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ABSTRACT

Program comprehension is an important cognitive process that in-
herently eludes direct measurement. Thus, researchers are strug-
gling with providing suitable programming languages, tools, or
coding conventions to support developers in their everyday work.
In this paper, we explore whether functional magnetic resonance

imaging (fMRI), which is well established in cognitive neuroscience,
is feasible to more directly measure program comprehension. In a
controlled experiment, we observed 17 participants inside an fMRI
scanner while they were comprehending short source-code snip-
pets, which we contrasted with locating syntax errors. We found a
clear, distinct activation pattern of five brain regions, which are re-
lated to working memory, attention, and language processing—all
processes that fit well to our understanding of program comprehen-
sion. Our results encourage us and, hopefully, other researchers to
use fMRI in future studies to measure program comprehension and,
in the long run, answer questions, such as: Can we predict whether
someone will be an excellent programmer? How effective are new
languages and tools for program understanding? How should we
train developers?

1. INTRODUCTION
As the world becomes increasingly dependent on the billions

lines of code written by software developers, little comfort can be
taken in the fact that we still have no fundamental understanding of
how developers understand source code.

Understanding program comprehension is not limited to theory
building, but can have real downstream effects in improving educa-
tion, training, and the design and evaluation of tools and languages
for programmers. If direct measures of cognitive effort and diffi-
culty could be obtained and correlated with programming activity,
then researchers could identify and quantify which types of activi-
ties, segments of code, or kinds of problem solving are troublesome
or improved with the introduction of a new language or tool.

In studying programmers, decades of psychological and observa-
tional experiments have relied on indirect techniques, such as com-
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Figure 1: Workflow of our fMRI study.

paring task performance or having programmers articulate their
thoughts in think-aloud protocols. Each method, when skillfully
applied, can yield important insights. However, these common
techniques are not without problems. In human studies of program-
ming, individual [13] and task variance [18] in performance often
mask any significant effects hoping to be found when evaluating,
say, a new tool. Think-aloud protocols and surveys rely on self-
reporting and require considerable manual transcription and analy-
sis that garner valuable but indefinite and inconsistent insight.

In the past few decades, psychologists and cognitive neurosci-
entists have collectively embraced methods that measure physio-
logical correlates of cognition as a standard practice. One such
method is functional magnetic resonance imaging (fMRI), a non-
invasive means of measuring blood-oxygenation levels that change
as a result of localized brain activity.

In this paper, we report on results and experience from applying
fMRI in a program-comprehension experiment. While our experi-
ment is a first step toward measuring program comprehension with
fMRI, and as such inherently limited, we believe this study can il-
luminate a path toward future studies that systematically explore
hypotheses and that can be used to build stronger theories of pro-
gram comprehension.
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In our experiment, 17 participants performed two kinds of tasks
while in an fMRI scanner. In the first kind (referred to as compre-

hension tasks), developers should comprehend code snippets and
identify the program’s output. In the second kind (referred to as
syntax tasks), developers identified syntax errors in code snippets,
which is similar to the comprehension tasks, but does not require
actual understanding of the program. As a result of our study, we
found:

• evidence that distinct cognitive processes were used when
performing the comprehension tasks,

• activation of functional areas related to working memory, at-
tention, and language comprehension, and

• a left-hemisphere lateralization.
Our results provide direct evidence of the involvement of work-

ing memory and language processing in program comprehension,
and suggest that, while learning programming, training working
memory (necessary for many cognitive tasks), and language skills
(which Dijkstra already claimed as relevant for programming),
might also be beneficial for programming skills. Furthermore, our
results can help to validate or invalidate particular theories of pro-
gram comprehension. Although a single study is not sufficient to
answer general questions, we can raise some further probing ques-
tions: If program comprehension is linked to language comprehen-
sion, does learning and understanding a programming language re-
quire the same struggles and challenges as learning another spoken
language? If program comprehension only activates the left hemi-
sphere (often referred to as analytical), can we derive guidelines on
how to train students?

Taking a broader perspective, our study demonstrates the fea-
sibility of using fMRI experiments in software engineering. Al-
though we believe this is only a first step, our experience and ex-
perimental design is meant to be a template for other researchers to
adopt and improve. With decreasing costs of fMRI studies, we be-
lieve that such studies will become a standard tool also in software-
engineering research.

There are still many interesting, unanswered questions that can
follow this line of research: How do people use domain knowledge
during comprehension? To what extent is implementing source
code a creative process? Can we train anybody to become an excel-
lent programmer? How should we design programming languages
and tools for optimal developer support? Can software metrics pre-
dict the comprehensibility of source code?

In summary, we make the following contributions:
• We designed the first fMRI study to observe brain activity

during comprehension tasks. We share our design and expe-
riences.

• We conducted the study with 17 participants and observed
activation in five distinct brain regions. This demonstrates
the potential of fMRI studies in software-engineering re-
search.

• We interpret how the identified cognitive processes con-
tribute to program comprehension and discuss future re-
search directions.

2. FMRI STUDIES IN A NUTSHELL

Rationale of fMRI Studies. The first goal in fMRI studies is
to locate and isolate brain activity associated with a behavior. To
identify a region of the brain, scientists use instruments with high
spatial precision, such as fMRI scanners. After having established
a general idea of where brain activity is occurring, scientists further
try identifying the timing and interaction of brain activity between

different brain locations. For example, scientists will try to measure
the time to process a color or a word.

Complex behaviors, such as understanding a spoken sentence,
require interactions among multiple areas of the brain. Eventually,
to create a model of behavior, scientists use techniques to dissoci-
ate activated brain areas to understand how a particular brain area
contributes to a behavior. For instance, scientists found that the
left medial extra striate cortex was associated with visual process-
ing of words and pseudo words that obey English spelling, but not
activated by unfamiliar strings of letters or letter-like forms [54].

To reference an identified brain location, Brodmann areas have
proven useful as classification system. There are 521 Brodmann ar-
eas [11], each associated with cognitive processes, such as seeing
words or retrieving meaning from memory. Through extensive re-
search in this field over the past twenty years, there is a detailed and
continuously growing map between Brodmann areas and associ-
ated cognitive processes (e.g., www.cognitiveatlas.org shows
an atlas). Due to its success, we selected fMRI to evaluate whether
it is feasible to measure program comprehension.

Now, given such map, if we study a new task, such as program
comprehension, we can identify which brain regions are activated
and consequently hypothesize which cognitive processes are in-
volved. For example, we found that one of the activated regions in
our study is related to language recognition, so we can hypothesize
that language recognition is an integral part of program compre-
hension, which was not certain a priori (see Section 5.2).

General Challenges of fMRI Studies. Studies using fMRI
face general challenges due to the technologies involved, which
are very different from, say, controlled experiments in empirical
software engineering.

fMRI is based on measuring differences in oxygen levels of
blood flow in the brain. If a brain region becomes active, its oxygen
need increases, and the amount of oxygenated blood in that region
increases, while the amount of deoxygenated blood decreases—
which is known as the BOLD (blood oxygenation level dependent)

effect. Oxygenated and deoxygenated blood have different mag-
netic properties, which are measured by fMRI to identify activated
brain regions.

The BOLD effect needs a few seconds to manifest. Typically,
after about 5 seconds, it peaks; after a task is finished, the oxygen
level returns to the baseline level after 12 seconds. Often, before
returning to the baseline, the oxygen level drops below the base-
line [36]. Thus, the length of the experiment has to be planned
carefully. For optimal measurement of the BOLD effect, task du-
rations between 30 and 120 seconds have proven useful, followed
by a rest condition of about 30 to 60 seconds. Longer task dura-
tion allows the BOLD signal to accumulate, which produces better
differences between tasks. Furthermore, we need several measure-
ments, so an experiment consists of several similar tasks to average
the BOLD effect over all tasks. This way, we can make statistically
sound claims about the BOLD effect.

To unambiguously determine the brain region in which the
BOLD effect took place, we need to avoid motion artifacts, that is,
noise that occurs when participants move their head. To this end,
participants are instructed to lie as motionless as possible during
the measurement, and the head is fixed with cushions. Further-
more, communication and interaction with participants is limited,
because speaking or pressing buttons leads to further motion arti-
facts. In such a restricted setting, the experiment duration should

1Some areas can divided further, e.g., 23a and 23b.

Preprint accepted at ICSE 2014.



1 public static void main(String[] args) {

2 String word = "Hello";

3 String result = new String();

4
5 for (int j = word.length() - 1; j >= 0; j--)

6 result = result + word.charAt(j);

7
8 System.out.println(result);

9 }

Figure 2: Source code for one comprehension task with ex-

pected output ‘olleH‘.

1 public static void main(String[] ) {

2 String word = "Hello’;

3 String result = new String();

4
5 for (int j = word.length() - 1; j >= 0; j--)

6 result = result + word.charAt(j);

7
8 System.out.println{result);

9 }

Figure 3: Source code for syntax task with errors in Line 1,

2, and 8.

not exceed one hour, because after that, participants start getting
restless.

Additionally, participants can see a relatively small screen re-
flected through a mirror (illustrated in Figure 1b), which cannot
reasonably show more than 20 lines of text.

Finally, we need to distinguish brain activations caused by the
experimental tasks from other activations. In tasks that require par-
ticipants to watch a screen or listen to a signal, there will be activa-
tions caused by visual or audio processing. To filter activations that
are not specific for the experimental tasks, we need to design con-
trol tasks that are as similar as possible to the experimental tasks
and differ only in the absence of the targeted cognitive process.

Requirements for Our fMRI Study. For a study on program
comprehension, the general fMRI challenges translate into a spe-
cific set of requirements.

First, due to the small mirror in the fMRI scanner, we can show
only a limited amount of source code at a time. Technically, it
is possible to let participants scroll, but that would cause motion
artifacts.

Second, we need source-code fragments with a suitable diffi-
culty. If source code is too easy to understand, then participants
may finish too early, such that the BOLD activation returns to the
baseline before the end of a trial. On the other hand, if source
code is too difficult, participants cannot finish understanding it. In
this case, we cannot be sure that the cognitive process actually took
place long enough to be measured. The challenge is to find the right
level of difficulty—short code fragments that require 30 to 120 sec-
onds to understand. So, in a one-hour experiment, we can perform
about a dozen repetitions, for which we need comparable tasks of
similar difficulty.

Finally, to filter out irrelevant activation, we need control tasks
that ideally differ from the comprehension task only in the absence
of comprehension, nothing else. In our context, control tasks are
different from typical control tasks in software-engineering exper-
iments, where a baseline tool or language is used; in fMRI, the
similarity is defined on a low, fine-grained level, such that we can
observe the activation caused by comprehension only.

These constraints—short code fragments of controlled difficulty
and limited repetitions—impair external validity, as we discuss in
Section 7. Results of fMRI studies can be generalized to realistic
situations only with care.

Our fMRI Study. Given the constraints, we selected short algo-
rithms that are taught in first-year undergraduate computer-science
courses as comprehension tasks, such as the string-reversal code in
Figure 2. We asked participants to determine the output of the pro-
gram ("olleH", in our example), which they can accomplish only if
they understand the source code. The programs we used included
sorting and searching in arrays, string operations, and simple in-

teger arithmetic. To account for different domain knowledge of
participants, we excluded its influence by obfuscating identifiers
and enforcing program comprehension that required understanding
code from the bottom-up, that is, from syntax to semantics (see
Sec 3.1).

As control tasks (syntax tasks), we introduced syntax errors, such
as quotation marks or parentheses that do not match and missing
semicolons or identifiers, into the same code fragments as for the
comprehension tasks (illustrated in Figure 3). Then, we asked par-
ticipants to find syntax errors (Lines 1, 2, and 8). Comprehension
and syntax tasks are very similar, yet sufficiently different: Both
require the participants to look at almost identical pieces of text,
but for the syntax tasks, participants do not need to understand the
code.

To find suitable comprehension and syntax tasks, we conducted
pilot studies in a computer lab (Figure 1a). We let a total of 50 par-
ticipants solve 23 comprehension tasks and search for more than 50
syntax errors. Based on our observations, we selected 12 source-
code snippets and corresponding syntax errors with suitable dura-
tion and difficulty.

For the actual study (Figure 1b), we conducted the experiment
with 17 participants inside an fMRI scanner. Although initial fMRI
studies often do not yield conclusive results because of missing
empirical evidence, such as related studies, and hypotheses about
involved areas, to our surprise, we measured a clear activation pat-
tern (Figure 1c), which is a very encouraging result that we discuss
in Section 5.

3. STUDY DESIGN
Having provided a high-level overview, we now present the tech-

nical details of our study. Additional material (e.g., all source-code
snippets) is available at the project’s website.2 Readers interested
only in the big picture and the results may skip Section 3.

3.1 Objective
To the best of our knowledge, we performed the first fMRI study

to measure program comprehension. Since we are exploring our
options, we do not state specific research hypotheses about acti-
vated brain regions, but, instead, pose a research question:
RQ: What brain regions are activated during program comprehen-

sion?
To soundly evaluate this question, we first need to take a look at

the complexity of the comprehension process. There are, roughly
spoken, two classes of comprehension models: top-down compre-
hension [12, 70] and bottom-up comprehension [53, 65]. Top-down
comprehension describes that, when programmers are familiar with
a program’s domain, they use their domain knowledge to under-
stand source code. During that process, beacons (e.g., familiar

2tinyurl.com/ProgramComprehensionAndfMRI/
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identifier names) help to form hypotheses about a program’s pur-
pose. If developers cannot apply their domain knowledge, they use
bottom-up comprehension, so they understand source code state-
ment by statement. Since differences in domain knowledge are
hard to control, we expect more noise in top-down comprehension.
To avoid any possible additional activation, we focus on bottom-up
comprehension.

3.2 Experimental Design
All participants completed the experiment in the same order. Be-

fore the measurement, we explained the procedure to each par-
ticipant and they signed an informed consent form. Each session
started with an anatomical measurement stage that lasted 9 min-
utes. This was necessary to map the observed activation to the cor-
rect brain regions.

Next, participants solved tasks inside the fMRI scanner in the
Leibniz Institute for Neurobiology in Magdeburg. We had 12 tri-
als, each consisting of a comprehension task and a syntax task, sep-
arated by rest periods:

1. Comprehension task [60 seconds]
2. Rest [30 seconds]
3. Syntax task [30 seconds]
4. Rest [30 seconds]
The rest periods, in which participants were instructed to do

nothing, was our baseline (i.e., the activation pattern when no spe-
cific cognitive processes take place). To familiarize participants
with the setting, we started with a warming-up trial, a hello-world
example that was not analyzed.

Instead of saying or entering the output of source-code snip-
pets, participants indicated when they have determined the output
in their mind or located all syntax errors by using the left of two
keys of a response box with their right index finger. Directly after
the scanning session, participants saw the source code again on a
laptop and entered their answer to ensure that comprehension took
place. With this procedure, we minimized motion artifacts inside
the fMRI scanner.

3.3 Material
Initially, we selected 23 typical algorithms that are typically

taught in first-year undergraduate computer-science education at
German universities. For example, we had algorithms sorting or
searching in arrays, string operations (cf. Fig. 2), and simple inte-
ger arithmetic, such as computing a power function and determin-
ing whether a number is prime (see project’s website for all initially
selected source-code snippets). The selected algorithms were dif-
ferent enough to avoid learning effects from one algorithm to an-
other, but yet similar enough (e.g., regarding length, difficulty) to
elicit similar activation, which is necessary for averaging the BOLD
effects for all tasks.

We created a main program for each algorithm, printing the out-
put for a sample input. All algorithms are written in imperative
Java code inside a single main function without recursion and with
light usage of standard API functions. To minimize cognitive load
caused by complex operations that are not inherent to program
comprehension, we used small inputs and simple arithmetic (e.g.,
2 to the power of 3). To avoid influences due to domain knowl-
edge and possible brain activation caused by memory retrieval, we
obfuscated identifier names, so that participants needed bottom-up
comprehension to understand the source code. For example, in Fig-
ure 2, the variable result does not give a hint about its content (i.e.,
that it holds the reversed word), but only about its purpose (i.e., that
it contains the result).

We injected three syntax errors into every program to derive con-
trol tasks that are otherwise identical to the corresponding compre-
hension tasks, as illustrated in Figure 3. The syntax errors we in-
troduced can be located without understanding the execution of the
program, they merely require some kind of pattern matching.

In a first pilot study [67], we determined whether the tasks have
suitable difficulty and length. In a lab session, we asked partici-
pants to enter the output of the source-code snippets and measured
time and correctness. 41 undergraduate computer-science students
of the University of Passau participated. To simulate the situation in
the fMRI scanner, participants were not allowed to make any notes
during comprehension. Based on the response time of the partic-
ipants, we excluded six snippets with a too high mean response
time (> 120 seconds) and one snippet with a too low response time
(< 30 seconds). We also analyzed correctness, to ensure that the
snippets are not too difficult and that comprehension actually took
place. On average, 90 % of the participants correctly determined
the output, so we did not exclude any snippets based on difficulty.

In a second pilot study, we evaluated the suitability of syntax
tasks, so that we can isolate the activation caused only by compre-
hension. Undergraduate students from the University of Marburg
(4) and Magdeburg (4), as well as one professional Java program-
mer located syntax errors. We analyzed response time and correct-
ness to select suitable syntax tasks. All response times were within
the necessary range, and most participants found, at least, two syn-
tax errors. Thus, the syntax tasks had a suitable level of difficulty.

For the session in the scanner, we further excluded four tasks
to keep the experiment time within 1 hour. We excluded one task
with the shortest and one with the longest response time. We also
excluded two tasks that are similar to other tasks (e.g., adding vs.
multiplying numbers).

We presented the source-code snippets in a fixed order. When-
ever possible, we let participants first comprehend a snippet, then,
in a later trial, locate syntax errors in the corresponding snippets,
with a large as possible distance between both (see project’s web-
site for complete ordering). This way, we minimized learning ef-
fects.

Furthermore, we assessed the programming experience of partic-
ipants with an empirically developed questionnaire to assure a ho-
mogeneous level of programming experience [23], and we assessed
the handedness of our participants with the Edinburgh Handedness
Inventory [49], because the handedness correlates with the role of
the brain hemispheres [42] and, thus, is necessary to correctly ana-
lyze the activation patterns.

3.4 Participants
To recruit participants, we used message boards of the University

of Magdeburg. We recruited 17 computer-science and mathematics
students, two of them were female, all with an undergraduate level
of programming experience and undergraduate level of Java expe-
rience (see projects website for details), comparable to our pilot-
study participants. Thus, we can assume that our participants were
able to understand the algorithms within the given time frame. We
selected students, because they are rather homogeneous; this way,
the influence of different backgrounds is minimized.

All participants had normal or corrected-to-normal vision. One
participant was left handed, but showed the same lateralization as
right handers, as we determined by a standard lateralization test [7].
Participants gave written informed consent to the study, which was
approved by the ethics committee of the University of Magdeburg.
As compensation, participants were paid 20 Euros. Finally, partic-
ipants were aware that they could end the experiment at any time.
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3.5 Imaging Methods
The imaging methods describe the standard procedure of fMRI

studies.

Source-Code Presentation. For source-code presentation
and participant-response recording, we used the Presentation soft-
ware (www.neurobs.com) running on a standard PC. Source code
was back-projected onto a screen that could be viewed via a mirror
mounted on the head coil (cf. Fig. 1b). The distance between the
participant’s eyes and the screen was 59 cm, with a screen size of
325 × 260mm, which is appropriate for an angle of ±15

◦. The
source-code snippets were presented in the center of the screen
with a font size of 18, as defined in the Presentation software. The
longest source-code snippet had 18 lines of code.

Data Acquisition. We carried out the measurements on a 3
Tesla scanner (Siemens Trio, Erlangen, Germany) equipped with
an eight channel head coil. The 3D anatomical data set of the
participant’s brain (192 slices of 1mm each) was obtained before
the fMRI measurement. Additionally, we acquired an Inversion-
Recovery-Echo-Planar-Imaging (IR-EPI) scan with the identical
geometry as in the fMRI measurement, to obtain a more precise
alignment of the functional to the 3D anatomical data set.

For fMRI, we acquired 985 functional volumes in 32 minutes
and 50 seconds using an echo planar imaging (EPI) sequence (echo
time (TE), 30 ms; repetition time (TR), 2000 ms; flip angel, ±80

◦;
matrix size, 64× 64; field of view, 19.2 cm×19.2 cm; 33 slices of
3mm thickness with 0.45mm gaps). During the scans, participants
wore earplugs for noise protection and their head was fixed with a
cushion.

Data Preparation. We analyzed the functional data with
BrainVoyagerTMQX 2.1.2 (www.brainvoyager.com). We started
a standard sequence of preprocessing steps, including 3D-motion
correction (where each functional volume is coregistered to the first
volume of the series), linear trend removal, and filtering with a high
pass of three cycles per scan. This way, we reduced the influence of
artifacts that are unavoidable in fMRI studies (e.g., minimal move-
ment of participants). Furthermore, we transformed the anatomical
data of each participant to a standard Talairach brain [72]. This
way, we can average the BOLD effect over all participants (see
next paragraph).

Analysis Procedure. We projected the functional data set to
the IR-EPI images and co-registered these with the 3D-data set.
Then, we transformed the fMRI data to Talairach space and spa-
tially smoothed them with a Gaussian filter (FWHM=4mm). For
the random-effects GLM analysis, we defined one predictor for the
comprehension tasks and one for the syntax tasks. These were con-
volved with the two-gamma hemodynamic response function using
the default parameters implemented in BrainVoyagerTMQX. We av-
eraged the hemodynamic response for each condition (comprehen-
sion, syntax) across the repetitions. Furthermore, we normalized
the BOLD response to the baseline that is defined by averaging the
BOLD amplitude 15 seconds before the onset of the comprehension
and syntax condition, respectively. Then, we averaged the BOLD
response over all participants.

Next, we contrasted comprehension with the rest condition using
a significance level of p< 0.05 (FDR-corrected [5]), to determine
the voxels that indeed showed a positive deflection of the BOLD
response, compared to the rest period (a negative deflection does
not show a real activation, so only the positive deflections are of in-

terest). These voxels comprised a mask, which was used in the sub-
sequent contrast, where we directly compared comprehension with
syntax tasks at a significance level of p< 0.01 (FDR-corrected)
and a minimum cluster size of 64mm3.

As the last step, we determined the Brodmann areas based on the
Talairach coordinates with the Talairach daemon (client version,
available online at www.talairach.org). The Talairach space is
used for the technical details of the analysis, and the Brodmann
areas are used to map activated areas to cognitive processes.

4. RESULTS
In Figure 4, we show the resulting activation pattern of the anal-

ysis, including the time course of the BOLD responses for each
cluster. The activation picture and BOLD responses are averaged
over all tasks per condition (comprehension, syntax) and partici-
pants; the gray area around the time courses shows the standard
deviation based on the participants’ averaging.

We included the data of all participants, since all showed com-
prehension of the source-code snippets by one of three ways: en-
tering the correct output of the source code after the experiment,
correctly describing what the source code was doing, or by ensur-
ing that they attempted to comprehend the source code (based on
the questionnaire after the measurement; see project’s website for
details).

In essence, we found five relevant activation clusters, all in the
left hemisphere. For each cluster, we show Talairach coordinates,
the size of the cluster, related Brodmann areas, and relevant as-
sociated cognitive processes (note that deciding which cognitive
processes are relevant belongs to the interpretation, not results; see
Section 5). Thus, we can answer our research question:
RQ: During program comprehension, Brodmann areas 6, 21, 40,

44, and 47 are activated.

5. DISCUSSION
Having presented our results, we interpret the activation pattern.

As is standard in fMRI studies, we start with relating relevant cog-
nitive processes to Brodmann areas (Figure 1d). Next, we look at
tasks of other fMRI studies, in which similar Brodmann areas were
identified, and we relate our findings to previous findings (Fig-
ure 1e). Last, we abstract from Brodmann areas and hypothesize
how the cognitive processes involved contribute to program com-
prehension. We conclude with a discussion about what cognitive
processes are relevant for program comprehension, based on our
and other findings of fMRI studies (Figure 1f).

In our study, we observed activation in five Brodmann areas;
overall, there are 52 Brodmann areas that are associated with cogni-
tive processes (cf. Section 2). Thus, finding five activated clusters,
which are related to activities that fit well to our understanding of
the comprehension process, especially in an initial study, is a sur-
prisingly good result of our study. However, individual Brodmann
areas are often associated with multiple cognitive processes. Thus,
as part of the interpretation, we discussed among the author team
(which included a psychologist, a neurobiologist, a linguist, as well
as computer scientists and software engineers) whether a process is
relevant or irrelevant for program comprehension. For example,
Brodmann area 21 is typically activated when humans give a spo-
ken response. However, our setting did not include a spoken re-
sponse, so this process and according studies were not relevant for
us. Still, for completeness and replication, we mention all associ-
ated activities.

Note that, since we only look at the difference of activation pat-
tern between the comprehension and syntax tasks, we only consider
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Figure 4: Observed activation pattern for program comprehen-

sion and time courses of the BOLD response for each cluster.

The gray area around the time courses depicts the standard de-

viation based on the participants. BA: Brodmann area.

activation caused by comprehension. For example, we do not ex-
pect (and did not find) activations regarding the visual perception
of source code, which is almost identical for both tasks.

5.1 Brodmann Areas 6 and 40
With Brodmann areas (BA) 6 and 40, similar cognitive processes

are associated, so we discuss them together. In the context of the
current study, the processes division of attention, silent word read-

ing, working memory for verbal and/or numerical material, and
problem solving are particularly relevant.3 When discussing each
relevant activity, we also describe results of related neuro-imaging
studies and the relationship to program comprehension.

Division of attention. Division of attention describes that at-
tention has to be distributed to more than one cognitive activity.
Other studies of divided attention also found both, BA 6 and BA 40,
activated. For example, Vandenberghe and others let participants
discriminate visually presented objects regarding two features (ori-
entation and location) [75]. These activities are similar to what
participants did in our study, that is, dealing at the same time with
understanding statements of the source code and the numbers or
words that the source code was manipulating. In the syntax tasks,
participants were only looking for syntax errors, and did not have
to divide their attention to hold any values or words.

Silent word reading. In our study, participants read words and,
in the comprehension task, needed to understand their meaning
(e.g., for denotes a loop). Other studies also found both areas
activated when participants understood the meaning of sentences,
compared to deciding whether a sentence or word is grammatically
correct [10, 59]. This is in line with understanding the meaning of
source-code statements, compared to analyzing syntactical correct-
ness of statements in our syntax tasks.

Verbal/Numerical Working Memory. Working memory is
relevant for many cognitive tasks. One part of working memory,
the phonological loop, allows us to memorize spoken information,
such as telephone numbers, as long as we repeat it (either spoken
aloud or silently) [2]. Numerous studies that let participants use
verbal rehearsal found the same Brodmann areas (6 and 40). For
example, Smith and others let participants keep letters in mind [69];
Awh and others additionally let participants compare target letters
with letters that have been shown two letters earlier in a sequence
of letters [1]. In our study, participants had to keep the values of
variables that the source code was manipulating in mind to under-
stand the source code. Additionally, when loops were part of the
source code, participants had to keep the values of several loop
iterations in mind to fully understand what was going on. Both ac-
tivities were not necessary when identifying syntax errors. Thus,
the phonological loop fits well to our understanding of bottom-up
program comprehension.

Problem Solving. Problem solving is a broad term that cap-
tures several similar tasks, for example, the Wisconsin Card Sort-
ing test [6] or Raven’s Progressive Matrices [60]. Both tests require
participants to abstract from presented patterns and discover the

3Other associated activities that do not appear relevant are (a) at-
tention regarding orientation and stimulus-response compatibility,
(b) space/motion perception and imagery, (c) spatial and object-
related working memory, (d) episodic memory encoding of objects
and space, (e) episodic memory retrieval of context information as
well as retrieval effort, and (f) skill learning of unpracticed (non-
)motor skills.
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rules that construct the material. This is similar to our comprehen-
sion tasks, in which participants need to abstract from statements
in source code and discover how and why these statements work
together, which is not necessary for locating syntax errors. Other
fMRI studies also found BA 6 and 40, for example when using the
above-mentioned Wisconsin Card Sorting test [47] or Raven’s Pro-
gressive Matrices [58].

Overall, BA 6 and 40 fit well into our understanding of program
comprehension. By consulting related studies, we found related
processes that capture the multiple facets of understanding source
code. The remaining three Brodmann areas are often found in
language-based experiments, so we discuss them together.

5.2 Brodmann Areas 21, 44, and 47
In addition to other cognitive processes,4 BA 21, 44, and 47 are

related to different facets of language processing. Numerous stud-
ies showed the involvement of all three Brodmann areas in artifi-
cial as well as natural-language processing [3, 55, 68]. In partic-
ular, artificial-language processing is interesting, because artificial
languages are based on formal grammars and limited sets of sym-
bols, such as words or graphemes, from which letter or word se-
quences are created. Participants of typical artificial-language stud-
ies should decide based on their intuition, after a learning period,
whether sequences are grammatical or not, resulting in activation
in BA 21, 44, and 47. Artificial-language processing and program
comprehension are similar, since both usually built on a limited set
of elements and rules; in the syntax tasks, participants had to do
some kind of pattern matching to locate the syntax errors. Based
on the similarity of program comprehension to artificial-language
processing, which is in turn similar to natural-language process-
ing, we conjecture that one part of program comprehension likely
involves language processing.

The posterior middle temporal gyrus (MTG) (BA 21) is closely
associated with semantic processing at the word level. Both imag-
ing and lesion studies suggest an intimate relation between the suc-
cess or failure to access semantic information and the posterior
MTG [9, 21, 74]. In our study, participants also needed to identify
the meaning of written words in the source code to successfully un-
derstand the source code and its output, which was not necessary
for the syntax tasks. Thus, we found evidence that understanding
the meaning of single words is a necessary part of program com-
prehension. This may not sound too surprising, but we actually

observed it in a controlled setting.
The inferior frontal gyrus (IFG) (BA 44 and 47) is related to

combinatorial aspects in language processing, for example, pro-
cessing of complex grammatical dependencies in sentences during
syntactic processing [24, 28]. Several studies suggest that real-time
combinatorial operations in the IFG incorporate the current state of
processing and incoming information into a new state of processing
[30, 56]. Hence, the IFG was proposed to be involved in the uni-
fication of individual semantic features into an overall representa-
tion at the multi-word level [74]. This is closely related to bottom-
up program comprehension, where participants combine words and
statements to semantic chunks to understand what the source code

4 Again, all areas are activated during different cognitive processes.
Most likely irrelevant processes are (a) object perception, (b) spo-
ken word recognition, (c) written word recognition with spoken re-
sponse, (d) object-related working memory, (e) episodic memory
encoding of objects, (f) episodic memory retrieval of nonverbal ma-
terial regarding retrieval mode and effort, (g) conceptual priming,
and (h) skill learning of unpracticed motor skills. Again, we only
discuss processes relevant to program comprehension.

is doing. In the syntax tasks, participants did not need to group
anything to succeed.

In addition to the individual Brodmann areas, there is evidence
for a direct interaction between the activated areas of our compre-
hension task. Two separate clusters were activated in the IFG, one
in BA 44 and one in BA 47, which is also suggested by other
fMRI studies. BA 44 was mainly associated with core syntactic
processes, such as syntactic structure building [24, 25, 26]. In con-
trast, BA 47 is assumed to serve as a semantic executive system
that regulates and controls retrieval, selection, and evaluation of se-
mantic information [62, 74]. Accordingly, program comprehension
requires the participants to build up the underlying syntactic struc-
tures, to retrieve the meanings of the words and symbols, and to
compare and evaluate possible alternatives; none of these processes
is necessary to locate syntax errors.

Moreover, reciprocal connections via a strong fiber pathway be-
tween BA 47 and the posterior MTG—the inferior occipito-frontal

fasciculus—have been claimed to support the interaction between
these areas, such that appropriate lexical-semantic representation
are selected, sustained in short-term memory throughout sentence
processing, and integrated into the overall context [74]. Regard-
ing program comprehension, we conjecture that, to combine words
or symbols to statements, and statements to semantic chunks, the
neural pathway between the MTG and IFG is involved.

6. IMPLICATIONS FOR

PROGRAM COMPREHENSION
Having identified the clusters and related them to other fMRI

studies and specific activities of program comprehension, we now
combine all findings to a high-level understanding of bottom-up
program comprehension.

Working Memory and Divided Attention. First, we found
areas related to working memory, especially the phonological loop
of verbal/numerical material and problem solving. Regarding the
phonological loop, we assume that participants needed to keep the
value of numbers or words in mind, while going through the source
code statement by statement, dividing their attention during this
process. Furthermore, we found a relationship to problem-solving
activities. In our experiment, we enforced bottom-up comprehen-
sion by obfuscating identifier names, which shows similarities to
the Wisconsin Card Sorting Test [6] and Raven’s Progressive Ma-
trices [60]. In both tests, as well as during bottom-up comprehen-
sion, participants need to understand underlying rules; how cards
are sorted, how figures are created, or how loops terminate and
when, how and where characters or numbers are modified. Fur-
thermore, participants need to apply these rules, such that they can
sort cards, continue rows of figures, or determine the correct out-
put. Thus, our findings align well with the common understanding
of bottom-up comprehension, in which rules and relationships in
source code have to be discovered and applied.

Consequently, to become excellent in bottom-up comprehension,
we might need to train working memory capacity, divided attention,
and problem-solving ability.

Language Processing. Second, we found a strong relation to
language processing. To understand source code, participants had
to process single words and symbols as well as statements that con-
sist of single words (located in the posterior MTG). For example,
in Figure 2, Line 6, participants needed to process the words and
symbols result, =, word, +, and charAt, and combine all to
understand what this line is doing (i.e., adding a single character
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public static void main(String[] args) {
  String word = "Hello";
  String result = new String();
  for (int j = word.length() - 1;
         j >= 0; j--)
    result = result + word.charAt(j);
  System.out.println(result);
}

40

47

44

21

6

Analyze words and 

symbols

Keep values in mind

Integrate to state-

ments and chunks

Figure 5: Visualization of how program comprehension might

take place.

to the result). Additionally, participants had to integrate all state-
ments to a semantic chunk that reverses a word. Via strong neural
pathways, both areas are connected, which is necessary to integrate
words/symbols to statements and statements to semantic chunks.
Hence, our results support Dijkstra’s claim that good programmers
need to be exceptionally good in their native tongue [20]. Conse-
quently, focus on language learning in early childhood might facil-
itate learning programming.

Toward a Model of Bottom-up Comprehension. We can
hypothesize what a cognitive model of bottom-up program com-
prehension can look like: Participants analyze words/symbols of
source code, combine symbols to statements, then statements to
semantic chunks. Simultaneously to comprehending and integrat-
ing words/symbols and statements, participants keep the values of
words and numbers in their phonological loop to correctly under-
stand the source code. In Figure 5, we illustrate this process.

Based on this model, we can hypothesize what influences pro-
gram comprehension. For example, if we increase the number of
variables beyond the capacity of the phonological loop, program
comprehension should be impaired (more discussion in Section 8).

7. THREATS TO VALIDITY
The challenges and requirements of fMRI studies give rise to

several threats to validity. First, we performed several steps to in-
terpret the data. Especially, when deciding which cognitive pro-
cesses for each Brodmann area are relevant, we might have missed
important processes. As a consequence, our interpretation might
have led to a different comprehension model. To reduce this threat,
we discussed among the author team, which combines the expertise
of psychology, neurobiology, linguistics, as well as computer sci-
ence and software engineering, for each process whether it might
be related to our comprehension tasks. Furthermore, we mentioned
all processes that are known to be associated with these Brodmann
areas (Footnotes 3 and 4), so that readers can make their own judg-
ment about relevant processes.

Second, the source-code snippets that we selected were compar-
atively short, at most, 18 lines of code. Furthermore, we focused
on bottom-up comprehension to avoid any additional activation pat-
terns. Both reflect only one aspect of the complex comprehension
process. Thus, we cannot generalize our results to large-scale real-
world programming activity—clearly, more studies have to follow.
Additionally, we recruited undergraduate students as participants,
so our results can be interpreted only in terms of this level of pro-
gramming experience. However, working with small source-code
snippets and having little domain knowledge is typically how be-
ginners start to learn programming. So, for this context, our results
give us important insights.

Furthermore, we cannot be entirely certain to what extent we
ensured bottom-up comprehension. It is possible that participants
recognized some algorithms, as they were taken from typical in-
troductory courses. However, since we obfuscated identifier names

and since we did not observe activation in typical memory-related
areas, we believe that the participants used bottom-up comprehen-
sion most of the time.

Another threat to external validity is that we kept the background
of our participants, such as their programming experience and cul-
ture, constant to reduce any noise during measurement. Thus, we
can generalize our results only carefully. In the next section, we
outline, amongst others, how such personal differences might af-
fect program comprehension.

8. FUTURE DIRECTIONS
With our study, we showed that measuring program comprehen-

sion with an fMRI scanner is feasible and can result in a plausible
activation pattern. But, how does our study contribute to software-
engineering research, education, and practice?

Having shown that measuring program comprehension with
fMRI is feasible, we encourage other researchers to apply fMRI
in their research. With careful planning and by consulting experts,
fMRI can be a valuable tool also in software-engineering research.
As the costs and inaccessibility of fMRI studies decrease over time,
we believe that they will become a standard tool in the software-
engineering researcher’s toolbox. We hope that other researchers
can profit from our experience, learn about requirements and pit-
falls of such studies, or even reuse experimental material, so they
do not have to start from scratch.

While our study provides only limited direct answers, it raises
many interesting and substantial questions for future research.
What happens during top-down comprehension? What happens
during implementation of source code? How should we train pro-
grammers? How should we design programming languages and
tools? Can software metrics capture how difficult source code will
be to comprehend?

Top-down comprehension. In our experiment, we focused on
bottom-up comprehension to minimize additional activation. In fu-
ture experiments, we shall create more complex source-code snip-
pets in a familiar domain, such that participants use top-down com-
prehension and their memory to understand source code. For ex-
ample, we can show the same source-code snippets without obfus-
cating identifier names, and observe to what extent they serve as
beacons for participants. Additionally, we shall select programs
that participants are familiar with. In such a setting, we would ex-
pect activation of typical memory areas, such as Brodmann areas
44 and 45 in the inferior frontal gyrus or Brodmann area 10 in the
anterior prefrontal cortex [14]. In conjunction with an eye tracker,
we shall evaluate whether participants fixate on beacons or famil-
iar elements shorter or longer than unfamiliar statements, and how
that gazing is related to neural activity. Digging deeper, we may
ask at which experience level beginners start using their previous
knowledge? To what extent does the knowledge of concepts, such
as design patterns, influence activation patterns?

Implementing source code. What happens when people im-

plement source code, instead of only understanding it? Writing
source code is a form of synthesizing new information, compared
to analytical program comprehension. Consequently, we might ob-
serve activation of several right-hemispheric regions, such as right
BA 44 and 47 for speech production. It would be interesting to
study whether and how writing source code is similar to and differ-
ent from speech production. Initial evidence suggests that develop-
ers had high levels of subvocal speech while editing code [51].
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Training. There are many discussions about the best way to teach
computer science and software engineering [16, 43, 66]. The close
relationship to language processing raises the question of whether
it is beneficial to learn a programming language at an early age or
to learn multiple programming languages right from the beginning,
which is a major issue in designing computer-science curricula.

The involvement of working memory and attention may indicate
that both should be trained during programming education. So, it
is certainly worth exploring whether program comprehension can
be improved by training specific cognitive abilities (e.g., through
puzzle games). However, researchers disagree to what extent both
can be learned or are rather inborn [22, 71, 78]. Thus, a test prior to
programming education [48, 41] might reveal which students might
struggle with learning programming. Especially when thinking of
dyslectic students, who often have poorer short term memory and
reading skills compared to non-dyslectic students [57], we may ex-
pect they struggle; however, many Dyslexics report that they can
work focused during programming, for example, because of syntax
highlighting [57]. Thus, unraveling the mind of dyslectic students
might give us interesting insights into program comprehension.

Having found a strong involvement of language processing sug-
gests that we need excellent language skills to become excellent
programmers. Thus, if we loved learning new languages, we might
also more easily learn new programming languages. It may be
worthwhile to start learning a new (programming) language early
during childhood, because studies showed that learning a second
language early can have benefits regarding cognitive flexibility,
metalinguistic, divergent thinking skills, and creativity [19]. Simi-
larly, training computational thinking, a fundamental skill for com-
puter scientists [77], prior to learning programming might also give
novices a better start with learning programming, for example, to
correctly specify unexpected states in a program [29].

Furthermore, despite similar education or experience, re-
searchers have observed a significant gap between top developers
and average developers, typically reported as a factor of 10 in terms
of productivity [15, 17, 63]. However, nobody knows exactly how
these top developers became top developers—they just are excel-
lent. This raises many questions about to what extent we can train
programmers at all. Alternatively, we can ask whether it is pos-
sible to predict whether somebody is inclined to become a great
programmer. To answer such questions, we need to know how an
excellent programmer differs from a normal programmer. Interest-
ingly, characteristics of experts have been studied in many fields.
For example, in an fMRI study, musicians showed a much lower
activation in motor areas when executing hand tapping than non-
musicians [37], and expert golfers, compared to novices, showed
a considerably smaller activation pattern when imagining hitting a
golf ball, because they have somewhat abstracted the activity [45].
In the same rein, excellent programmers may approach program
comprehension differently. Again, understanding the differences
may offer us insights into how to teach beginners, and, in the long
run, develop guidelines for teaching programming.

Programming-Language Design. Traditionally, program-
ming-language design does only marginally involve programmers
and how they work with source code. Instead, experience and
plausibility are used, such as: “As the world consists of objects,
object-oriented programming is an intuitive way to program”, “As
recursion is counter intuitive, recursive algorithms are difficult to
understand”, or “Java (C#) shall be similar to C/C++ (Java), such
that many developers can easily learn it.” While experience and
common sense are certainly valuable and may hint some direction
on how to design programming languages, many design decisions

that arise from them have—to the best of our knowledge—never
been tested empirically (the work of Hanenberg is a notable excep-
tion [32]).

In our experiment, we have explored only small imperative code
fragments with only few language constructs. It would be in-
teresting to investigate whether there are fundamentally different
activations when using more complex language constructs or us-
ing a functional or object-oriented style. For example, when we
let developers understand object-oriented source code, we should
observe activation in typical object-processing areas (e.g., BA 19
or 37), if real-world objects and object-oriented programming are
similar, which is a frequently stated claim. The design of indi-
vidual programming languages as well as entire paradigms may
greatly benefit from insights about program comprehension gained
by fMRI.

Furthermore, having identified a close similarity to language pro-
cessing, we can further investigate how different or similar both
processes really are. To this end, we envision letting participants
read and comprehend natural-language descriptions as control task,
instead of finding syntax errors; computing the difference in activa-
tion pattern, we can see how reading comprehension and program
comprehension differ (if they differ at all). We also envision stud-
ies to explore the impact of natural programming languages [46]
on comprehension, and how comprehension of spoken languages,
dead languages (e.g., Latin) and programming languages differ.

Additionally, some researchers believe that the mother tongue
influences how native speakers perceive the world (Sapir-Whorf
hypothesis) [64, 76]. Since programming languages are typically
based on English, Western cultures, compared to Asian cultures,
might have a headstart when learning programming [4]. Taking a
closer look at how developers from both cultures understand source
code might give us valuable insights for teaching programming.

Software and Tool Design. Many questions regarding soft-
ware design, modularity, and development tools arise. For instance,
the typical approach to hierarchically decompose a software sys-
tem leads to crosscutting concerns [73], but the extent to which de-
velopers naturally decompose a software system is unknown. Os-
termann and others even argued that traditional notions of mod-
ularity assume a model based on classical logic that differs from
how humans process information (e.g., they use inductive reason-
ing, closed-world reasoning, and default reasoning which are all
unsound in classical logic) [50].

There has been considerable research in tool-based solutions for
organizing and navigating software [27, 38, 39, 40, 61]. Con-
sidering navigation support, understanding how to support cogni-
tive processes related to spatial abilities and to determine whether
a given tool actually does support those abilities, might improve
comprehension, provide a more disciplined framework for design-
ing tools, and influence how we design software.

Software metrics. Many attempts have been made to mea-
sure the complexity of source code. Following initial proposals,
such as McCabe’s cyclomatic complexity [44] and Halstead’s dif-
ficulty [31], a plethora of code and software metrics has been pro-
posed [35]. Despite some success stories, it is still unclear why a
certain metric works in a certain context and how to design a com-
prehensive and feasible set of metrics to assist software engineer-
ing. Which properties should a metric address? Syntactic proper-
ties, the control flow, the data flow, semantic dependencies, etc.?
fMRI may give us a tool to answer these questions, for example,
by analyzing whether complex data flows, for example, as targeted
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by the DepDegree metric [8], give rise to distinct or stronger acti-
vations that correspond with complex comprehension activities.

9. RELATED WORK
We are not aware of any fMRI studies examining program com-

prehension. A few studies have used other physiological measures
to study program comprehension. Hansen used eye-tracking to
evaluate what parts of source code developers found most diffi-
cult [33]. Parnin used electromyography to measure the cognitive
load during programming tasks [51].

In the neuroscience domain, several studies exist that also study
tasks related to comprehension and detection of syntax errors.
However, these studies, several of which were discussed in Sec-
tion 5, use tasks involving only English words and sentences, not
programs. The following studies are particularly interesting, be-
cause they revealed the same Brodmann areas as our study: In
studies related to reading comprehension and language processing,
participants had to understand text passages or decide whether se-
quences of letters can be produced with rules of a formal gram-
mar [3, 9, 21, 24, 25, 26, 28, 30, 55, 56, 68, 74]. Regarding work-
ing memory, participants had to identify and apply rules or memo-
rize verbal/numerical material [1, 47, 58, 69]. In divided-attention
tasks, participants had to detect two features of objects at the same
time [75].

Further work is needed to distinguish and dissociate brain ac-
tivity related to program comprehension from other similar activi-
ties, such as word comprehension, and to allow us to develop a full
model of program comprehension. Some researchers have already
begun to theorize what a brain-based model of program compre-
hension would look like. Hansen and others propose to use the cog-
nitive framework ACT-R to model program comprehension [34].
Parnin compiled a literature review of cognitive neuroscience and
proposed a model for understanding different memory types and
brain areas exercised by different types of programming tasks [52].
Both approaches are similar to our work by exploring knowledge
of the neuroscience domain.

10. CONCLUSION
To shed light on the process of program comprehension, we used

a relatively new technique: functional magnetic resonance imaging
(fMRI). While in cognitive neuroscience, it has been used for more
than 20 years now, we explored how fMRI can be applied to mea-
sure the complex cognitive process of comprehending source code.
To this end, we selected twelve source-code snippets that partici-
pants should comprehend, which we contrasted with locating syn-
tax errors.

We found that for comprehending source code, five different
brain regions become activated, which are associated with work-
ing memory (BA 6, BA 40), attention (BA 6), and language pro-
cessing (BA 21, BA 44, BA 47)—all fit well to our understanding
of program comprehension. Our results indicate that, for learning
programming, it may be beneficial to train also working memory,
which is necessary for many tasks, and language skills, as Dijk-
stra already noted. We believe that fMRI has great potential for
software-engineering research.

As a further contribution, we shared our experiences and design,
to lower the barrier for further fMRI studies. We hope that fMRI
becomes a standard research tool in software engineering, so that
we can understand how developers understand source code and,
eventually, tackle the really interesting questions: How do people
use domain knowledge? To what extent is implementing source
code a creative process? Can we train someone to become an excel-

lent programmer? How should we design programming languages
and tools for optimal developer support? Can software metrics pre-
dict the comprehensibility of source code?
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