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Abstract. Uncertainty is intrinsic in most technical systems, including Cyber-

Physical Systems (CPS). Therefore, handling uncertainty in a graceful manner 

during the real operation of CPS is critical. Since designing, developing, and 

testing modern and highly sophisticated CPS is an expanding field, a step to-

wards dealing with uncertainty is to identify, define, and classify uncertainties 

at various levels of CPS. This will help develop a systematic and comprehen-

sive understanding of uncertainty. To that end, we propose a conceptual model 

for uncertainty specifically designed for CPS. Since the study of uncertainty in 

CPS development and testing is still irrelatively unexplored, this conceptual 

model was derived in a large part by reviewing existing work on uncertainty in 

other fields, including philosophy, physics, statistics, and healthcare. The con-

ceptual model is mapped to the three logical levels of CPS: Application, Infra-

structure, and Integration. It is captured using UML class diagrams, including 

relevant OCL constraints. To validate the conceptual model, we identified, clas-

sified, and specified uncertainties in two distinct industrial case studies.  

Keywords. Uncertainty; Cyber-Physical Systems; Conceptual Model. 

1 Introduction 

Cyber-Physical Systems (CPS) are present in a variety of safety/mission critical do-

mains [2-4]. Given the pervasiveness of CPS and their criticality to the daily function-

ing of society, it is vital for such systems to operate in a reliable manner. However, 

since they generally function in an inherently complex and unpredictable physical 

environment, a major difficulty with these systems is that they must be designed and 

operated in the presence of uncertainty. By uncertainty we mean here the lack of cer-

tainty (i.e., knowledge) about the timing and nature of inputs, the state of a system, a 

future outcome, as well as other relevant factors. 

As a first crucial step in such an investigation, we feel that it is necessary to under-

stand the phenomenon of uncertainty and all its relevant manifestations. This means 

to systematically identify, classify and specify uncertainties that might arise at any of 

the three levels of CPS: Application, Infrastructure, and Integration. Based on study-

ing and analyzing existing uncertainty models developed in other fields, including 
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philosophy, physics, statistics and healthcare [5-8], we have defined an uncertainty 

conceptual model for CPS (U-Model) with the following objectives: 1) provide a 

unified and comprehensive description of uncertainties to both researchers and practi-

tioners, 2) classify uncertainties with the aim of identifying common representational 

patterns when modeling uncertain behaviors, 3) provide a reference model for sys-

tematically collecting uncertainty requirements, 4) serve as a methodological baseline 

for modeling uncertain behaviors in CPS, and, last but not least, 5) provide a basis for 

standardization of the conceptual model leading to its broader application in practice. 

To verify the completeness and validity of the U-Model, we validated it using un-

certainty requirements
1
 collected from two industrial case studies from two different 

domains: 1) Automated Warehouses developed by ULMA Handling Systems 

(www.ulmahandling.com/en/), Spain, 2) GeoSports
 
(fpx.se/geo-sports/) developed by 

Future Position X, Sweden. This empirical validation was systematically performed in 

several stages and, as a result, several revisions of the U-Model were obtained in addi-

tion to a refined set of uncertainty requirements. The version of the U-Model that 

emerged from this work is presented in this paper. Based on the results of this valida-

tion, we discovered 61.5% (averaged across the two case studies) additional uncer-

tainties not identified in the initial specifications. The rest of this paper is organized as 

follows:  Section 2 presents the background and a running example. Section 3 pre-

sents the U-Model. Section 4 presents evaluation and discussion. Section 5 discusses 

related work and we conclude the paper in Section 6. 

2 Background and Running Example 

This section first presents key definitions that are required to understand the rest of 

the paper in Section 2.1, followed by a running example that will be used to explain 

U-Model concepts (Section 2.2) throughout the paper. 

2.1 Definitions 

A CPS is defined in [1] as: “A set of heterogeneous physical units (e.g., sensors, con-

trol modules) communicating via heterogeneous networks (using networking equip-

                                                             
1 
Use cases containing scenarios having uncertainty.  

 
Fig. 1.  Conceptual model of a Cyber-Physical System [1] 
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ment) and potentially interacting with applications deployed on cloud infrastructures 

and/or humans to achieve a common goal” and is conceptually shown in Fig. 1. As 

defined in [1], uncertainty can occur at the following three levels (Fig. 1): 1) Applica-

tion level: Due to events/data originating from the application of the CPS; 2) Infra-

structure level: Due to interactions including events/data among physical units, net-

working infrastructure, and/or cloud infrastructure, 3) Integration level: Due to either 

interaction among uncertainties at the first two levels or due to interactions between 

application and infrastructure levels.  

2.2 Running Example 

Due to confidentiality constraints, the actual industrial CPS case studies that we used 

to evaluate the U-Model (as reported in Section 4.2) cannot be described in detail. 

Instead, we chose a Videoconferencing Systems (VCS) developed by Cisco, Norway, 

as an example to illustrate the conceptual model that has been used in our previous 

projects.  

A typical VCS sends and receives audio/video streams to other VCS in a videocon-

ference including dedicated hardware-based VCS, software-based VCS for PCs, and 

cloud-based VCS solutions (e.g., WebEx) as shown in Fig. 2 (inspired from [9] and 

our existing collaboration with Cisco). To support videoconferences a complex infra-

structure is provided by Cisco (Fig. 2) comprising of a variety of hardware such as 

gateways (e.g., Expressway) and dedicated servers (e.g., Telepresence and unified 

Call Management servers). In Fig. 2, we also show the various levels at which the 

uncertainties can occur in the context of our running example. For example, as shown 

in Fig. 2, at Site 2, the interactions of Application level uncertainties in VCS 2 and 

uncertainties in the Telepresence Servers are shown as Integration level uncertainties.   

To facilitate the understanding of concepts, a VCS represents aspects of the physi-

cal world in a somewhat simplified form. Among other functions, the VCS controls 

the movement of a set of cameras that are directly attached to it via wired/wireless 

media. This can also be performed via a cloud-based VCS application (i.e., WebEx) 

in addition to dedicated hardware-based solutions. In the course of a videoconference, 

a number of different uncertainties exist due to the complex and heterogeneous col-

lection of networks, cloud-based infrastructures, and VCS. 

 

Fig. 2.  Running Example – Videoconferencing System (VCS) 
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3 Uncertainty Conceptual Model 

The U-Model as shown in Fig. 3 

includes Belief Model, Uncertainty 

Model and Measure Model. 

3.1 Belief Model 

The U-Model takes a subjective approach to representing uncertainty. This means that 

uncertainty is modeled as a state (i.e., worldview) of some agent or agency – hence-

forth referred to as a BeliefAgent – that, for whatever reason, is incapable of pos-

sessing complete and fully accurate knowledge about some subject of interest. Since it 

lacks perfect knowledge, a BeliefAgent possesses a set of subjective Beliefs about the 

subject. These may be valid, if the beliefs accurately represent facts, or invalid, if they 

do not
2
. A Belief is an abstract concept, but can be expressed in concrete form via one 

or more explicit BeliefStatements. Different BeliefAgents may hold different views 

about a given subject, which is why each BeliefStatements is associated with a par-

ticular BeliefAgent. Note that a BeliefAgent does not necessarily represent a human 

individual; it could constitute a community of individuals, some non-human organ-

ism, or even some technological system, such as a computer system
3
.  

These and other core concepts of the U-Model are represented as a class diagram in 

Fig. 4, where subjective concepts are represented by the grey-filled boxes and objec-

tive concepts as the unfilled boxes in Fig. 4. Subjective concepts are manifestations of 

the imperfect knowledge of a BeliefAgent. Conversely, objective concepts reflect 

objective reality and are, therefore, independent of BeliefAgents and their imperfec-

tions. One significant characteristic of the subjective concepts is that they can vary 

over time, as might occur, e.g., when more information becomes available
4
. 

Uncertainty (lack of confidence) represents a state of affairs whereby a Be-

liefAgent does not have full confidence in a Belief that it holds. This may be due to 

various factors: lack of information, inherent variability in the subject matter, igno-

                                                             
2 Such a strictly binary categorization may not be always realistic, since Beliefs could be characterized by degrees of 

validity. However, in this model, we choose to ignore such subtleties. Specifically, a BeliefStatement is deemed to be 

valid if it is a sufficient approximation of the truth for the purpose on hand. 
3 In this case, the Beliefs would be reflected in the rules that are programmed into the system. 
4 However, more information does not necessarily imply a decrease in uncertainty. 

 

Fig. 4.  The Core Belief Model 

 

 

Fig. 3.  The top-level model of U-Model 
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rance, or even due to physical phenomena, e.g., the Heisenberg uncertainty principle. 

While Uncertainty is an abstract concept, it can be represented by a corresponding 

Measurement expressing in some concrete form the subjective degree of uncertainty 

held by the agent to a BeliefStatement. Since the latter is a subjective notion, a 

Measurement should not be confused with the degree of validity of a BeliefState-

ment. Instead, it indicates the level of confidence that the agent has in a statement
5
. 

Finally, note that this model is intentionally made very general, which allows it to 

be extended and customized for a variety of purposes, e.g., uncertainty model-based 

testing of CPS in the context of our project (www.u-test.eu). Fig. 4 does not show the 

complete model, e.g., to reduce visual clutter, some of the OCL constraints have been 

removed. In the remainder of this section, we examine key concepts of the core model 

in more detail and illustrate some of them using the running VCS example. 

Belief. A Belief is an implicit subjective explanation or description of some phenom-

ena or notions
6
 held by a BeliefAgent. This is an abstract concept whose only con-

crete manifestation is as a BeliefStatement.  

In the context of our running example, a test engineer at Cisco may have his/her 

own Beliefs about how a VCS works. When coding test cases, he/she concretizes 

his/her Beliefs as executable test scripts that may or may not correspond to the actual 

implementation the VCS. A BeliefStatement in this context could be manifested as 

one executable test case file and in other contexts it may correspond to other artifacts, 

e.g., source code.  

BeliefAgent. A BeliefAgent is a physical entity
7
 owning one or more Beliefs about 

phenomena/notion. A BeliefAgent can take actions based on its Beliefs. In our exam-

ple of CPS testing, BeliefAgents include: 1) Application level: software test engineers 

focusing on testing new versions of the VCS software, and 2) Infrastructure level: 

Network engineers focusing on testing a VCS under diverse network situations.  

BeliefStatement. A BeliefStatement is a concrete and explicit specification of some 

Belief held by a BeliefAgent about possible phenomena or notions belonging to a 

given subject area. A BeliefStatement can be an aggregate of two or more component 

BeliefStatements, or it may require one or more prerequisite BeliefStatements.  

The concrete form of a BeliefStatement can vary, and may represent informal 

pronouncements made by individuals or groups, documented textual specifications 

expressed in either natural or formal languages, formal or informal diagrams, etc.  

Due to the complex nature of objective reality and our human and technical limita-

tions, it may not always be possible to determine whether or not a BeliefStatement is 

valid. Furthermore, the validity of a statement may only be meaningfully defined 

                                                             
5 E.g, many people in the past were absolutely certain that the Earth was flat. 
6
 “Phenomena” here is intended to cover aspects of objective reality, whereas “notion” covers abstract 
concepts, such those encountered in mathematics or philosophy. 

7
 We exclude here from this definition “virtual” BeliefAgents, such as those that might occur in virtual 

reality systems and computer games. 



Simula Research Laboratory, Technical Report 2015-3                                                Feb, 2016 

within a given context or purpose at a given point of time. Thus, the statement that 

“the Earth can be represented as a perfect sphere” may be perfectly valid for some 

purposes but invalid or only partly valid for others. For our needs, we are more inter-

ested in analyzing uncertainties in a BeliefStatement	rather than studying its validity. 

In our example, we define the following BeliefStatements: 1) Application level: 

The VCS will successfully connect to another VCS 70% of the time (see Table 1); 2) 

Infrastructure level: The Expressway gateway is successful 99% of the time in con-

necting a Cisco VCS with a third party VCS; and 3) Integration level: A VCS com-

municates with the Expressway gateway with a 90%-95% success rate.  

Evidence. Evidence is either an observation or a record of a real-world event occur-

rence or, alternatively, the conclusion of some formalized chain of logical inference 

that provides information that can contribute to determining the validity (i.e., truthful-

ness) of a BeliefStatement. Evidence is inherently an objective phenomenon, repre-

senting something that actually happened. This means that we exclude here the possi-

bility of counterfeit or invented evidence. Nevertheless, although Evidence represents 

objective reality, it needs not be conclusive in the sense that it removes all doubt (Un-

certainty) about a BeliefStatement. In our example of an Application level Be-

liefStatement, i.e., “The VCS successfully dials to another VCS 70% of the time”. 

The Evidence of the 70% of success rate of dial may be obtained from the execution 

of 100 test cases on the VCS in the past week (see Evidence Table 1).  

EvidenceKnowledge.	 EvidenceKnowledge expresses an objective relationship be-

tween a BeliefStatement and relevant Evidence. It identifies whether the correspond-

ing BeliefAgent is aware of the appropriate Evidence. Thus, an agent may be either 

aware that it knows something (KnownKnown), or it may be completely unaware of 

Table 1.  Running Example – Dial of VCS 

Package Concept Explanation 

Belief 
Model 

Level Application 

BeliefAgent	 Software testing engineers 
BeliefStatement	 The VCS successfully dials to another VCS 70% of the time. 
Indeterminacy 
Source 

Improper human behavior where he/she enters an incomplete name/number 
of VCS to dial IndeterminacyNature:: Non-determinism, and Inde-
terminacyKnowledge.type= KnowledgeType::KnownUnknown 

Evidence Execution of 100 test cases on the VCS in the past week involving the dial 
command EvidenceKnowledge.type =KnowledgeType::KnownKnown 

Uncertainty Uncertainty in whether the dial to another VCS will be successful or not. 
This concept may depend on another uncertainty composed by another 
BeliefStatement	specified	by	the	network	engineer, e.g. "The Express-
way gateway is 99% of the time successful in connecting Cisco's VCS with 
third party VCS." 

Uncertain-
ty Model 

Type  Occurrence 
Lifetime Difference of time that the dial was initiated and response from the system 

was received 

Locality Invocation of the dial API of VCS 

Pattern Derived pattern from the collection of values of lifetime of the uncertainty 

Risk Low or even can be ignored 

Measure 
Model 

Measurement 70% of the time, derived from Evidence based on test execution history 

Measure Probability 

 



Simula Research Laboratory, Technical Report 2015-3                                                May, 2015 

 

Evidence (UnknownKnown). This is formally expressed by the two constraints at-

tached to EvidenceKnowledge (see below). An example is provided in Table 1.  
Context EvidenceKnowledge 
Inv: self.type = KnowledgeType::KnownKnown or self.type = Knowledg-

eType::UnknownKnown 

Indeterminacy. Indeterminacy is a situation whereby the full knowledge necessary 

to determine the required factual state of some phenomena/notions is unavailable
8
. 

This is an abstract concept whose only concrete manifestation is in the form of an 

IndeterminacySource. As noted earlier, this may be due either to subjective reasons 

(e.g., agent ignorance) or to objective reasons (e.g., the Heisenberg uncertainty).  

IndeterminacySource. It is also useful to explicitly identify factors that lead to Un-

certainty referred to as IndeterminacySources. This represents a situation whereby 

the information required ascertaining the validity of a BeliefStatement is indetermi-

nate in some way, resulting in Uncertainty being associated with that statement. One 

possible source of indeterminacy can be another BeliefStatement, which is why the 

latter is a specialization of IndeterminacySource (see Fig. 5).  

BeliefStatement and Uncertainty when associated with IndeterminacySource repre-

sent sources of lack of confidence. And the source of Uncertainty is subset of the 

source of BeliefStatement, which own this Uncertainty (see below). 
Context BeliefStatement 
Inv: self.uncertainty->forAll(u:Uncertainty|self.indeterminacysource-> in-

cludesAll(u.source)) 

For example, for the following BeliefStatement: “The VCS successfully dials to 

another VCS 70% of the time”, for which there might be several Indetermina-

cySources. A possibility is incorrect operator behavior, where an incomplete name of 

the target VCS specified (IndeterminacySource entry in Table 1). 

IndeterminacyNature. IndeterminacyNature represents the specific kind of inde-

terminacy and can be one of the following: 1) InsufficientResolution – The infor-

mation available about the phenomenon in question is not sufficiently precise; 2) 

MissingInfo – The full set of information about the phenomenon in question is una-

vailable at the time when the statement is made; 3) Non-determinism – The phe-

nomenon in question is either practically or inherently non-determinism; 4) Compo-

site – A combination of more than one kinds of indeterminacy; 5) Unclassified – 

Indeterminate indeterminacy. 

IndeterminacyKnowledge.	 IndeterminacyKnowledge expresses an objective rela-

tionship between an IndeterminacySource and the awareness that the BeliefAgent 

has of that source. So, even though it is agent specific, it is still an objective concept 

since it does not represent something that is declared by the agent. For instance, an 

                                                             
8 Care should be taken to distinguish between indeterminacy and non-determinism. The latter is only one possible source 

of indeterminacy. 
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agent may be aware that it does not know something about a possible source 

(KnownUnknown), or the agent may be completely unaware of a possible source of 

indeterminacy (UnknownUnknown). 

This is formally expressed by constraints attached to IndeterminacyKnowledge 

(see below). 
Context IndeterminacyKnowledge 
Inv: self.type = KnowledgeType::KnownUnknown or self.type = Knowledg-

eType::UnknownUnknown 

KnowledgeType. KnowledgeType (represented as enumeration) has four values:  

1) KnownKnown – Indicates that an associated BeliefAgent is consciously aware 

of some relevant aspect. 

2) KnownUnknown (Conscious Ignorance) – Indicates that an associated Be-

liefAgent understands that it is ignorant of some aspect. 

3) UnknownKnown (Tacit Knowledge) – Indicates that an associated BeliefAgent 

is not explicitly aware of some relevant aspect that it, nevertheless, may be able to 

exploit in some way 

4) UnknownUnknown (Meta Ignorance) – Indicates that an associated Be-

liefAgent is unaware of some relevant aspect. 

At a given point in time, a BeliefAgent always makes a statement based on a 

KnownKnown Evidence and a KnownUnknown IndeterminacySource. Splitting 

EvidenceKnowledge and IndeterminacyKnowledge provides the flexibility to ena-

ble transitions among different knowledge types (e.g., from UnknownKnown to 

KnownKnown), based on the evolution of EvidenceKnowledge and Indetermina-

cyKnowledge related to the associated BeliefAgent.  

For the following BeliefStatement: “The VCS successfully dials to another VCS 

70% of the time” and an IndeterminacySource is improper operator behavior, the 

KnowledgeType of IndeterminacyKnowledge is KnownUnknown. 

Measurement. Measurement when associated with a given IndeterminacySource 

represents the optional quantification (or qualification) that specifies the degree of 

indeterminacy of the IndeterminacySource. For example, in the case of a non-

determinism IndeterminacySource, its measurement could be expressed by a proba-

bility or a probability density function. For the example presented in Table 1, ‘70%’ is 

the measurement of the IndeterminacySource improper operator behavior. 

Measurement when associated with Uncertainty is a subjective concept represent-

ing the actual measured value of an uncertainty defined by a BeliefAgent. It may be 

possible to specify a Measurement that quantifies in some way (e.g., as a probability) 

the degree of the uncertainty that a BeliefAgent associates with a BeliefStatement.  

Measurement when associated with Belief represents sets of measured values of 

all the uncertainties contained by a BeliefStatement defined by a BeliefAgent. Sever-

al constraints on Measurement ensure that each Measurement owned by either Be-

lief, Uncertainty or IndeterminacySource has a unique Measure. Currently, we 

modeled three different measures, i.e., Probability, Ambiguity and Vagueness that 
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are discussed in the Measure model (Section 3.3). In the future, we will provide UML 

model libraries for Measurement when implementing U-Model as a UML profile.  

Measure.	Measure is an objective concept specifying method of measuring uncer-

tainty. More details are presented in Section 3.3. 

3.2 Uncertainty Model 

This model (Fig. 5) was inspired by concepts defined in the literature on uncertainty 

[10-14] and is an adjunct to the Core Belief Model (Section 3.1). The uncertainty 

model expands on Uncertainty from several different viewpoints and introduces relat-

ed abstractions. Notice that Uncertainty has a self-association. This self-association 

facilitates: 1) relating different Application level uncertainties to each other, 2) relat-

ing different Infrastructure level uncertainties to each other, 3) relating Application 

level and Infrastructure level uncertainties to each other, 4) relating Integration level 

uncertainties to each other, and 5) relating Application, Integration, and Infrastructure 

level uncertainties. This self-association can be specialized into different types of 

relationships such as ordering and dependencies. Here, we intentionally did not spe-

cialize it to keep the model general, so that it can be specialized for various purposes 

and contexts. In the rest of the section, we discuss each subtype of Uncertainty and 

its associated concepts. 

Uncertainty. As noted, Uncer-

tainty represents a situation 

whereby a BeliefAgent lacks 

confidence in a BeliefStatement. 

Fig. 5 shows a conceptual model 

for different types of Uncertainty 

inspired from the concepts report-

ed in [11, 13, 14]. Uncertainty is 

specialized into the following types:  

1) Content – represents a situation, whereby a BeliefAgent lacks confidence in 

content existing in a BeliefStatement;  

2) Environment – represents a situation whereby a BeliefAgent lacks confidence 

in the surroundings of a physical system existing in a BeliefStatement;  

3) GeographicalLocation –represents a situation whereby a BeliefAgent lacks 

confidence in geographical location existing in a BeliefStatement;  

4) Occurrence –represents a situation whereby a BeliefAgent lacks confidence in 

the occurrence of events existing in a BeliefStatement;  

5) Time –represents a situation whereby a BeliefAgent lacks confidence in time 

existing in a BeliefStatement.  

For example, for the BeliefStatement: “The VCS successfully calls another VCS 

70% of the time”, the Uncertainty is whether the dialing to another VCS will be suc-

cessful or not and classified as Occurrence uncertainty. In case of the BeliefState-

 
Fig. 5.  The Core Uncertainty Model 
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ment: “The Expressway gateway is successful 99% of the time in connecting a Cisco 

VCS with a third party VCS”, the Uncertainty is in the connection of the gateway 

with the third party VCS, and type of uncertainty is again Occurrence (see type of 

Uncertainty in Table 1). 

Lifetime.	 Life-

time represents an 

interval of time, 

during which an 

Uncertainty ex-

ists. That is, an 

Uncertainty may 

appear temporari-

ly and then disap-

pear. On the other 

hand, an Uncer-

tainty could be persistent, i.e., it remains until appropriate actions are taken to resolve 

it.  

An example of Lifetime is shown in Table 1. We show two types of time in the di-

agram: 1) Real Time showing the actual passing of the time, 2) Testing Time, i.e., a 

time point in real time, where a testing activity was performed, e.g., a call attempt to 

establish a videoconference (stimulus to the system under test) or a response from the 

system was received about success or failure of the call (test result). Time points tn are 

shown on Testing Time in Fig. 6. A BeliefStatement can be made at any point in the 

real time, for example, three versions of BeliefStatement B1 (B1.1, B1.2, and B1.3) can 

be made at different points of time as shown in Fig. 6. Lifetime of Uncertainty (the 

occurrence of successful dial) in BeliefStatement B1 should be tn – tn-1: difference of 

time that the dial was initiated and response from the system was received for B1.3.  

Pattern.	 Fig. 7 shows a conceptual 

model for the occurrence Pattern of 

Uncertainty inspired from concepts 

reported in [13, 15, 16]. Notice that in 

this section, patterns presented are by 

no means the representation of a com-

plete set of patterns that may exist for 

an Uncertainty. Rather, we only present the most common patterns.  

Periodic uncertainty occurs at regular intervals of time, whereas Persistent Uncer-

tainty is the one that lasts forever. The definition of “forever” varies; e.g, an uncer-

tainty may exist permanently until appropriate actions are taken. On the other hand, 

an uncertainty may not be resolvable and remains forever. Both Periodic and Persis-

tent inherit from Systematic, which means that these types of patterns occur in some 

methodical manners, i.e., a pattern that can be described in a mathematical way.  

 

Fig. 6.  Example of Lifetime and Pattern of Uncertainty 

 

 

Fig. 7.  The Patterns of Uncertainty 
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An uncertainty with an Aperiodic pattern occurs at irregular intervals of time, 

which is further specialized into Sporadic and Transient. A Sporadic uncertainty 

occurs occasionally, whereas a Transient uncertainty occurs temporarily.   

Systematic and Aperiodic uncertainty patterns inherit from Temporal, which 

means that they both inherently have the notion of time. If an uncertainty occurs 

without a definite method, purpose or conscious decision, the type of the pattern it 

follows is referred to as Random.  

Uncertainty when associated with Systematic represents pattern and can be meas-

ured by Probability (see below).  
Context Uncertainty 
Inv: self.pattern.oclIsKindOf(Systematic) implies self.measured-

>select(m:Measurement |m.meaasure.oclIsKindOf(Probability))->size()>0 

For example, when looking at Fig. 6, a pattern of the Uncertainty (Occurrence of 

a successful call attempt) can be derived after collecting values of Lifetime of the 

Uncertainty (see Pattern in Table 1). 

Locality. Locality is a particular place or a position where an Uncertainty occurs in a 

BeliefStatement. For example, for the BeliefStatement: “The VCS successfully dials 

to another VCS 70% of the time”, the Locality of the Uncertainty  (whether the call 

attempt to another VCS will be successful or not) is in the invocation (position) of 

dial API of VCS (see Locality in Table 1).  

Risk. An uncertainty may have an associated 

Risk and high-risk uncertainties deserve spe-

cial attention. As shown in Fig. 8, an Uncer-

tainty might or might not associated to Risk, 

whose level can be classified into four levels 

according to the ISO 31000 – Risk Manage-

ment standard [17].	 Level/Rating is derived 

from Measurement owned by Uncertainty 

(e.g., Probability of the Occurrence of an Uncertainty) and Measurement owned by 

Effect (e.g., high impact using the risk matrix in [18] or any other matrix). For exam-

ple, for the BeliefStatement: “The VCS successfully calls another VCS 70% of the 

time”, the Risk associated with the Uncertainty in this BeliefStatement is low or the 

risk could be even ignored (see Risk in Table 1). 

3.3 Measure Model 

Fig. 9 shows the Measure Model of the U-

Model, inspired from concepts reported in 

[11-13] and by no means complete. De-

pending on the type of Uncertainty, a 

variety of measures could be applied and new ones can also be proposed when need-

ed. We aim to give a high-level introduction to commonly known measures. 

 

Fig. 9.  Measure Model 

 

Fig. 8. The Risk of Uncertainty 
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An uncertainty may be described ambiguously (Ambiguity). For example, in 

statement “The camera is down”, the ambiguity is in the measurement, i.e., the cam-

era is either facing down or disconnected. Interested readers may consult [19] for 

various measures of Ambiguity. Another common way of measuring Uncertainty is 

in a vague manner (i.e., Vagueness), which can be further classified into Fuzziness 

and Non-Specificity. Regarding Fuzziness, an uncertainty may be measured using 

fuzzy methods. More details can be referred to the fuzzy logic literature such as [19]. 

In certain cases, it may not be possible to measure an uncertainty using quantitative 

measurements and instead qualitative measurements can be used. Such qualitative 

measurements are classified under Non-Specificity methods. Finally, a common way 

of measuring uncertainty is via Probability. For example, for the BeliefStatement: 

“The VCS successfully calls another VCS 70% of the time”, the Uncertainty is 

measured by Probability (see Measure in Table 1).  

4 Evaluation 

This section presents the results of the industrial case studies that we conducted to 

evaluate the U-Model and collect uncertainty requirements. First, we present a brief 

overview of the industrial case studies followed by the data collection and validation 

procedure, results, discussions and lessons learnt. 

4.1 Industrial Case Studies 

Two industrial case studies were conducted. 

Automated Warehouse (AW) by ULMA Handling Systems ULMA. Handling 

Systems develops automated handling systems for worldwide warehouses of different 

natures such as Food and Beverages, Industrial, Textile and Storage. Each handling 

facility (e.g., cranes, conveyors, sorting systems, picking systems, rolling tables, lifts, 

and intermediate storage) forms a physical unit and together they are deployed to one 

handling system application (e.g., Storage). A handling system cloud supervision 

system (HSCS) generally interacts with diverse types of physical units, network 

equipment, and cloud services. Application-specific processes in HSCS are executed 

spanning clouds and CPS requiring different configurations. 

Geo Sports (GS) by Future Position X. To improve the performance of an individu-

al or a team, conditions of athletes must be measured accurately, routinely over a 

sustained period of time, and in the athletes’ real environment (e.g., soccer field). Due 

to the latest technology in positioning, it has become possible to measure the perfor-

mance of athletes both outdoors and indoors. The measurement is made continuously 

and in real time using geo sensors during training and live games. In the context of U-

Test, we use Bandy in Geo Sports, a kind of ice hockey predominantly played in 
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Northern Europe and Russia, as a case study. This project is the first in the world in 

terms of monitoring sports on ice using sensors. 

4.2 Development and Validation of Uncertainty Requirements and U-Model 

We collected uncertainty requirements from the two industrial case studies in the 

following ways. The uncertainty requirements were collected as part of an EU project 

on testing CPS under uncertainty (www.u-test.eu). An initial set of uncertainty re-

quirements were collected by the industrial partners themselves and were later classi-

fied into the three CPS levels: Application, Infrastructure, and Integration. Later on, 

the researchers of Simula Research Laboratory conducted one workshop per partner 

to further refine the requirements. For AW, the onsite workshop took around three 

days, whereas in case of GS, a one-day onsite workshop was organized.  

The validation procedure is summarized in Fig. 10 and comprises two parallel val-

idation processes. The first validation process is related to the validation of the U-

Model and was mainly conducted by the researchers. The second validation process 

focuses on the validation of uncertainty requirements and was mainly performed by 

the industrial partners.  

The validation was developed incrementally (Activities A1 and A2 in Fig. 10), 

Fig. 10.  Development and Validation of Uncertainty Requirement and U-Model 

 



Simula Research Laboratory, Technical Report 2015-3                                                Feb, 2016 

based on existing models in the literature and other related published works (see 

Section  4.4 for details). The Simula team validated the conceptual model using two 

types of examples shown as inputs to A2 in Fig. 10: 1) Examples of uncertainties 

from domains other than CPS, and 2) A subset of VCS requirements. As a result an 

initial version of the U-Model was produced referred as U-Model V.1 in Fig. 10.  

In parallel, initial uncertainty requirements (Reqs V.1) were provided (Activity B1 

in Fig. 10) by the industrial partners based on their domain knowledge, existing 

requirements of their CPS, and some information from the real operation of the CPS. 

These initial uncertainty requirements were used as input for A3, focusing on further 

refining the U-Model. In addition, the researchers inspected the collected uncertainty 

requirements using a requirements inspection checklist provided in [20] and provided 

a set of comments for the industrial partners on how to improve their requirements. 

There were two key outputs of the A3 activity: U-Model V.2 and comments to refine 

the requirements. These comments were used by the industrial partners to produce a 

second version of requirements (Reqs V.2) in B2.  

Reqs V.2 and U-Model V.2 were then used as inputs for the onsite workshops con-

ducted with the two industrial partners (FPX and ULMA) (A4/B3). These workshops 

aimed at understanding the CPS by observing them in their real operating environ-

ments, giving a presentation of U-Model to the industrial partners and collecting their 

feedback, and discussion on the uncertainty requirements. The outputs of the two 

workshops represent the current version of the U-Model (V.3) presented in this paper 

and another version of refined requirements (Reqs V.3). Problems that we encoun-

tered and eventually addressed during the revisions of U-Model are mostly related to 

incorrect associations between two concepts including e.g., wrong cardinalities and 

wrong source and target concepts, and redundant concepts.  

Finally, the researchers identified a potential set of uncertainties that were not 

specified or not explicitly specified in the requirements (Reqs V.3) and produced a 

refined version of Reqs V.3 (activity A5). We followed these steps to systematically 

perform A5. First, we analyzed each Uncertainty to identify IndeterminacySources 

that were not explicitly specified in the requirements. Second, based on the identified 

IndeterminacySources, we analyzed the semantics of each sentence in the require-

ments to identify unknown uncertainties. For example, if the subject of an English 

sentence in the requirements is Operator (which has been identified as an Indetermi-

nacySource in the first step), then one Uncertainty might be that the Operator does 

not perform the task (defined as the predicate of the English sentence) properly. 

Third, we carefully studied the possibilities of further identifying unknown uncertain-

ties by combining already identified uncertainties that are associated to the same piece 

of system behavior (specified as e.g., a use case). Whether or not two or more uncer-

tainties can be combined is dependent on the relationships among the uncertainties 

and their connections to system behavior. In the future, we will propose a methodolo-

gy with tool support relying on natural language processing to facilitate the identifica-

tion and specification of uncertainty requirements. 

These refined requirements (Refined Reqs V.3) were provided to the industrial 

partners for validating whether the newly discovered uncertainties were realistic. As a 

result the final version of requirements (Reqs V.4) was produced.  
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4.3 Evaluation Results 

For each of the industrial case studies, we mapped the three versions of uncertainty 

requirements (Reqs V.1, Reqs V.2, and Reqs V.4) to the three versions of U-Model 

(V.1 to V.3). The number of the instances of the concepts are shown in columns x 

(for mapping Reqs V.1 to U-Model V.1), y (for mapping Reqs. V.2 to U-Model V.2), 

and z (for mapping Reqs V.4 to U-Model V.3) of Table 2, respectively. Notice that 

Reqs V.3 was the result of the onsite workshops together with U-Model V.3 and thus 

these requirements are not mapped to the model since both the conceptual model and 

requirements were refined together. We analyzed in total 20 use cases for AW and 18 

use cases for GS. Notice that, the number of use cases for each case study did not 

change during the requirements collection and the U-Model validation process. They 

were selected at the beginning of the process to capture and specify the key function-

alities of the CPS.  

Based on the final version of requirements, we can see from Table 2 that most 

common types of identified uncertainties are Content uncertainties having 91 instanc-

es (the last column in Table 2) and Occurrence uncertainties having 205 instances. 

On the other hand, a relatively lower number of Time uncertainties (50), Environment 

uncertainties (32), and GeographicalLocation uncertainties (31) were found in the 

case studies. Most of the time, uncertainties are due to InsufficientResolution (42 

instances), MissingInfo (31 instances) or Non-determinism (89 instances). In terms 

of Measure, our analysis revealed that 76 of the uncertainties across the case studies 

may be measured with the Fuzziness measures, 119 with NonSpecificity, whereas 

148 with Probability. Notice that in Table 2, we do not show the concepts that have 

no instances identified from any of the case studies. 

In Table 2, the R1 = y/x -1 column represents the increased percentage of mapping 

of concepts explicitly captured in Reqs V.2 as compared to Reqs V.1. The R2 = z/y -1 

column shows the increased percentage of mapping of concepts explicitly captured in 

Reqs V.4, i.e., including unknown uncertainties that weren’t explicitly specified in 

Table 2.  Evaluation Results of Uncertainty Requirements and U-Model  

Case Study 
AW GS Freq. 

x y z R1* R2* x y z R1 R2 Total
+
 

Uncertainty 

Content 14 36 55 1.57 0.53 16 20 36 0.25 0.80 91 
Time 6 16 28 1.67 0.75 5 11 22 1.20 1.00 50 

Occurrence 27 81 126 2.00 0.56 6 50 79 7.33 0.58 205 
Environment 13 15 22 0.15 0.47 4 6 10 0.50 0.67 32 

Geographical  
Location 

4 11 14 1.75 0.27 3 11 17 2.67 0.55 31 

Sum for x, y, z / Average for R1, R2 64 159 245 1.43 0.51 34 98 164 2.39 0.72 409 

Indeterminacy 

Insufficient 
Resolution 

7 18 24 1.57 0.33 11 14 18 0.27 0.29 42 

Non-determinism 7 45 52 5.43 0.16 11 20 37 0.82 0.85 89 

MissingInfo 2 19 24 8.50 0.26 0 5 7 N/A 0.40 31 
Sum for x, y, z / Average for R1, R2 16 82 100 2.67 0.43 22 39 62 0.55 0.57 162 

Measure 

Fuzziness 6 22 51 2.67 1.32 6 15 25 1.50 0.67 76 
NonSpecificity 16 40 73 1.50 0.83 12 26 46 1.17 0.77 119 

Probability 18 56 98 2.11 0.75 4 37 50 8.25 0.35 148 
Sum for x, y, z / Average for R1, R2 40 118 222 2.09 0.96 22 78 121 3.64 0.60 343 
*
R1 = y/x – 1           

*
R2 = z/y – 1   

+
Total = AW(z)+GS(z)    Feq.is Frequency  
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Reqs V.2. As can be seen from Table 2, in case of AW for R1, on average, we identi-

fied an additional 1.43 of uncertainties and in R2 we identified an additional 0.51 of 

uncertainties. For GS, these percentages are 2.39 in R1, and 0.72 in R2, respectively. 

In total, in R1 on average we identified additional 1.91 of uncertainties, whereas in R2 

we identified on average 0.615 of unknown uncertainties. 

In Table 2, one can see that we didn’t have exact data (e.g., probability) and risk 

information available at the moment. Such data will be collected using questionnaire-

based surveys in the future to quantify the identified uncertainties. In addition, we 

didn’t observe any pattern for the occurrences of the identified uncertainties. Moreo-

ver, the Belief part of the conceptual model (e.g., concepts Belief, BeliefAgent) was 

derived to understand Uncertainty and is not relevant for the validation.  

4.4 Lessons Learned and Future Challenges 

Lack of Systematic Way of Collecting Uncertainty Requirements: Based on our 

experience of the application of the U-Model for the three case studies, we observed 

that there is no systematic and structured way (methodology and tool) available for 

precisely collecting and specifying uncertainty requirements in CPS. For our industri-

al case studies AW and GS, the uncertainty requirements were collected based on the 

experience of domain experts involved in the projects with their own understanding 

about uncertainty. In the phase of evaluation and during the onsite workshops, we 

used the U-Model as a reference model to ask questions in a structured, precise, and 

systematic manner, which eventually led to the several rounds of the refinement of the 

collected requirements, as we reported in Section 4.2. Based on our experience, we 

can conclude that there is a need of a specialized methodology with tool support for 

collecting and specifying uncertainty requirements. We plan to propose such a meth-

odology with tool support based on existing requirements specification methodolo-

gies, e.g., Zen-RUCM [21]. 

Challenges in Understanding Uncertainty: Due to the interdisciplinary nature of 

CPS, we felt that it was difficult to precisely understand uncertainties. This is mainly 

because uncertainties not only exist in software, but also in hardware, communica-

tions, humans, and the interactions among them. Comprehending an uncertainty re-

quires a wide range of knowledge across different disciplines. Particularly we ob-

served that, based on our experience of collecting requirements from the industrial 

partners, a large number of uncertainties exist due to the mismatch between software 

and physical worlds. For example, for the AW case study, according to the implemen-

tation of the warehouse management software, at a given point in time, for a specific 

customer order, a specific item must be on a particular conveyor. But in the physical 

world, the sensor installed on the conveyor might not be able to detect the item. 

Therefore, we can conclude that to be able to understand uncertainties in CPS, one 

needs to have a wide range of knowledge of various components of CPS, their inter-

actions and the overall functionalities of CPS as a whole. 
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Challenges in Quantifying Uncertainty: Another challenge is about systematically 

collecting data to quantify identified uncertainties based on the U-Model using a par-

ticular measure such as Probability. Such data are very important to support MBT of 

uncertainty and they should be precisely captured as part of models, from which tests 

should be generated. The reason of collecting such data is that uncertainty require-

ments are at the high level and a gap between them and system designs (often cap-

tured as e.g., UML models) should be bridged. Another reason is that a methodology 

with tool support is needed to help the collection of such data in a systematic and 

structured manner. The third reason is that domain experts with different background 

and experience might come up with different data; therefore a rigorous method (e.g., 

questionnaire-based survey) should be applied when collecting such data. It is also 

interesting to mention that some of this type of data (especially related to the infra-

structure level of uncertainty) may also be automatically obtained from historical data 

(e.g., an automated infrastructure monitoring system). As part of the U-Test project, 

we will propose a methodology with tool support to enable the quantification of un-

certainties for the purpose of enabling MBT of uncertainty of CPS. 

Common Uncertainties across Domains: Though we worked with two different 

case studies from different domains, we were able to identify common uncertainties 

across the domains such as uncertainties introduced by humans due to incorrect inter-

actions with CPS and uncertainties in networks (e.g., uncertain percentage of packet 

loss). Such common uncertainties will be used in the future to define reusable models 

capturing uncertainties and their corresponding behaviors of CPS, which can be con-

figured (by e.g., assigning various values to the uncertain percentage of packet loss) 

to support test case generation for CPS of various domains. Moreover, risk infor-

mation associated with common uncertainties may differ and therefore must be con-

figurable across domains. Note that such risk information can serve as key infor-

mation in test strategies to guide the generation of test cases to discover high-risk 

uncertainties. In summary, identifying common and reusable uncertainties can poten-

tially reduce the overall effort required to collect and specify uncertainties. Conse-

quently, the same or similar kinds of test strategies may be applied to generate test 

cases for common uncertainties. We will investigate the possibilities of reusing uncer-

tainties across CPS domains in the future.  

Model-based Uncertainty Testing with the U-Model: One of the key objectives of 

the development of the U-Model is to eventually facilitate automated testing of uncer-

tainty of CPS. The U-Model will be used as the starting point to define either a do-

main specific language or extensions of existing modeling languages (e.g., UML, 

SysML), with which one can capture uncertainties together with behaviors of CPS. 

The ultimate objective is to enable automated MBT of CPS. We will investigate if 

existing OMG standards (e.g., SysML, MARTE, OCL and the UML Testing Profile 

(UTP)) can be used with  extensions on uncertainty to enable automated MBT. In 

addition, we will define novel test strategies based on captured uncertainty infor-

mation to generate cost-effective test cases and test data to reveal uncertainty faults in 
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CPS before these are actually deployed for operation. Both modeling and testing 

strategies based on the U-Model are part of near future work in the context of the 

ongoing EU project. 

 

5 Related Work 

Uncertainty is a term that has been used in various fields such as philosophy, physics, 

statistics and engineering to describe a state of having limited knowledge where it is 

impossible to exactly tell the existing state, a future outcome or more than one possi-

ble outcome [17]. Various uncertainty models have been proposed in the literature 

from different perspectives for various domains. For instance, from an ethics perspec-

tive, uncertainties are classified as objective uncertainty and subjective uncertainty, 

both of which are further classified into subcategories to support decision-making [5]. 

In healthcare, uncertainty has often been defined as “the inability to determine the 

meaning of illness-related events” [6] and comprehensive domain-specific uncertainty 

models (e.g., [7]) have been proposed, as discussed in [8]. 

Uncertainty is receiving more and more attention in recent years in both system 

and software engineering, especially for CPS, which are required to be more and more 

context aware [22-24]. Moreover, CPS inherently involves tight interactions between 

various engineering disciplines, information technology, and computer science. This 

magnifies uncertainties. Therefore, adequate treatment of uncertainty becomes in-

creasingly more relevant for any non-trivial CPS. However, to the best of our 

knowledge, there is no comprehensive uncertainty conceptual model existing in litera-

ture that focused specifically on CPS design or on system/software engineering in 

general. In the remainder of the section, we discuss how the concepts uncovered dur-

ing the literature review align with our proposed conceptual model. 

The U-Model concepts BeliefAgent, BeliefStatement, and Belief of the Belief 

model were adapted from [11]. The author of [11] postulates that uncertainty involves 

a statement whose truth is expected by a person, and therefore the truth might differ 

for different persons (defined as BeliefAgent in our model). However, as we dis-

cussed in Section 3.1, we assigned a broader meaning to BeliefAgent: which can be 

an individual, a community of individuals, or a technology. The U-Model concepts 

Environment and Locality were adapted from [11, 25-27], and we related them to the 

other U-Model concepts. 

Our knowledge conceptual model aligns well with the model of knowledge report-

ed in [28]. Here the authors looked at how to manage different types of known and 

unknown knowledge to distinguish what is known from what is not known. 

Knowledge is also classified from a different perspective: something that everyone 

knows, tacit knowledge, conscious ignorance and meta-ignorance. Their objective is 

to better understand ignorance. The author of [29] also studied unknowns and provid-

ed a taxonomy particularly focusing on ignorance (named as KnownUnknown and 

UnknownUnknown in our conceptual model). In our conceptual model, we further 

elaborate these concepts and captured them as KnowledgeType, which is associated 
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to Evidence and IndeterminacySource via EvidenceKnowledge and Indetermina-

cyKnowledge.  

We classified uncertainties into various types including Content, Time and Occur-

rence. In [11], a chapter was dedicated to the discussion of content uncertainty and its 

measurement. The other two types of uncertainties were mentioned in [11, 13, 14],  

with examples but with no clear definitions provided. We adopted the measurements 

in our conceptual model.  

Different types of sources of uncertainty for various purposes have been identified 

in the literature. In [30], the authors captured sources of uncertainty by considering 

risk and reliability analyses, based on which they classified uncertainty. The authors 

of [14, 31] identified sources of uncertainty in active systems. In [23, 32], the authors 

described the sources of uncertainty in software engineering in general. We however 

proposed the U-Model concepts IndeterminacySource and IndeterminacyNature to 

capture sources of uncertainty.   

Aleatory and Epistemic uncertainties are the two generic categories of uncertainties 

discussed in many works [30, 33]. According to the work reported in [30], Aleatory is 

due to the inherent randomness of phenomena, whereas the Epistemic uncertainty is 

mainly due to the lack of knowledge. These two types are also covered in the U-

Model. For example, the Non-determinism (nature of indeterminacy in U-Model) 

represents the randomness as in Aleatory, and Epistemic is covered by MissingInfo—

nature of indeterminacy.  

In [34], the author noted that uncertainty can occur in a random or systematic man-

ner. In the Pattern part of the U-Model, we further elaborated the “systematic” con-

cept by introducing Pattern and its sub categories.  

In literature, uncertainty is often related to Risk. The acquisition project team of 

the US Air Force Electronic System Center (ESC) has proposed a risk matrix for 

evaluating risks [18]. They introduced the concepts of Risk, Impact, Likelihood of 

Occurrence, and Rate of Risk and also identified their relations. We reused these con-

cepts and linked them with Uncertainty. 

6 Conclusion 

Cyber-Physical Systems (CPS) often consist of heterogeneous physical units (e.g., 

sensors, control modules) communicating via various networking equipment, interact-

ing with applications and humans. Thus, uncertainty is inherent in CPS due to tight 

interactions between hardware, software and humans, and the need for them to be 

increasingly context aware. To understand uncertainty in the context of CPS, unified 

and comprehensive uncertainty conceptual model should be derived. The U-Model is 

such a conceptual model developed in an EU project, based on a thorough literature 

review of existing uncertainty models from various domains (e.g., philosophy, 

healthcare), and refined and validated with two industrial CPS case studies of various 

domains. Based on the results of several stages validation, we obtained the current 

version of the conceptual model in addition to refined uncertainty requirements. On 



Simula Research Laboratory, Technical Report 2015-3                                                Feb, 2016 

average, we managed to learn 61.5% of unknown uncertainties that weren’t explicitly 

specified in the uncertainty requirements collected from the two case studies.   
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