approach is derived from the
following commonsense knowledge of the real world, and is justified by the data
shown in Table I.

—Walking should be a transition between different transportation modes. In
other words, the start point and end point of a Walk Segment could have a
very high probability to be a change point.

—Typically, people must stop and then go when changing their transportation
modes, i.e., there must be some GPS points whose velocities are close to zero
during a transition.

Therefore, we first retrieve Walk Segments from a GPS trajectory, and
then partition the trajectory into several portions with these Walk

Segments.
Table I shows the transition matrix among different transportation modes.

This matrix was summarized from the ground truth of the GPS data collected
by 65 people over a period of 10 months. In almost all of the cases, Driving, Bus

and Bike transfer to Walk before changing to one another. On a few occasions, a
person might take a taxi immediately after getting off a bus. When the person
labels the GPS data, the very short Walk Segment between these two trans-
portation modes is easy to neglect. That is the cause of the direct transition
between Driving and Bus. However, a Walk Segment essentially exists in this
situation although its distance is quite short.
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Fig. 6. The distribution of the maximum velocity of a segment.
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Fig. 7. The distribution of the average speed of a segment.

However, over the same dataset, Figures 6, 7, and 8 respectively show the
distribution of maximum velocity, average velocity and maximum acceleration
of different transportation modes. The data shown in these figures paints a rich
picture about how difficult it is to give some simple rules to directly distinguish
between the segments of different transportation modes. Without knowing how
many modes a trip contains, it is especially difficult to tackle the problem using
simple rules.

Enlightened by the previously-mentioned commonsense knowledge as well
as the information mined from GPS data, we first find the change points by
detecting Walk Segments from a trip. Then, using these change points, we are
able to partition the trip into alternate Walk Segments and non-Walk Segments.
Since segments from a trip are first categorized into two classes {Walk, non-

Walk} rather than four classes {Bike, Bus, Driving, Walk}, the complexity of
segmentation has been reduced greatly. Subsequently, we can extract the fea-
tures of each segment and further infer its specific transportation mode. Using
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Fig. 9. An example of detecting change points.

Figure 9 as an example, in which an individual transfers from Bus to Driving

using Walk as a transition, we describe the detecting procedure as follows.

—Step 1. Using a loose upper bound of velocity (Vt) and that of acceleration (at)
to distinguish all possible Walk Points from non-Walk Points.

—Step 2. If the distance or time span of a segment composed by consecutive
Walk Points or non-Walk Points less than a threshold, merge the segment
into its backward segment.

—Step 3. If the length of a segment exceeds a certain threshold, the segment
is regarded as a Certain Segment. Otherwise it is deemed as an Uncertain

Segment. If the number of consecutive Uncertain Segments exceeds a cer-
tain threshold, these Uncertain Segments will be merged into one non-Walk

Segment.

—Step 4. The start point and end point of each Walk Segment are potential
change points, which are used to partition a trip.
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As depicted in Figure 9, each possible Walk Point (white points) is a GPS point
whose velocity (P.V ) and acceleration (P.a) are both smaller than the given
bound. Ideally, as demonstrated in Figure 9(a), only one Walk Segment would
be detected from this trip. However, as illustrated in Figure 9(b), when a vehicle
moves slowly in some transient occasions, a few GPS points from non-Walk

Segments may be detected as possible Walk Points. Also, because of the locative
error, a few points from the Walk Segment will exceed the bound, and become
non-Walk Points (black points in Figure 9). To improve the precision of the
segmentation method, we require that the distance of each retrieved segment
must exceed a certain distance. Otherwise, it will be merged into its backward
segment. For instance, in Figure 9(b), the two Walk Points contained in the
Bus segment cannot construct a stand-alone segment due to the short distance
between them. Therefore, it will be merged into its backward segment. The
same criterion is also applied to handle the outlier points in Walk Segment.

After step 1 and step 2 are conducted, the trip is partitioned into a se-
ries of alternate Walk Segments and non-Walk Segments. As demonstrated in
Figure 9(c), unfortunately, in some occasions, in which a user meets conges-
tion or heavy traffic, a Driving segment may be composed of many alternate
Walk Segments and non-Walk Segments. It is not appropriate for the classifica-
tion model to conduct inference using the features extracted from such trivial
segments. Intuitively, the longer a segment is the more accurate features a seg-
ment might express. Thus, we are more likely to infer its transportation mode
correctly. However, the shorter a segment is, the higher the uncertainty might
be.

To avoid a trivial partition, which will lead to further inference errors, we
take the following policy to merge, to some extent, the consecutive Uncertain

Segments. We define a segment whose length exceeds a threshold (e.g., 200 me-
ters used in the experiments) as a Certain Segment. Otherwise, we deem it as
an Uncertain Segment. In other words, we are not sure about the transporta-
tion mode of this segment even if it holds the condition of a Walk Segment. If
the number of consecutive Uncertain Segments exceeds a certain threshold, for
example, two we find out in experiments, we still deem all these Uncertain Seg-

ments as one non-Walk Segment. It is not difficult to understand that common
users will not frequently change their transportation modes within such a short
distance. For instance, as depicted in Figure 9(c), within a certain distance, it
is impossible for a person to take the following transition, Driving → Walk →

Driving → Walk → Driving. So, we believe the three segments between the two
Certain Segments are also non-Walk Segments, Driving here. Thus, we are able
to merge these Uncertain Segments into one segment and perform a further in-
ference. By maintaining the consecutive GPS points of the same transportation
mode in one segment, we are more likely to reduce the affection caused by the
congestion.

3.4 Feature Extraction

Table II shows the features we extracted from each segment. Two categories
of features including Basic Features and Advanced Features are identified.
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Table II. The Features We Explored in the Experiment

Category Features Significance

Dist Distance of a segment
MaxVi The ith maximal velocity of a segment

Basic Features MaxAi The ith maximal acceleration of a segment
AV Average velocity of a segment
EV Expectation of velocity of GPS points in a segment
DV Variance of velocity of GPS points in a segment

HCR Heading Change Rate
Advanced Features SR Stop Rate

VCR Velocity Change Rate

Fig. 10. Heading change rate of different modes.

Following the way we presented in Figure 3 and Figure 4, the Basic Features

are easily calculated, while the Advanced Features is described in the following
sections. Beyond the Basic Features, the Advanced Features is more robust to
variable traffic conditions.

3.4.1 Heading Change Rate (HCR). As shown in Figure 10, typically, being
constrained by a road, people driving a car or taking a bus cannot change their
heading direction as flexibly as if they are walking or cycling, no matter what
traffic conditions they meet. Moreover, regardless of traffic conditions and the
weather, people walking or riding a bicycle inevitably and unintentionally wind
their way to a destination, although they attempt to create a straight route.

In other words, the heading directions of different transportation modes dif-
fer greatly in being constrained by the real routes while being independent of
traffic conditions. Thus, HCR modeling this principle is defined as Equation (3).

HCR = |Pc|/Distance, (3)

where Pc stands for the collection of GPS points at which a user changes his/her
heading direction exceeding a certain threshold (Hc). |Pc| represents the num-
ber of elements in Pc. After dividing |Pc| by the distance of the segment, HCR

can be regarded as the frequency that people change their heading direction to
some extent within a unit distance.

3.4.2 Stop Rate (SR). Figure 11 presents the typical trend of velocity when
people take different transportation modes. We observe that, within a similar
distance, people taking a bus are likely to stop more times than driving. Intrin-
sically, besides waiting at traffic lights, a bus would take passengers on or off at
bus stops. Meanwhile, people walking on a route would become more likely than
they would in other modes to stop somewhere on their journey, such as when
talking with passersby, being attracted by surrounding environments, waiting
for a bus. These observations motivate us to define two features to differentiate
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Fig. 11. Velocity change rate and stop rate.

various transportation modes; one is the stop rate (SR); the other is the velocity
change rate (VCR).

The SR stands for the stop frequency of a moving object within a unit dis-
tance. As depicted in Figure 11, using a velocity threshold Vs, we can detect sev-
eral groups of GPS points (PS), where PS = {Ps1, Ps2, . . . , Psn}, PSsi = {Pi|pi ∈

P, pi.V < Vs} . In each group of points (Psi), the velocity of each GPS point (pi)
is smaller than Vs. Then, we can calculate the SR as Equation (4).

SR = |PS|/Distance. (4)

Obviously, as shown in Figure 11, we can see SR (Walk) > SR (Bus) > SR

(Driving).

3.4.3 Velocity Change Rate (VCR). The other hint we sensed from
Figure 11 is the VCR. First, we can calculate the VRate of each GPS point as
Equation (5). Then, we can get the statistics of the number of GPS points whose
VRate is greater than a certain threshold Vr , and calculate VCR according to
Equation (6).

p1 · V Rate = |V2 − V1|/V1; (5)

VCR = |Pv|/Distance, (6)

where Pv = {pi|pi ∈ P, pi · V Rate > Vr}. Consequently, we can understand the
VCR as the number of GPS points, whose velocity change percentage over its
prior point exceeds a certain threshold, within a unit distance. SR and VCR

clearly capture the difference among various transportation modes, and gets
support from later experimental results.

3.5 Inference Model

Given the features X of each segment, we are able to infer its transporta-
tion mode based on a supervised learning method. Using a training corpus,
which contains a set of features-class pairs, we can train an inference model to
classify the coming segments in the future. The training dataset was collected
by multiple users over a long period. Thus, the model we built is generic to
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Fig. 12. Mining spatial knowledge from GPS logs.

infer the GPS trajectories for a variety of people. A group of classification algo-
rithms, including a Decision Tree, a Support Vector Machine, a Bayesian Net,
and a Conditional Random Field, have been tested in our previous experiments
[Zheng et al. 2008a]. The results show that the Decision Tree outperforms oth-
ers based on the change point-based segmentation. Consequently, we still use
this inference model in this article. Meanwhile, a Bootstrap aggregating (bag-
ging) [Breiman 1996] is employed as a meta-algorithm to improve the accuracy
of the model by reducing variance and overfitting.

3.6 Spatial Knowledge Extraction

Figure 12 illustrates the four steps toward mining spatial knowledge from users’
GPS logs. The knowledge includes a change point-based graph and the proba-
bility distribution on each edge of the graph.

First, given GPS logs with labeled ground truths, we can get the special
points consisting of change points and the start/end points of each GPS trajec-
tory. These special points were subsequently grouped into several nodes (clus-
ters) using a density-based clustering algorithm. The reasons we prefer to use
density-based clustering instead of agglomerative methods, such as K-Means,
lie in two aspects. First, a density-based approach is capable of detecting clus-
ters with irregular structures, which may stand for bus stops or parking places.
Second, it can discover popular places where most people change their trans-
portation modes while removing sparse change points representing places with
low access frequency.

Second, with the GPS trajectories from multiple users’ GPS logs, we can
construct an undirected graph. In such a graph, a node represents a cluster of
the special points mentioned above, and an edge denotes users’ transitions be-
tween two nodes. Here, we do not differentiate various trajectories with similar
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start/end points; that is, all the trajectories passing two graph nodes are re-
garded as similar trajectories.

Third, we build a grid-based spatial index [Sahr et al. 2003] over the
graph to improve the efficiency of accessing the information of each node and
each edge. The space covered by the graph is partitioned into many disjoint
grids. Then, the graph nodes falling in different grids are associated with
the grids. Therefore, when a new GPS trajectory comes to be inferred, we
only need to match the special points detected from the trajectory against
the graph nodes pertaining to the grids where these special points falling in.
Of course, this step is optional unless the scale of the GPS dataset is quite
large.

Fourth, we are able to calculate the probability distribution of different trans-
portation modes on each edge. For instance, as depicted in the fourth step of
Figure 12, P18(Bus) stands for the likelihood of the event that people take buses
on the edge between node 1 and node 8. Further, the conditional probability be-
tween different transportation modes can also be computed based on the graph,
for example, P185(Bus|Walk) represents the transition probability from Walk to
Bus between edge 18 and edge 85. In other words, it denotes the likelihood
of the event that a user walks from node 8 to node 5 based on the observed
occurrence that the user takes a bus from node 1 to node 8.

Such previously mentioned knowledge is promising in improving the infer-
ence accuracy due to the following reasons. 1) This implies people’s typical
behaviors among different places. The clusters of change points represent the
places many people change their transportation modes. Usually, these places
could be bus stops, parking lots, and railway stations. We can take into account
user behavior among these nodes as probabilistic cues when we infer other tra-
jectories passing these two nodes. Naturally, for example, if most users take a
bus between two nodes, we can suggest that the two nodes could be bus stops,
and the edge between them could have a very high probability of being a bus
line. 2) The probability on each edge implies constraints of the real world. For
instance, buses only take passengers on at bus stops, cars are left in parking
lots, and cars and buses only travel on streets, etc. This knowledge mined from
multiple users’ GPS logs take advantages of the location constraints while keep-
ing our method independent of an additional map database. In such a way, it is
not necessary to match each GPS trajectory against the road network. Mean-
while, we do not need to maintain a database of bus stops, railway stations and
parking lots.

3.7 Graph-Based Postprocessing

The graph-based postprocessing algorithm takes the preliminary inference re-
sult and the spatial knowledge mentioned above as inputs, and aims to gen-
erate an improved prediction result. The graph-based postprocessing is com-
prised of three components: normal post-processing, prior probability-based
enhancement and transition probability-based enhancement. The main idea of
the postprocessing lies in using the correctly inferred segments to revise the
false predictions.
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Fig. 13. Flowchart of the graph-based postprocessing.

3.7.1 Framework of the Postprocessing. Figure 13 shows the flowchart of
the graph-based post-processing we designed. When an inferred segment of
GPS trajectory appears, we first search the spatial index to quickly match its
vertexes against graph nodes. If we cannot find graph nodes close to the ver-
tex, the normal postprocessing algorithm is employed to enhance the inference
performance. Otherwise, the prior probability-based enhancement or the tran-
sition probability-based method would be used. If the maximum posterior prob-
ability of the segment being a kind of transportation given feature X exceeds
a certain threshold T1, we believe the transportation mode corresponding to
the maximum probability would be a correct inference. Subsequently, we can
leverage this segment to revise its adjacent segments (including backward and
forward segments) using the transition probability-based enhancement. If the
situation is opposed to the above assumption, we will further check whether
its maximum probability is smaller than another threshold T2. If the condition
holds, the prior probability-based enhancement method is performed. Other-
wise, the normal postprocessing method is used. When a segment holds the
conditions being processed by both the prior probability-based and the tran-
sition probability-based enhancement approaches, the latter is used. Finally,
we select the transportation mode with maximum probability as the prediction
result of a segment.

The idea of postprocessing is motivated by the observation that when a seg-
ment’s maximum P (mi|X ) exceeds a threshold (T1 in Figure 13), it is very
likely to be a correct prediction. Thus, it can be used to fix the potentially false
inference adjacent to it in a probabilistic manner. Instead, if the maximum pos-
terior probability of a segment is less than a certain threshold T2, it could have
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Fig. 14. Performing normal post-processing on a GPS trajectory.

a very high probability of being a false inference. Consequently, it deserves
our revision. With the threshold T1 and T2, we are more likely to correct the
false prediction while maintaining accurate inference results. (See Figure 29 for
evidences.)

3.7.2 Normal Postprocessing. Normal post-processing aims to improve the
prediction accuracy by considering the conditional probability between different
transportation modes. Using the trajectory depicted in Figure 14 as an exam-
ple, we introduce the normal post-processing algorithm. After implementing
the preliminary inference, we can get the predicted posterior probability of
each segment being different transportation modes given feature X . If we di-
rectly select the transportation mode with maximum posterior probability as
the final result, the prediction would be Driving→Bike→Bike, while the ground
truth is Driving→Walk→Bike; that is, a prediction error occurred. On this oc-
casion, if a segment, for example, segment[i − 1], whose posterior probability
being a kind of transportation mode exceeds threshold T1 (0.6 used in our ex-
periment), we select the transportation mode as the final prediction. Later, if
the probability of its adjacent segments, for example, segment[i], is less than a
threshold T2, the inference of segment[i−1] can be used to revise the prediction
of segment[i]. Therefore, the posterior probability of segment[i] being different
transportation modes conditioned by the transportation mode of segment[i−1]
can be re-calculated according to Equations (7) and (8).

Segment[i].P (Bike) = Segment[i].P (Bike) × P (Bike|Driving), (7)

Segment[i].P (Walk) = Segment[i].P (Walk) × P (Walk|Driving) (8)

. . . . .

Here P (Bike|Driving) stands for the probability of an event that a person di-
rectly transfers transportation modes from driving to riding a bike. Likewise,
P (Walk|Driving) denotes the transition probability from Driving to Walking. As
shown in Table I, these probabilities can be summarized from the user-labeled
data. Segment[i].P (Bike), which represents the probability of the segment[i]
being a Bike segment, is the output of the inference model.

After the calculation, we use the transportation mode with maximum prob-
ability as the final result. In the case depicted in Figure 14, since the tran-
sition probability from Driving to Bike is very small, Segment[i].P (Bike)
will drop behind Segment[i].P (Walk) after the multiplications shown in
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Fig. 15. Prior probability-based enhancement method.

Equations (7) and (8). In other words, the inference result of Bike will be sub-
stituted with Walk. Consequently, a false inference is revised based on the
correct prediction of its adjacent segment. The normal postprocessing is per-
formed in a propagated manner until the conditions (T1 and T2) are not held any
longer.

3.7.3 Prior Probability-Based Enhancement on Graph. When a segment
is detected to pass two graph nodes (i, j ), we can use the prior probability
distribution on the corresponding edge (Ei j ) to reduce the incorrect prediction.
Actually, what we want to predict is the posterior probability of transportation
mode (mi) on Eij based on the observed feature X , i.e., P (mi|X , Eij). Since Eij

is involved in the condition part, the probability is more discriminative and
informative than P (mi|X ) used in the preliminary inference model. As shown
in Equation (9), by applying the Bayesian rule, we decompose P (mi|X , Eij) into
prior probability and the likelihood of seeing (X , Eij) given transportation mode
mi. Then, using the assumption that X is independent of Eij, we can further
decompose P (X , Eij|mi) into P (X |mi) and P (Eij|mi).

P (mi|X , Eij) =
P (X , Eij|mi)P (mi)

P (X , Eij)

=
P (X |mi)P (Eij|mi)P (mi)

P (X )P (Ei j )
(9)

=
P (mi|X )P (X )

P (mi)
·

P (mi|Eij)P (Eij)

P (mi)
·

P (mi)

P (X )P (Eij)

=
P (mi|X ) · P (mi|Eij)

P (mi)
.

Figure 15 presents how each element of Equation (9) is calculated after the
transformation. As we can see, P (mi|Eij) and P (mi) can be summarized from
multiple users’ datasets while P (mi|X ) is difficult to be directly calculated since
the elements of X may not be independent of each other. So, in this work, we
use the posterior probability generated by the preliminary inference model as
an approximate substitute. From the theoretic perspective, we would face two
challenges in computing P (mi|X , Eij). One is the assumption of the indepen-
dence between X and E ij. The other lies in that P (mi|X ) is substituted by an
approximate value generated by an inference model. Thus, we need to use it
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Fig. 16. Framework of our experiments.

carefully to ensure the effectiveness of this approximate calculation. That is
another reason why we need threshold T1 and T2.

3.7.4 Transition Probability-Based Enhancement on the Graph. This pro-
cess is performed only when the following three conditions hold: 1) we find
consecutive segments on the graph; 2) One segment’s P (mi|X ) exceeds the
threshold T1; 3) The maximum P (mi|X ) of its adjacent segments is less than T2.
The process is similar to the normal post-processing algorithm while the differ-
ence is that the transition probability between different transportation modes
is based on the graph. In other words, the probability is location-constrained
and contains more commonsense information of the real world. Therefore, it is
more useful and informative than the normal transition probability summa-
rized from all users’ ground truth regardless of locations.

4. EXPERIMENTS

In this section, we first describe the framework of the experiments we per-
formed. Second, we present the experiment setup including GPS devices, GPS
data, and toolkits we used. Third, the evaluation approach, including how we
get ground truths and what criteria we used are reported. Fourth, we respec-
tively introduce how the parameters are selected for each algorithm. Finally,
we report detailed experimental results with corresponding discussions.

4.1 Framework of Experiments

Figure 16 shows the framework of the experiments. Here, we focus on evaluat-
ing the effectiveness of the change point-based segmentation method, exploring
the performance of the Advanced Features and testing the effect of the graph-
based post-processing.

4.1.1 Segmentation. To validate the effectiveness of the change point-
based segmentation, two baseline methods are selected to partition the trips
into segments. They are uniform duration-based segmentation and uniform
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Fig. 17. GPS devices used in our experiments.

distance-based segmentation. In other words, each segment will have the same
time spans after being partitioned by the former method or have the same
distances after being partitioned by the latter one.

4.1.2 Inference. Four inference models, including Decision Tree, Sup-
ported Vector Machine, Bayesian Net, and Conditional Random Field, are stud-
ied in our previous experiments reported in Zheng and Liu [2008]. Based on
the change point-based segmentation method, Decision Tree outperforms other
competitors by offering higher inference accuracy. Therefore, in this article, we
aim to investigate the effectiveness of the Advanced Features we identified, and
make a difference between the advanced features and the basic ones.

4.1.3 Postprocessing. In this step, we aim to evaluate the effectiveness of
graph-based postprocessing, and compare it with the normal post-processing
algorithm. At first, we group multiple users’ change points using OPTICS
[Ankerst et al 1999], a density-based clustering algorithm, which can detect
data clusters with irregular structures. Further, a graph is built based on these
clusters and GPS trajectories. Then, over each graph edge, we are able to cal-
culate the probability distribution of different transportation modes and the
transition probability among them.

4.2 Settings

4.2.1 GPS Devices. Figure 17 shows the GPS devices we chose to collect
data. They are composed of stand-alone GPS receivers (Magellan Explorist
210/300, G-Rays 2 and QSTARZ BTQ-1000P) and GPS phones. Except for the
Magellan 210/300, these devices are set to receive GPS coordinates every two
seconds. Regarding the Magellan devices, we configure their setting to record
GPS points as densely as possible. When an individual changes his/her heading
direction or speed to some extent, a GPS point is recorded with such devices.

4.2.2 GPS Data. Figure 18 shows the distribution of the GPS data we used
in the experiments. Carrying a GPS-enabled device, 65 users recorded their
outdoor movements with GPS logs over a period of 10 months. The dataset
covers 28 big cities in China and some cities in the USA, South Korea, and
Japan. We pay each data collector based on the distance of GPS trajectories
they collected and labeled, and use this dataset anonymously.

As shown in Table III, the total distance of these GPS logs exceeds 30,000
kilometers, and their total duration equates to more than 2,000 hours. From
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Fig. 18. Distribution of GPS data.

Table III. The Information of Each Activity in the GPS Dataset We Used in the
Experiments

Transportation Modes Number of Trajectory Distance (km) Duration (h)

Walk 3037 2877.52 769.8

Bike 1306 4287.53 395.6

Bus 1145 5738.65 313.6

Driving 1624 17169.85 557.2

Total 7112 30073.55 2036.2

each user’s GPS logs, we select about 70 percent of the data to construct a
training set while the rest is used as a test dataset. Meanwhile, in both the
training set and the test set, we try to keep the number of segments of different
transportation modes as balanced as possible. When processing the dataset,
each GPS log is divided into trajectories if the temporal interval between con-
secutive GPS points exceeds 20 minutes. Further, each GPS trajectory will be
partitioned into segments of different modes based on the change point-based
method.

4.3 Evaluation Approach

4.3.1 Criteria. When exploiting the performance of our approach, we con-
sider the following two aspects of criterions: the accuracy of inferred trans-
portation modes and the accuracy of the detected change points.

Criterion for transportation modes. With regard to the prediction accuracy
of transportation modes, we focus on Accuracy by Segment (AS) and Accuracy

by Distance (AD), which are defined in equation (10) and (11) respectively.

AS = m/N : (10)

AD =

∑m
j=0 CorrectSegment [ j ].Distance

∑N
i=0 Segment [i].Distance

; (11)
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where N stands for the total number of the segments, while m denotes the
number of segments being correctly predicted. Intuitively, it is more important
to correctly infer a segment with long distance than that with short distance.
So, AD is more objective to measure the inference accuracy.

Criterion for change points. Regarding the inference accuracy of change
points, we explore their recall and precision in two stages. In the first stage,
after being partitioned by the change point-based segmentation method, a set
of change points are detected from each trajectory. At this moment, the change
points are vertexes of the estimated Walk-Segments. Here, we can use the cri-
terion to measure the effectiveness of the segmentation method. In the second
stage, we evaluate the precision and recall of change points after the inference
process. At this moment, a change point occurs if the inferred transportation
modes of consecutive segments are different.

If the distance between an inferred change point and its ground truth is
within 150 meters, we regard the change point as a correct inference. Intrin-
sically, if a change point is missed in a segmentation process, two segments
of different transportation modes will be deemed as one segment of the same
mode. Therefore, a false inference will definitely occur no matter what kind of
inference model we employed later. However, even if a trajectory containing
only one transportation mode is carelessly partitioned into several segments,
we still have chances to infer these separated segments correctly. Later, these
segments having the same inference results can be merged into one trajectory.
However, in the segmentation phase, a very poor precision of change points will
cause too much trivial segments with short distance. Subsequently, the short
distance will damage the inference accuracy of transportation modes of a seg-
ment. At the same time, a very low precision of change points will bring bad
user experiences. Consequently, we claim that although the recall of a change
point has relatively higher priority over the precision, we still need to keep the
balance between them.

4.3.2 Ground Truth. In each day of the data collection, to help data cre-
ators manually label their GPS trajectories, we respectively visualize each trace
on a map for each creator. Therefore, these data-creators can view the times-
tamp of each GPS point, and reflect on when and where they change transporta-
tion modes. Given the short time span between data created and data labeled,
we believe users are able to accurately label their GPS trajectory based on their
reliable memory and the visualized geographic clues.

Figure 19 presents a case in which a user travels on foot from 20:30:15 to
20:35:56, and then transfers to driving at 20:35:58. The GPS trajectory can be
labeled in a manner of “DateTime1-DateTime2 transportation mode”. In this
case, the labeled ground truth should be

“2008-06-22 20:30:15 to 2008-06-22 20:35:56 Walk”;

“2008-06-22 20:35:58 to 2008-06-22 20:55:28 Driving.”

Later, a change point is easy to be detected based on such labels.
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Fig. 19. A case showing how a GPS trajectory was labeled by its creator.
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Fig. 20. Recall of the change points after conducting the first step of segmentation.

4.4 Parameter Selection

4.4.1 Change Point-Based Segmentation. The change point-based segmen-
tation method aims to accurately partition a GPS trajectory into segments of
different transportation modes while maintaining each segment as long as pos-
sible. In the following paragraphs, we study the performance of our segmenta-
tion method step by step, choose proper parameters for each step and justify
the significance of each step.

Performance of Step 1. Figure 20 and Figure 21 respectively show the recall
and precision of detected change points after we conduct the first step of the
segmentation method. Here, we attempt to retrieve all the Walk Segments using
a looser upper bound. A set of possible values of velocity within [1, 4] m/s have
been studied, and three values of acceleration (0.2, 1.0, 1.5) m/s2 have been
tested. As a result, when v = 2.5 m/s and a = 1.5 m/s2, we can obtain the
relatively high recall with an acceptable precision. In the first step, the recall is
slightly more important than the precision as we still have chances to improve
the precision in the following steps.
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Fig. 21. Precision of the change points after conducting the first step of segmentation.
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Fig. 22. Recall of the change points after conducting the second step of segmentation.

Performance of Step 2. After being processed by the first step of our method,
a GPS trajectory is partitioned into many Walk Segments and non-Walk seg-

ments. Two parameters, minimal distant bound (MDB) and minimal time span
(TS) of a segment, are employed in the second step to improve the precision of
the segmentation by merging these trivial segments. From the data depicted
in Figure 22 and Figure 23, when MDB = 20 meters and TS = 10 seconds, we
obtain a relatively high recall with an acceptable precision of detected change
points. In other words, if the distance of a segment is smaller than 20 meters
or the time span between its start time and end time is less than 10 seconds,
this segment will be merged into its backward segments.

Performance of Step 3. Figure 24 and Figure 25 present the segmentation
performance of the third step of our method. In this step, if the number of
consecutive Uncertain Segments exceeds a threshold SN, these Uncertain Seg-

ments will be merged into one segment. Therefore, two parameters need to be
studied. One is the distance threshold of a Certain Segment (DT). The other is
the number of consecutive Uncertain Segments. As a result, we find that when
SN = 2 and DT = 200 meters, the segmentation method achieves an acceptable
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Fig. 23. Precision of the change points after conducting the second step of segmentation.
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Fig. 24. Recall of the change points after conducting the third step of segmentation.

recall with relatively high precision. In other words, if the distance of a segment
is less than 200 meters, it is regarded as an Uncertain Segment. If the number
of consecutive Uncertain Segments exceeds two, these segments will be merged
into one segment.

4.4.2 Advanced Features. Figure 26 shows the inference accuracy chang-
ing over the threshold (Hc) when HCR is used alone to differentiate different
transportation modes. The curve painted in Figure 26 presents us with the
prior knowledge that HCR becomes the most discriminative when Hc is set to
15 degrees. In other words, when a user changes his/her heading direction by
a angle greater than 15 degrees, the corresponding GPS point will be sampled
into the collection Pc, and further calculate HCR according to Equation (3).

As depicted in Figure 27, we study the effect of SR in stand-alone predicting
transportation modes. Obviously, we can get the suggestion that, as compared
to other candidates, when Vs equals to 2.5, SR shows its greatest advantages
in classifying different modes.

Figure 28 depicts the inference accuracy changing over the threshold Vr when
we employ VCR alone. We found evidence that when Vr is set to 0.7, that is, a
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Fig. 25. Precision of the change points after conducting the third step of segmentation.
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Fig. 26. Selecting threshold Hc for HCR. The inference is performed only based on HCR without
post-processing.

GPS point would be sampled into collection Pv if its velocity changes beyond
70 percent over its predecessor, VCR becomes the most powerful beyond other
candidates.

4.4.3 Postprocessing. To ensure the effectiveness of the graph-based post-
processing, two thresholds (T1 and T2) are studied in the experiment. Figure 29
illustrates the statistical results we performed based on the preliminary in-
ference results without postprocessing. Here, P (mi|X ) stands for the posterior
probability of a segment being a kind of transportation mode given feature
X . Using the relationship between the value of maximum P (mi|X ) and its in-
ference result, we found the following evidence. When the value of maximum
P (mi|X ) is smaller than 0.36, the rate of false inference exceeds 60 percent. In-
stead, when the value is greater than 0.6, the rate of correct inference outscores
90 percent. Thus, we set T1 to 0.6 and T2 to 0.36 to reduce the risk of modifying
a correct prediction while ensuring a false inference would be revised.

Using the GPS data within a given geographic region, Figure 30 presents the
clustering results of OPTICS changing over the number of GPS trajectories. As
a result, the number of clusters within the region does not keep on increasing
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Fig. 27. Selecting threshold (Vs) for SR. SR is the only feature used in the inference model without
post-processing.
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Fig. 28. Selecting threshold (Vr) for VCR. VCR is the only feature used in the inference model
without post-processing.

with the incrementally added GPS trajectories. It proves that the number of
places where most people change their transportation modes in a given region is
limited, and is constrained by the real world. This observation also provides pos-
itive support on the feasibility of our graph-based postprocessing. With regard
to the OPTICS algorithm, its result depends on two parameters, core-distance
(CorDist) and minimal points (minPts) within the core-distance. According to
the commonsense knowledge of real world and experimental evaluation, we
found that when CorDist = 25 and minPts = 5, the distribution of clusters
makes more sense than that based on other parameters.

Figure 31 paints a case of a change point-based graph on a map, and displays
the most popular transportation mode on each graph edge. Each circle stands
for a cluster and the line between two circles represents a graph edge.
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Fig. 30. Number of clusters changing over the number of trajectories in a given region.

4.5 Results

4.5.1 Single Feature Exploration. Using the inference accuracy without
postprocessing, Table IV shows the capability of each feature in stand-alone dif-
ferentiation of transportation modes. We observe that HCR, SR and VCR clearly
outperform other features. These results justify our claim that the Advanced

Features is more robust to the variable traffic conditions beyond velocity-based
features.

4.5.2 Effectiveness of Feature Combination. Table V presents the results
of the inference model without performing postprocessing. Using a subset fea-
ture selection method, we evaluate the performance of different feature com-
binations. As we mentioned in Section 3.4, the Basic Feature includes MaxV1,

MaxV2, MaxV3, MaxA1, MaxA2, MaxA3, AV, EV, DV and Dist. For simplicity’s
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Fig. 31. A change point-based graph within a region.

Table IV. Overall Inference Accuracy Using Each Feature Alone

Rank Features AS AD Rank Features AS AD

1 HCR 0.345 0.561 8 DV 0.269 0.357

2 SR 0.335 0.561 9 MaxV2 0.322 0.344

3 AV 0.382 0.547 10 MaxV1 0.294 0.257

4 VCR 0.336 0.526 11 MaxA2 0.239 0.217

5 EV 0.375 0.523 12 MaxA1 0.259 0.208

6 Dist 0.302 0.499 13 MaxA3 0.256 0.197

7 MaxV3 0.334 0.365

sake, the combination of the Basic Features and the Advance Features is called
Full Feature.

From the results shown in Table V, we can make two observations. First,
the combination of the Advanced Features (SR+HCR+VCR) is more effective
than that of velocity and acceleration in predicting users’ transportation modes.
It justified our statement that these three features are more robust to traffic
conditions than the Basic Features. Second, by combining SR+HCR+VCR with
the Basic Features, we attain the highest accuracy. This evidence further proves
that the Advanced Feature is discriminative and has little correlation between
Basic Features. In this experiment, the inference results of Basic features are
slightly less than those reported in paper [Zheng et al. 2008a] due to the in-
creased test data.

4.5.3 Effectiveness of Segmentation. Using the Full Features, we evalu-
ate the performance of the change point-based segmentation method. We com-
pare our method with two baseline trajectory-partition approaches, including
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Table V. Inference Performance of Combined Features Without Performing
Postprocessing

Transportation Mode Change Point
Feature Combinations AS AD Precision Recall

MaxA1 + MaxA2 + MaxA3 0.297 0.283 0.118 0.584

MaxV1 + MaxV2 + MaxV3 0.480 0.526 0.142 0.687

Distance + EV + AV 0.480 0.550 0.227 0.582

Distance + EV + MaxV1 0.548 0.597 0.217 0.55

AV + EV + MaxV1 0.558 0.621 0.253 0.603

MaxV3 + MaxA3 + AV 0.511 0.632 0.138 0.669

SR + HCR + VCR 0.575 0.644 0.286 0.643

Basic Features 0.618 0.673 0.284 0.681

Enhanced Features 0.635 0.715 0.373 0.724
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Fig. 32. Comparison among different segmentation methods.

uniform distance-based and uniform duration-based methods. A set of param-
eters have been studied for these two baseline methods. As a result, we find
that when the unit distance is set to 200 meters, the uniform distance-based
segmentation method achieved a relatively high performance among the se-
lected parameter candidates. Meanwhile, when we configure the unit duration
as 120 seconds, the uniform-based method obtained a relatively high perfor-
mance. Therefore, Figure 32 shows only the comparison results between our
method and the baseline method with the best performance. As we can see,
except for the accuracy by segment (AS), the change point-based segmentation
method outperforms its competitors in all the rest of the evaluation criteria.

4.5.4 Effectiveness of Postprocessing. Figure 33 shows the inference perfor-
mance with and without post-processing. Based on the inference model using
Full Features (Advanced Features + Basic Features), the normal postprocess-
ing has achieved almost 2 percent improvement in accuracy (AD) beyond the
preliminary results. Further, the graph-based postprocessing outperforms the
normal method by bringing a 4-percent promotion over the preliminary in-
ferences. Additionally, the graph-based postprocessing algorithm provides a
5-percent improvement to the precision of change points over the preliminary
inference results while maintaining almost the same recall of change points.
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Table VI. Confusion Matrix of Final Inference Results with Graph-Based
Postprocessing

Inferred Results (KM)
Walk Driving Bus Bike

Walk 752.8 107.4 81.5 78.3 0.738

Driving 41.7 2867.5 563.0 88.3 0.805

Ground Truth Bus 58.6 425.7 1489.8 105.1 0.717 Recall
Bike 58.9 21.8 290.0 833.1 0.692

0.825 0.837 0.615 0.754 0.756

Precision

Table VI presents detailed inference results, including precision and recall
of each kind of transportation mode by distance. With a large-scale dataset, we
believe that the graph-based postprocessing would bring a greater improvement
to current experimental results. First, with more GPS data, the change point-
based graph could cover more places where people log their trajectories with
GPS data. Thus, more inferred GPS trajectories can be matched on the graph,
and further be processed by the graph-based method. Second, the probability
distribution on the graph would become more capable of representing typical
user behavior on locations.

4.6 Discussion

4.6.1 Discussion of the Segmentation Method. Given the data shown in
Figure 32, we made the following observations. Regarding the uniform distance-
based and uniform duration-based methods, they are more likely to put consecu-
tive segments of different transportation modes into one segment, and generate
many trivial segments with short distances. Thus, as compared to the change
point-based approach, it is inevitable that some change points will be missed
and more false inferences will be generated. Further, these false inferences will
damage the precision of the change points and bring a very bad user experi-
ence of browsing a trajectory. Although, these baseline methods also provide
relatively good AS , their poor precision of change points reveal the fact that
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the correct inferences and false inferences alternate in a trajectory. As a con-
sequence, people are easily confused by the inference result when browsing a
trajectory’s transportation mode.

The advantages of the change point-based segments lie in two aspects. One
is that this approach is capable of maintaining a segment of one transportation
mode as long as possible. Therefore, we are more likely to extract discrimina-
tive features from each segment and obtain a correct inference. The other is
that its merging strategy can handle, to some extent, the vulnerability of fea-
tures facing variable traffic conditions. In congestion, a user reluctantly moves
fast and slow in an alternative manner. If the change point-based segmenta-
tion method is employed, these segments might be merged into one segment.
However, this trajectory will be partitioned into many trivial segments by the
uniform distance or uniform duration-based method.

4.6.2 Discussion on the Advanced Features. The results reported in
Table IV and Table V justified the effectiveness of Advanced Features in classi-
fying transportation modes. Whether being used alone or in combination, the
Advanced Features always shows its advantages over the Basic Features. It
is not difficult to understand that Advanced Features extracted from a user’s
trajectory depends more on the characteristics of the vehicle the user selected
rather than the traffic conditions. For instance, buses and cars cannot change
their moving direction as flexibly as people traveling on foot. This fact would not
vary with traffic conditions. Therefore, the reasons why our approach is capable
of tackling the affects of heavy traffic include three parts: 1) the change point-
based segmentation methods; 2) the Advanced Features we identified; and 3)
the graph-based post-processing method.

4.6.3 Discussion on the Graph-Based Postprocessing. The data shown in
Figure 33 and Table VI has shown the contributions that the graph-based
post-processing makes in improving the inference accuracy. Here, we mine an
implied road network from user-generated GPS logs rather than directly em-
ploying a database of map information. Actually, it is impractical to directly
match a user’s trajectory against a road network and bus stops due to the
following reasons. First, as depicted in Figure 34(a), the locations of bus stops
are usually close to crossroads. Hence, it is really difficult to judge whether a
person was driving or taking a bus based on the observation that the user has
passed a region containing a bus stop. In other words, it is also possible that the
user might drive a car and wait a traffic light at a crossroad near the bus stop.
Second, as demonstrated in Figure 34(b), bikes, buses and cars usually move
on the same road surface in an urban area. That may sometimes contradict the
assumption that if an individual’s trajectory aligns with a highway, the indi-
vidual might be driving at that moment. Third, matching a trajectory against
a given road network would need lots of computational efforts, which easy in
theory but difficult in practice.

As opposed to the straightforward method already mentioned, we mine an
invisible graph from user-generated GPS logs. The advantages of this graph
consist of two parts. First, in this graph, each node just represents a place where
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Fig. 34. Some cases opposing the idea of using road network directly.

multiple users change their transportation modes. We neither need to recognize
whether a node is a bus stop or railway station, nor match a trajectory against
the road network. This data-driven approach takes into account the location
constraints of the real world while keeping the post-processing algorithm very
efficient. Second, the typical user behaviors based on locations are employed as
probabilistic cues to improve the inference results. On each edge, we calculate
the probability distribution of different transportation modes as well as the
transitions probability among them. In short, we do not fix a false inference
based on some pre-defined rules.

5. RELATED WORKS

5.1 GPS Track Sharing

In the application scenarios of GPS-trajectory-sharing [Counts et al. 2007 and
SportsDo 2007], some communities have been established to help people share
their historical life experience based on GPS data. However, these applications
either provided people with raw GPS tracks or required users to manually
label their tracks. For instance, some systems tell the users about the basic
information, such as distance and duration, of a particular route. Alternatively,
the transportation modes of each track are manually tagged by the individual
who uploads the GPS log. Due to the extra efforts of user-labeling, many people
are frustrated and give up contributing their GPS data to the community. The
essential difference between our work and the work mentioned above is that
we aim to automatically understand each individual’s GPS tracks, and leverage
the mined knowledge to improve the applications on the Web.

5.2 User Behavior Recognition Based on Sensor Data

Parkka et al. [2006] and Ermes et al. [2006] aim to recognize human activ-
ity, such as walking and running, using the data collected by more than 20
kinds of wearable sensors on a person. A user’s body condition, such as tem-
perature, heart rate, and GPS position, as well as environment situation, like
environmental humidity and light intensity, are employed as input features of
a classification model to differentiate the person’s everyday activities. However,
it is somehow obtrusive and complex for normal users to carry extra sensors in
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their daily lives. The major difference between the technique mentioned above
and our work is in that we understand human activities only based on raw
GPS data. Thus, it is more promising to be deployed in people’s GPS phone
without increasing their burden in wearing extra sensors. Additonally, as GPS
data can be a part of sensor ensemble, our approach is also useful to improve
the recognition performance of such methods.

LOCADIO [Krumm et al. 2004] used a Hidden Markov Model to infer motion
of a device using 802.11 radio signals, while Timothy et al. [2006] attempted to
detect the mobility of a user based on GSM signal. Unfortunately, the observa-
tions of such radio signals vary in many conditions, such as time, space and the
number of users in a radio cell. As a consequence, the locations estimated based
on such signals are quite coarse; so only three simple motions including station-
ary, walking and driving can be inferred in Timothy’s work [2006]. Likewise,
LOCADIO can only differentiate two fundamental types of activities, Still and
Moving. The essential difference between our approach and this strand of work
lies in not only the GPS data with higher locality accuracy but also the spatial
information we mined from GPS data to improve the recognition performance.
Given the fact that a GPS receiver will lose signal indoors, it is promising to
enable a more sophisticated approach to recognize user activities by combining
the technique mentioned above with ours.

5.3 GPS Data-Driven Mining

GPS data-based activity recognition has received considerable attention during
the past years. These works include extracting significant places of an individ-
ual [Ashbrook et al. 2003; Hariharan and Toyama 2004], predicting a person’s
movement [Krumm et al. 2007; Liao et al 2005] and modeling a user’s trans-
portation routine [Liao et al. 2004 and Patterson et al. 2003]. Patterson et al.
[2003] use GPS tracks to classify a user’s mode of transportation as either “bus,”
“foot,” or “car,” and to predict his or her most likely routes. Similarly, Liao et al.
[2004] aim to infer an individual’s transportation routine given the individual’s
GPS data. Their system first detects a user’s set of significant places, and then
recognizes the activities like shopping and dining that could take place at those
significant places.

As compared to our approach, these works have the following constraints. 1)
It requires the information regarding road networks, bus stops and parking lots.
2) The model learned from a particular user’s historical GPS data is customized
for the user. Thus, it is not generic to be deployed in ubiquitous computing
systems. However, we mine the knowledge from the raw GPS data collected
by multiple users while the knowledge can contribute to both personal use
and public use. What’s more, we do not need additional information from other
sensors or map information like bus stops. This information was automatically
mined from user-generated GPS logs.

6. CONCLUSION

In this paper, we move towards understanding user mobility based on GPS data.
A work aiming to infer transportation modes from GPS logs based on supervised
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learning is reported. Using our approach, four kinds of transportation modes,
consisting of walking, driving, taking a bus and riding a bike, are differentiated
from one another. Such transportation modes can feature a user’s mobility and
support a variety of pervasive computing systems, such as human behavior
recognition, trajectory sharing and smart route recommendation. Using the
GPS logs collected by 65 people over a period of 10 months, we evaluated our
approach via a set of experiments and produced the following results.

First, the change point-based segmentation approach outperforms the base-
line methods, including uniform distance-based and uniform duration-based
segmentation, in inferring the transportation modes and detecting change
points of a GPS trajectory. This method can effectively partition a trajectory
into segments of different transportation modes, while maintaining a segment
of one mode as long as possible. Consequently, this approach is more likely
to provide a better foundation for the inference model and achieve a relative
higher inference performance.

Second, beyond the Basic Features directly using velocity and acceleration,
the Advanced Features, including heading change rate, stop rate, and velocity
change rate, is more discriminative in differentiating between transportation
modes. No matter being used alone or in combination, the Advanced Features

always shows its advantages over the Basic Features. It is not difficult to un-
derstand that the Advanced Features depends more on the characteristics of
the vehicle a user selected rather than the traffic conditions the user experi-
enced. Based on the change point-based segmentation method and Decision
Tree-based inference model, we achieved an inference accuracy greater than
0.71 by combining the Advanced Features with Basic Features.

Third, beyond the normal postprocessing, the graph-based post-processing
algorithm brought a 4 percent improvement over the preliminary inference
results. In this method, we mined an implied graph from user-generated GSP
logs. This graph contains the probabilistic cues, including the commonsense
constraints of the real world and typical user behaviors based on locations,
while keeping our method independent of additional map information.
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