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Econometrica, Vol. 59, No. 6 (November, 1991), 1591-1599 

UNDERSTANDING UNIT ROOTERS: A HELICOPTER TOUR 

BY CHRISTOPHER A. SIMS' AND HARALD UHLIG 

While technically p-values should not be interpreted as probabilities, they often are, 
and their usual asymptotic equivalence to Bayesian posterior tail probabilities provides an 
approximate justification for doing so. In inference about possibly nonstationary dynamic 
models the usual asymptotic equivalence fails, however. We show with three-dimensional 
graphs how it is possible that in autoregressive models the distribution of the estimator is 
skewed asymptotically, while the likelihood and hence the posterior pdf remains symmet- 
ric. We show that no single prior can rationalize treating p-values as probabilities in these 
models, and we display examples of the sample-dependent "priors" that would do so. We 
argue that these results imply at a minimum that the usual test statistics and covariance 
matrices for autoregressions, which characterize the likelihood shape in dynamic models 
just as in static regression models, should be reported without any corrections for the 
special unit root distribution theory, even if the corrected classical p-values are reported 
as well. 

KEYWORDS: Unit roots, likelihood principle, Bayesian methods, autoregressive models. 

THE USUAL SITUATION IN ECONOMETRIC INFERENCE is that, at least asymptoti- 
cally, Bayesian probability statements about the unknown parameters condi- 
tional on the data are very similar to classical confidence statements about the 
probability of random intervals covering the true value of the parameter. In 
time series models with possible unit roots this is not true. In an earlier paper 
(Sims (1988)) one of the authors of this paper made this point and argued that 
Bayesian inference for such models was more sensible, as well as much easier to 
handle analytically, than the classical confidence statements. 

Many economists are not used to having to make careful distinctions between 
probability statements about the location of unknown parameters conditional on 
the data (Bayesian, or posterior statements) and probability statements about 
the behavior of statistics in repeated samples conditional on the parameter 
values (classical confidence, or pre-sample statements). The earlier paper in- 
cluded an example that aimed at guiding intuition about these distinctions, but 
the example used discrete data and had no evident connection to the unit root 
time series context. This paper explores in more detail the distinction between 
confidence statements and probability statements about parameters, in a simple 
time series model that may show a unit root. 

We first summarize graphically the results of a Monte Carlo study of the joint 
p.d.f. of an unknown autoregressive coefficient p and its least squares estimate 
p, when p is treated as uniformly distributed. Bayesian conditional p.d.f.'s for p 
are cross sections of this joint p.d.f. along a fixed-p line, while classical 
distributions for p^ are sections of the joint p.d.f. along a fixed-p line. We display 
several views of the joint p.d.f., sliced in various ways (the helicopter tour of the 
title). 

This research supported by NSF Grant 8608078. 
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1592 CHRISTOPHER A. SIMS AND HARALD UHLIG 

One-tailed tests of a unit-root null hypothesis against p < 1 using the appro- 
priate classical distribution theory always accept the null more easily than would 
tests based on the usual t distribution for the same statistic. Flat-prior Bayesian 
analysis leads to the usual t tests for generation of posterior probabilities even 
in dynamic nonstationary models. Therefore use of marginal significance levels 
under the correct classical distribution theory as if they were posterior probabil- 
ities corresponds to using a Bayesian prior distribution which favors larger 
values of p. Since much applied work presents p-values computed with the 
special unit-root distribution theory, it is useful to know the nature of the prior 
required to justify treating them as posterior probabilities. We compute these 
priors-there are many, one for each possible observed value of ^p. 

We discuss the implications for practice of the need to distinguish pre-sample 
from posterior probabilities in dynamic regression models. Our conclusion is 
that in reporting results or in making decisions about whether to simplify 
models by differencing, allowing for co-integration, etc. there is no reason to use 
the special sampling distribution theory generated under the null hypothesis 
that unit roots are present. The conventional test statistics and distributions for 
them retain the same interpretation as descriptors of the likelihood in dynamic 
as in static regressions. Even statisticians and econometricians uncomfortable 
with this conclusion should agree that the shape of the likelihood is interesting 
and that therefore conventional "uncorrected" p values should be reported 
alongside the special ones based on unit root null hypotheses. 

1. THE MODEL 

We consider the simple univariate autoregressive model 

(1) y(t) =py(t- 1) + E(t), 

with i.i.d. E(t) N(O, o2). If we observe y(t), t = 0,.. ., T, we can form the least 
squares estimate p of p. In this model VY(p - p) is asymptotically normal if, 
say, e is i.i.d. with finite variance and mean zero and IPI < 1. When p = 1, p is 
not asymptotically normal. The likelihood, conditional on the initial observation 
y(O), is Gaussian in shape as a function of p, however, and this result does not 
depend on whether the data is actually generated by a process with a unit root 
or not. 

Because the likelihood depends on both ^ and 

(2) 2 = 
p T 

E: y(t _ 1)2 

t= 1 

there is no one-dimensional way to summarize the sample evidence. In order to 
develop insight into the relation between Bayesian and classical inference, it is 
helpful to simplify the situation further. We will consider the situation where 
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UNDERSTANDING UNIT ROOTERS 1593 

FIGURE 1.-Joint frequency distribution of p and p. 

one cannot observe the full sample-only p$. We also assume S.2 = 1 and is 
known.2 

These simplifying assumptions make the shape of the likelihood nonnormal 
and difficult to derive. Their appeal is only that they make the Bayesian 
analytical framework consist of a two-dimensional joint p.d.f., that of p and p$. 
A function of two arguments is easily visualized as a surface in three dimen- 
sions, while a function of three arguments is much harder to visualize. 

We can be sure in advance that the likelihood will remain symmetric in p 
around a peak p$, because conditional on 5 it has these properties and it 
therefore will not lose them when 5f is integrated out. 

In the next section we will proceed to construct, by Monte Carlo, an 
estimated joint p.d.f. for p and p under a uniform prior p.d.f. on p. We choose 
31 values of p, from .80 to 1.10 at intervals of .01. We draw 10000 100 x 1 i.i.d. 
N(0, 1) vectors of random variables to use as realizations of e. For each of the 
10000 E vectors and for each of the 31 p values, we construct a y vector with 
y(0) =0, y(t) generated by equation (1). For each of these y vectors, we 
construct p6. Using as bins the intervals [-oc, .795), [.795, .805), [.805, .815), etc. 
we construct a histogram that estimates the p.d.f. of p5 for each fixed p value. 
When these histograms are lined up side by side, they form a surface that is the 
joint p.d.f. for p and pi under a flat prior on p. 

2. THE HELICOPTER TOUR 

Figures 1-5 display different views of the same surface, the estimated joint 
p.d.f. for p and p$. Figure 1 shows the surface sliced along the p~= 1 and p = 1 
planes. This angle gives a good view of the surface shape. The view from lower 
down, centered on the corner of the viewing box, is shown in Figure 2. Observe 

2Because in our Monte Carlo experiments the initial y value on which we condition is y(O) = 0 
for all samples, the assumption of a particular known value for (r2 plays no role. We assert it only 
because the argument as to why it plays no role would take up space and because our choice of cr2 
could make some numerical difference to someone trying to replicate our results. 
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FIGURE 2.-Joint frequency distribution of pi and p. 0 

FIGURE 3.-Joint frequency distribution of pi and p sliced along p = 1. 

that the distribution of PIp = 1, one side of which is the section generated by 
the left-hand panel in Figure 2, really is more skewed toward lower values than 
the conditional distribution of PpI^$= 1, one side of which is the section gener- 
ated by the right-hand panel in Figure 2. 

Figure 3 is sliced only along the p = 1 plane, so the section is just the p.d.f. of 
P^Ip = 1. Here the well known result that p^ is asymmetric, with much more 
probability below than above one, is easily visible.3 The section along the p^ - 1 
plane shown in Figure 4 confirms the theoretical result that this p.d.f. is 
symmetric about p = 1. Figure 5 shows that the distribution remains symmetric 
along the p- =.95 plane, though it is more dispersed. This result, that the p 
distributions spread out as p^ get smaller, is what generates the skewness when 
the joint p.d.f. is sliced in the other direction. The two sections shown in Figures 
3 and 4 are displayed on top of each other in a two-dimensional graph in Figure 
6, with both normalized to have the same integral. 

3 The bias in least squares estimates of p in this model was noted by Hurwicz (1950). A plot of 
the asymptotic distribution for p when p = 1 reveals that the peak of that density is slightly to the 
right of 1. Thus, it is probably not the case that the true finite sample distribution for P^lp peaks 
exactly at p = p, although this is impossible to determine in our figures. 
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UNDERSTANDING UNIT ROOTERS 1595 

FIGURE 4.-Joint frequency distribution of p and p sliced along p = 1. 

C_)C 

cav>~~~~~ 

FIGURE 5.-Joint frequency distribution of p$ and p sliced along p$ = .95. 

Suppose we were studying many instances of the model (1), with true values 
of p drawn at random from a distribution that was uniform over (.84, 1.O6)4 and 
possibly nonuniform, but not too wildly behaved outside that interval. Then any 
reasonable person would have to agree that what the data imply about the likely 
location of p once we observe p^ = 1 is given by taking the dotted line in Figure 
6 as a p.d.f. for the unknown p. The difference between Bayesian and classical 
statistics is not over the logic of Bayes' rule, but over whether it can legitimately 
be applied when there is no "objective" source of randomness on which to base 
the notion of a probability distribution for p. 

So let us suppose that we really have an application where, say, someone is 
generating p's uniformly by flipping coins or drawing numbers out of a hat. 
Everyone should agree that, on observing p$= .95, our uncertainty about p is 
symmetric about p = .95, characterized by the p.d.f. shown as the dotted line in 
Figure 7. What if we nonetheless try comparing the p-values of the null 
hypotheses p = .9 and p = 1.0 by classical procedures? The natural classical test 
of p = .9, assuming we can see only p$ and not the whole sample. is obtained by 
normalizing the p =.9 section of our p,p~ p.d.f. to integrate to one, then 
computing the area under the curve to the right of the observed p^. This area is 
the p-value, and one would reject p =.9 if it fell below some critical level, say 
ar = .05. Our Monte Carlo joint p.d.f. implies that the p-value for p = .9 given an 

4 This is the interval over which the likelihood, normalized to integrate to one, is perceptibly 
different from zero in Figure 6. 
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FIGURE 6.-Probability densities for pip = 1 (...) and 1lp = 1 (-). 
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FIGURE 7.-P-value vs. posterior probability. 

observed ~$=.95 is .04, while the p-value for p =1.0 given ~$=.95 is .12.' (The 
p-value for p = 1.0 when p = .95 is observed is the shaded area under the solid 
line in Figure 7.) We can reject .9 at the .05 level, in other words, while easily 
accepting 1.0. The actual conditional probability of p > 1.0 given observed 
p = .95 is .07, which is the same as the conditional probability of p < .9 given 
p= 95.6 (This probability is the shaded area under the dotted line in Figure 7.) 

How can this be, given that we are already sure that any reasonable person 
must agree that our beliefs about p are symmetrically distributed about p = .95? 
The answer is that the p-values are distorted by some irrelevant information. It 
is indeed about equally likely that an observed $ = .95 is generated by a true 

5 Here we are using one-sided tests in each case, but with the lower tail the rejection region for 
p = 1 and the upper tail the rejection region for p = .9. All the calculations reported in this 
paragraph are based on a second Monte-Carlo simulation, different from the one used to generate 
the graphs. There are, as in the other simulation, 10000 e vectors, but the p bins used here are 
(.949,.950], (.950,.951], etc. 

6 This computed probability involves some interpolation. It averages the two separate probabili- 
ties from the Monte Carlo study for p < .9 and p > 1.0. The raw Monte Carlo data gives P[ p < .91 ̂  

in (.949, .950]] = .070, P[p < .91 p in (.950, .951]] = .065, P[p > 1.01p^ in (.949, .950]] = .067, P[p > 1.0I,^ 
in (.950,.951]] = .067. 
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p = 1.0 or a true p = .9. However p^'s much below .95 are much more likely given 
p= 1.0 than are 5's much above .95 given p = .9. In this particular sample we 
have observed p = .95, not p^ much above or much below .95; for deciding what 
this sample tells us about p, the implications of the competing hypotheses about 
&'s we have not observed are irrelevant. 

3. IMPLICIT PRIORS 

In the standard normal linear regression model, and asymptotically in most 
econometric applications, Bayesian probability statements about the location of 
p approximately coincide with corresponding p-values. It is well known that 
exact coincidence of one-tailed p-values with Bayesian posterior probability 
statements occurs in the standard normal linear regression model when the 
prior is flat both on the regression parameters and on the log of residual 
variance. Pratt (1965) and the following discussion considers conditions under 
which p-values and posterior probabilities will approximately coincide. Some 
econometricians, including the authors of this paper, think that it is quite 
common for applied researchers, even when trained classically, to interpret 
p-values as if they were posterior probabilities. In any case, since p-values are so 
widely reported, Bayesian statisticians will be interested in the conditions under 
which they can be interpreted as approximate posterior probabilities. 

In our application the question is, under what conditions does an observation, 
say, that p = .95, which has a one-sided p-value of .12 on the null hypothesis 
p = 1, suggest that the probability of p ? 1 is about .12? If we systematically 
interpreted p-values as estimated posterior probabilities in this way, having 
observed pi we would for each p* use as an estimate of the probability that 
p ? p*, the marginal significance level for the observed p in a one-tailed test of 
p = p* as the null hypothesis. This amounts to summing the joint p, p^ p.d.f. 
along each constant-p line to form a family of c.d.f.'s, but then treating the 
values of these c.d.f.'s along a constant-p line as if they formed a c.d.f. for p 
conditional on the observed p. As we have already seen, for p^ near one the 
resulting c.d.f. puts much more weight on p > 1 than p < 1, even though a flat 
prior would imply a conditional c.d.f. symmetric about p = 1. It may be of 
interest to see what prior is implicit in inference based on treating p-values as 
generating a c.d.f. and how the implied prior shifts as the observed p^ changes. 

Letting h( ^1p) be the conditional p.d.f. of p given p, the pseudo-p.d.f. for p 
we are considering is 

a X0 
(3) g(PlpI) = - h(slp) ds. 

7In general, it would not necessarily emerge that the resulting pseudo-c.d.f. satisfies the basic 
properties of a c.d.f.-that F(p) -O 0 as p -* -oo, F(p) -* 1 as p -- +oo, and F be monotone 
increasing. The first two conditions are clearly met here, since P[P^ < p* IP] 1 as p - cx and 
P[ <P* ] -* 0 as p m-* o. The monotonicity condition would follow if one-tailed tests which reject 
p = p* in favor of p < p* when p < 7r were unbiased in the classical sense for every p* and 7r. This 
condition seems very likely to be true, and certainly our calculations provide no evidence against it. 
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FIGURE 8.-Implicit prior probability densities. 

The actual conditional p.d.f. for PpI~ based on a flat prior over p is proportional 
to h(p^lIp). For g to emerge as the conditional p.d.f. for pIp^, therefore, requires 
that the prior p.d.f. on p be proportional to g(plip)/hQp^Ip). We make an 
approximate calculation of this implied prior p.d.f. by cumulating our Monte 
Carlo estimate of h along constant-p planes, then differencing the result along 
constant-p$ planes, finally dividing by the original estimated h. For unlikely 
values of (p, p^), these estimates are ratios of small numbers with high propor- 
tional standard errors. Thus in the tails the estimates are quite erratic. 

The results are displayed in Figure 8. One can see that the p.d.f. shifts 
increasing weight toward the region above p = 1 as p^ gets closer to 1. For 
p^ = .95 the implicit prior makes p's around 1 two to three times more likely than 
p's around .9. Furthermore, the prior p.d.f.'s for all p$ values keep increasing in 
the region above p = 1 for as far as the estimates retain any reliability. Thus 
naive use of classical tests' p-values not only gives special prior weight to p = 1, 
it implies a priori belief that a p of 1.05 is more likely than a p of .95. 

4. CONCLUSION 

We have illustrated graphically in a simple model how it can be that the 
likelihood function-the p.d.f. of the data as a function of the parameter, with 
observed data fixed-is symmetric about its maximum despite pronounced 
asymmetry in the p.d.f. of the maximum likelihood estimate of the parameter. 
We have also shown in Section 3 that naive use of p-values as measures of the 
strength of sample evidence against various parameter values cannot be ratio- 
nalized as B ind er any single choice of prior distribution. 

These results reinforcerge h point that dynamic regression models are a rare 
instance where Bayesian or other likelihood based forms of inference are not 
even approximately the same as classical hypothesis testing. Even if the simple 
context of linearity, Gaussian disturbances, and conditioning on initial condi- 
tions is maintained, classical small-sample distribution theory for autoregres- 
sions is complex and little used in practice. Classical asymptotic theory breaks 
discontinuously at the boundary of the stationary region, so the usual simple 
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normal asymptotic approximations are not available. The likelihood function, 
however, is well known to be the same in autoregressions and nondynamic 
regressions, assuming independence of disturbances from lagged dependent 
variables. Thus inference satistfying the likelihood principle (see Berger and 
Wolpert (1984)) has the same character in autoregressions whether or not the 
data may be nonstationary. A t statistic of 3.1 or an F statistic of 1.7 tell us the 
same thing about the shape of the likelihood in an autoregression as in a 
regression on exogenous variables. 

Many econometricians, ourselves included, will conclude that the complicated 
apparatus of classical unit root asymptotics is of little practical value. Even 
econometricians who do not accept this conclusion, however, should agree that 
the likelihood function's shape is valuable information. It should therefore be 
standard reporting practice to present information allowing convenient assess- 
ment of likelihood shape. In particular, when linear hypotheses on autoregres- 
sive systems are being tested, the values or conventional p-values of t and F 
statistics should be reported, not the classical unit-root asymptotic p-values in 
isolation. 

Dept. of Economics, Yale University, 37 Hillhouse Ave., New Haven, CT 
06520-1962, U.S.A. 

and 
Dept. of Economics, Princeton University, 112 Fisher Hall, Princeton, NJ 

08544-1021, U.S.A. 

Manuscript received February, 1989; final revision received February, 1991. 
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