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ABSTRACT

As deep neural networks (DNNs) achieve tremendous success across many appli-
cation domains, researchers tried to explore in many aspects on why they gener-
alize well. In this paper, we provide a novel perspective on these issues using
the gradient signal to noise ratio (GSNR) of parameters during training process
of DNNs. The GSNR of a parameter is defined as the ratio between its gradi-
ent’s squared mean and variance, over the data distribution. Based on several ap-
proximations, we establish a quantitative relationship between model parameters’
GSNR and the generalization gap. This relationship indicates that larger GSNR
during training process leads to better generalization performance. Moreover, we
show that, different from that of shallow models (e.g. logistic regression, support
vector machines), the gradient descent optimization dynamics of DNNs naturally
produces large GSNR during training, which is probably the key to DNNs’ re-
markable generalization ability.

1 INTRODUCTION

Deep neural networks typically contain far more trainable parameters than training samples, which
seems to easily cause a poor generalization performance. However, in fact they usually exhibit
remarkably small generalization gaps. Traditional generalization theories such as VC dimension
(Vapnik & Chervonenkis, 1991) or Rademacher complexity (Bartlett & Mendelson, 2002) cannot
explain its mechanism. Extensive research focuses on the generalization ability of DNNs (Neyshabur
et al., 2017; Arora et al., 2018; Keskar et al., 2016; Dinh et al., 2017; Hoffer et al., 2017; Novak
et al., 2018; Dziugaite & Roy, 2017; Jakubovitz et al., 2019; Kawaguchi et al., 2017; Advani &
Saxe, 2017).

Unlike that of shallow models such as logistic regression or support vector machines, the global
minimum of high-dimensional and non-convex DNNs cannot be found analytically, but can only
be approximated by gradient descent and its variants (Zeiler, 2012; Kingma & Ba, 2014; Graves,
2013). Previous work (Zhang et al., 2016; Hardt et al., 2015; Dziugaite & Roy, 2017) suggests that
the generalization ability of DNNs is closely related to gradient descent optimization. For example,
Hardt et al. (2015) claims that any model trained with stochastic gradient descent (SGD) for reason-
able epochs would exhibit small generalization error. Their analysis is based on the smoothness of
loss function. In this work, we attempt to understand the generalization behavior of DNNs through
GSNR and reveal how GSNR affects the training dynamics of gradient descent. Stanislav Fort
(2019) studied a new gradient alignment measure called stiffness in order to understand generaliza-
tion better and stiffness is related to our work.

The GSNR of a parameter is defined as the ratio between its gradient’s squared mean and variance
over the data distribution. Previous work tried to use GSNR to conduct theoretical analysis on
deep learning. For example, Rainforth et al. (2018) used GSNR to analyze variational bounds in
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unsupervised DNNs such as variational auto-encoder (VAE). Here we focus on analyzing the relation
between GSNR and the generalization gap.

Intuitively, GSNR measures the similarity of a parameter’s gradients among different training sam-
ples. Large GSNR implies that most training samples agree on the optimization direction of this
parameter, thus the parameter is more likely to be associated with a meaningful “pattern” and we
assume its update could lead to a better generalization. In this work, we prove that the GSNR is
strongly related to the generalization performance, and larger GSNR means a better generalization.

To reveal the mechanism of DNNs’ good generalization ability, we show that the gradient descent
optimization dynamics of DNN naturally leads to large GSNR of model parameters and therefore
good generalization. Furthermore, we give a complete analysis and a detailed interpretation to this
phenomenon. We believe this is probably the key to DNNs remarkable generalization ability.

In the remainder of this paper we first analyze the relation between GSNR and generalization (Sec-
tion 2). We then show how the training dynamics lead to large GSNR of model parameters experi-
mentally and analytically in Section 3.

2 LARGER GSNR LEADS TO BETTER GENERALIZATION

In this section, we establish a quantitative relation between the GSNR of model parameters and
generalization gap, showing that larger GSNR during training leads to better generalization.

2.1 GRADIENTS SIGNAL TO NOISE RATIO

Consider a data distribution Z = X × Y , from which each sample (x, y) is drawn; a model ŷ =
f(x, θ) parameterized by θ; and a loss function L.

The parameters’ gradient w.r.t. L and sample (xi, yi) is denoted by

g(xi, yi, θ) or gi(θ) :=
∂L(yi, f(xi, θ))

∂θ
(1)

whose j-th element is gi(θj). Note that throughout this paper we always use i to index data examples
and j to index model parameters.

Given the data distribution Z , we have the (sample-wise) mean and variance of gi(θ). We denote
them as g̃(θ) = E(x,y)∼Z(g(x, y, θ)) and ρ2(θ) = Var(x,y)∼Z(g(x, y, θ)), respectively.

The gradient signal to noise ratio (GSNR) of one model parameter θj is defined as:

r(θj) :=
g̃2(θj)

ρ2(θj)
(2)

At a particular point of the parameter space, GSNR measures the consistency of a parameter’s gra-
dients across different data samples. Figure 1 intuitively shows that if GSNR is large, the parameter
gradient space tends to be distributed in the similar direction and if GSNR is small, the gradient
vectors are then scatteredly distributed.

2.2 ONE-STEP GENERALIZATION RATIO

In this section we introduce a new concept to help measure the generalization performance dur-
ing gradient descent optimization, which we call one-step generalization ratio (OSGR). Consider
training set D = {(x1, y1), ..., (xn, yn)} ∼ Zn with n samples drawn from Z , and a test set

D′ = {(x′
1, y

′
1), ..., (x

′
n′ , y′n′)} ∼ Zn′

. In practice we use the loss on D′ to measure generalization.
For simplicity, we assume the sizes of training and test datasets are equal, i.e. n = n′. We denote
the empirical training and test loss as:

L[D] =
1

n

n∑

i=1

L(yi, f(xi, θ)), L[D′] =
1

n

n∑

i=1

L(y′i, f(x
′
i, θ)), (3)

respectively. Then the empirical generalization gap is given by L[D′]− L[D].
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Figure 1: Schematic diagram of the sample-wise parameter gradient distribution corresponding to
greater (Left) and smaller (Right) GSNR. Pink arrows denote the gradient vectors for each sample
while the blue arrow indicates their mean.

Figure 2: Schematic diagram of the training behavior satisfies OSGR(t) = 0 (Left), 0 <
OSGR(t) < 1 (Middle) and OSGR(t) ≈ 1 (Right). Note that the Middle scenario most com-
monly happens in regular tasks.

In gradient descent optimization, both the training and test loss would decrease step by step. We
use ∆L[D] and ∆L[D′] to denote the one-step training and test loss decrease during training, re-
spectively. Let’s consider the ratio between the expectations of ∆L[D′] and ∆L[D] of one single
training step, which we denote as R(Z, n).

R(Z, n) :=
ED,D′∼Zn(∆L[D′])

ED∼Zn(∆L[D])
(4)

Note that this ratio also depends on current model parameters θ and learning rate λ. We are not
including them in the above notation as we will not explicitly model these dependencies, but rather
try to quantitatively characterize R for very small λ and for θ at the early stage of training (satisfying
Assumption 2.3.1).

Also note that the expectation of ∆L[D′] is over D and D′. This is because the optimization step is
performed on D. We refer to R(Z, n) as OSGR of gradient descent optimization. Statistically the
training loss decreases faster than the test loss and 0 < OSGR(t) < 1 (Middle panel of Figure 2),
which usually results in a non-zero generalization gap at the end of training. If OSGR(t) is large
(≈ 1) in the whole training process (Right panel of Figure 2), generalization gap would be small
when training completes, implying good generalization ability of the model. If OSGR(t) is small
(= 0), the test loss will not decrease while the training loss normally drops (Left panel of Figure 2),
corresponding to a large generalization gap.

2.3 RELATION BETWEEN GSNR AND OSGR

In this section, we derive a relation between the OSGR during training and the GSNR of model pa-
rameters. This relation indicates that, for the first time as far as we know, the sample-wise gradient
distribution of parameters is related to the generalization performance of gradient descent optimiza-
tion.
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In gradient descent optimization, we take the average gradient over training set D, which we denote
as gD(θ). Note that we have used gi(θ) to denote gradient evaluated on one data sample and g̃(θ) to
denote its expectation over the entire data distribution. Similarly we define gD′(θ) to be the average
gradient over test set D′.

gD(θ) =
1

n

n∑

i=1

g(xi, yi, θ) =
∂L[D]

∂θ
, gD′(θ) =

1

n

n∑

i=1

g(x′
i, y

′
i, θ) =

∂L[D′]

∂θ
(5)

Both the training and test dataset are randomly generated from the same distribution Zn, so we
can treat gD(θ) and gD′(θ) as random variables. At the beginning of the optimization process, θ
is randomly initialized thus independent of D, so gD(θ) and gD′(θ) would obey the same distribu-
tion. After a period of training, the model parameters begin to fit the training dataset and become
a function of D, i.e. θ = θ(D), therefore distributions of gD(θ(D)) and gD′(θ(D)) become differ-
ent. However we choose not to model this dependency and make the following assumption for our
analysis:

Assumption 2.3.1 (Non-overfitting limit approximation) The average gradient over the training
dataset and test dataset gD(θ) and gD′(θ) obey the same distribution.

Obviously the mean of gD(θ) and gD′(θ) is just the mean gradient over the data distribution g̃(θ).

ED∼Zn [gD(θ)] = ED,D′∼Zn [gD′(θ)] = g̃(θ) (6)

We denote their variance as σ2(θ), i.e.

VarD∼Zn [gD(θ)] = VarD,D′∼Zn [gD′(θ)] = σ2(θ) (7)

It is straightforward to show that:

σ2(θ) = VarD∼Zn [
1

n

n∑

i=1

gi(θ)] =
1

n
ρ2(θ) (8)

where σ2(θ) is the variance of the average gradient over the dataset of size n, and ρ2(θ) is the
variance of the gradient of a single data sample.

In one gradient descent step, the model parameter is updated by ∆θ = θt+1 − θt = −λgD(θ)
where λ is the learning rate. If λ is small enough, the one-step training and test loss decrease can be
approximated by

∆L[D] ≈ −∆θ ·
∂L[D]

∂θ
+O(λ2) = λgD(θ) · gD(θ) +O(λ2) (9)

∆L[D′] ≈ −∆θ ·
∂L[D′]

∂θ
+O(λ2) = λgD(θ) · gD′(θ) +O(λ2) (10)

Usually there are some differences between the directions of gD(θ) and gD′(θ), so statistically
∆L[D] tends to be larger than ∆L[D′] and the generalization gap would increase during training.
When λ → 0, in one single training step the empirical generalization gap increases by ∆L[D] −
∆L[D′], for simplicity we denote this quantity as ▽:

▽ := ∆L[D]−∆L[D′] ≈ λgD(θ) · gD(θ)− λgD(θ) · gD′(θ) (11)

= λ(g̃(θ) + ϵ)(g̃(θ) + ϵ− g̃(θ)− ϵ′) (12)

= λ(g̃(θ) + ϵ)(ϵ− ϵ′) (13)

Here we replaced the random variables by gD(θ) = g̃(θ) + ϵ and gD′(θ) = g̃(θ) + ϵ′, where ϵ and
ϵ′ are random variables with zero mean and variance σ2(θ). Since E(ϵ′) = E(ϵ) = 0, ϵ and ϵ′ are
independent, the expectation of ▽ is

ED,D′∼Zn(▽) = E(λϵ · ϵ) +O(λ2) = λ
∑

j

σ2(θj) +O(λ2) (14)

where σ2(θj) is the variance the of average gradient of the parameter θj .
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For simplicity, when it involves a single model parameter θj , we will use only a subscript j instead

of the full notation. For example, we use σ2
j , rj , and gD,j to denote σ2(θj), r(θj), and gD(θj)

respectively.

Consider the expectation of ∆L[D] and ∆L[D′] when λ → 0

ED∼Zn(∆L[D]) ≈ λED∼Zn(gD(θ) · gD(θ)) = λ
∑

j

ED∼Zn(g2
D,j) (15)

ED,D′∼Zn(∆L[D′]) = ED,D′∼Zn(∆L[D]−▽) (16)

≈ λ
∑

j

(ED∼Zn(g2
D,j)− σ2

j ) (17)

= λ
∑

j

(ED∼Zn(g2
D,j)− ρ2j/n) (18)

Substituting (18) and (15) into (4) we have:

R(Z, n) = 1−

∑
j ρ

2
j

n
∑

j ED∼Zn(g2
D,j)

(19)

Although we derived eq. (19) from simplified assumptions, we can empirically verify it by estimating
two sides of the equation on real data. We will elaborate on this estimation method in section 2.4.

We can rewrite eq. (19) as:

R(Z, n) = 1−
1

n

∑

j

ED∼Zn(g2
D,j)∑

j′ ED∼Zn(g2
D,j′)

ρ2j
ED∼Zn(g2

D,j)
(20)

= 1−
1

n

∑

j

ED∼Zn(g2
D,j)∑

j′ ED∼Zn(g2
D,j′)

1

rj +
1
n

(21)

where ED∼Zn(g2
D,j) = V arD∼Zn(gD,j) + E2

D∼Zn(gD,j) =
1
n
ρ2j + g̃2

j .

We define ∆Lj [D] to be the training loss decrease caused by updating θj . We can show that when

λ is very small ∆Lj [D] = λg2
D,j +O(λ2). Therefore when λ → 0, we have

R(Z, n) = 1−
1

n

∑

j

Wj

1

rj +
1
n

, where Wj :=
ED∼Zn(∆Lj [D])

ED∼Zn(∆L[D])
with

∑

j

Wj = 1 (22)

Eq. (22) shows that the GSNR rj plays a crucial role in the model’s generalization ability—the one-

step generalization ratio in gradient descent equals one minus the weighted average of 1
rj+

1
n

over

all model parameters divided by n. The weight is proportional to the expectation of the training loss
decrease resulted from updating that parameter. This implies that larger GSNR of model parameters
during training leads to smaller generalization gap growth thus better generalization performance of
the trained model. Also note when n → ∞, we have R(Z, n) → 1, meaning that training on more
data helps generalization.

2.4 EXPERIMENTAL VERIFICATION OF THE RELATION BETWEEN GSNR AND OSGR

The relation between GSNR and OSGR, i.e. eq. (19) or (22) can be empirically verified using any
dataset if: (1) The dataset includes enough samples to construct many training sets and a large
enough test set so that we can reliably estimate ρ2j , ED∼Zn(g2

D,j) and OSGR. (2) The learning rate
is small enough. (3) In the early training stage of gradient descent.

To empirically verify eq. (19), we show how to estimate its left and right hand sides, i.e. OSGR by
definition and OSGR as a function of GSNR. Suppose we have M training sets each with size n,
and a test set of size n′. We initialize a model and train it separately on the M training sets and test
it with the same test set. For the t-th training iteration, we denote the training loss and test loss of

the model trained on the m-th training dataset as L
(m)
t and L′(m)

t , respectively. Then the left hand
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Figure 3: Left hand (LHS or OSGR by definition) and right side (RHS or OSGR as a function of
GSNR) of eq. (19). Points are drawn under different experiment settings. Left: LHS vs RHS at
epoch 20, 100, 500, 2500. Each point is drawn by LHS and RHS computed at the given epoch under
different model structure (number of channels) or training data size; red dotted line is the line of
best fit computed by least squares; blue dotted line is the line of reference representing LHS = RHS;
the value of c in each title represents the Pearson correlation coefficient between LHS and RHS
computed by points in figure. Right: The legend. Different symbols and colors stand for different
number of channels and training data size. Different random noise levels are not distinguished.

side, i.e. OSGR by definition, of the t-th iteration can be estimated by

Rt(Z, n) ≈

∑M
m=1 L

′(m)
t+1 − L′(m)

t∑M
m=1 L

(m)
t+1 − L

(m)
t

(23)

For the model trained on the m-th training set, we can compute the t-th step average gradient and
sample-wise gradient variance of θj on the corresponding training set, denoted as gm,j,t and ρ2m,j,t,
respectively. Therefore the right hand side of eq. (19) can be estimated by

ED∼Zn(g2
D,j,t) ≈

1

M

M∑

m=1

g2
m,j,t, ρ2j,t ≈

1

M

M∑

m=1

ρ2m,j,t (24)

We performed the above estimations on MNIST with a simple CNN structure consists of 2
Conv-Relu-MaxPooling blocks and 2 fully-connected layers. First, to estimate eq. (24) with
M = 10, we randomly sample 10 training sets with size n and a test set with size 10,000.
To cover different conditions, we (1) choose n ∈ {1000, 2000, 4000, 6000, 8000, 10000, 15000},
respectively; (2) inject noise by randomly changing the labels with probability prandom ∈
{0.0, 0.1, 0.2, 0.3, 0.5}; (3) change the model structure by varying number of channels in the lay-
ers, ch ∈ {6, 8, 10, 12, 14, 16, 18, 20}. See Appendix A for more details of the setup. We use the
gradient descent training (not SGD), with a small learning rate of 0.001. The left and right hand sides
of 19 at different epochs are shown in Figure 3, where each point represents one specific choice of
the above settings.

At the beginning of training, the data points are closely distributed along the dashed line correspond-
ing to LHS=RHS. This shows that eq. (19) fits quite well under a variety of different settings. As
training proceeds, the points become more scattered as the non-overfitting limit approximation no
longer holds, but correlation between the LHS and RHS remains high even when the training con-
verges (at epoch 2,500). We also conducted the same experiment on CIFAR10 A.2 and a toy dataset
A.3 observed the same behavior. See Appendix for these experiments.

The empirical evidence together with our previous derivation of eq. (19) clearly show the relation
between GSNR and OSGR and its implication in the model’s generalization ability.

3 TRAINING DYNAMICS OF DNNS NATURALLY LEADS TO LARGE GSNR

In this section, we analyze and explain one interesting phenomenon: the parameters’ GSNR of
DNNs rises in the early stages of training, whereas the GSNR of shallow models such as logistic
regression or support vector machines declines during the entire training process. This difference
gives rise to GSNR’s large practical values during training, which in turn is associated with good
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generalization. We analyze the dynamics behind this phenomenon both experimentally and theoret-
ically.

3.1 GSNR BEHAVIOR OF DNNS TRAINING

For shallow models, the GSNR of parameters decreases in the whole training process because gra-
dients become small as learning converges. But for DNNs it is not the case. We trained DNNs
on the CIFAR datasets and computed the GSNR averaged over all model parameters. Because
ED∼Zn(g2

D,j) =
1
n
ρ2j + g̃2

j and we assume n is large, ED∼Zn(g2
D,j) ≈ g̃2

j . In the case of only one
large training datasets, we estimate GSNR of t-th iteration by

rj,t ≈ g2
D,j,t/ρ

2
D,j,t (25)

As shown in Figure 4, the GSNR starts out low with randomly initialized parameters. As learning
progresses, the GSNR increases in the early training stage and stays at a high level in the whole
learning process. For each model parameter, we also computed the proportion of the samples with
the same gradient sign, denoted as psame_sign. In Figure 4c, we plot the mean of time series of this
proportion for all the parameters. This value increases from about 50% (half positive half negetive
due to random initialization) to about 56% finally, which indicates that for most parameters, the
gradient signs on different samples become more consistent. This is because meaningful features
begin to emerge in the learning process and the gradients of the weights on these features tend to
have the same sign among different samples.

Previous research (Zhang et al., 2016) showed that DNNs achieved zero training loss by memorizing
training samples even if the labels were randomized. We also plot the average GSNR for model
trained using data with randomized labels in Figure 4 and find that the GSNR stays at a low level
throughout the training process. Although the training loss of both the original and randomized
labels go to zero (not shown), the GSNR curves clearly distinguish between these two cases and
reveal the lack of meaningful patterns in the latter one. We believe this is the reason why DNNs
trained on real and random data lead to completely different generalization behaviors.

Figure 4: (a): GSNR curves generated by a simple network based on real and random data. An
obvious upward process in the early training stage was observed for real data only. (b): Same plot
for ResNet18. (c): Average of psame_sign for the same model as in (a).

3.2 TRAINING DYNAMICS BEHIND THE GSNR BEHAVIOR

In this section we show that the feature learning ability of DNNs is the key reason why the GSNR
curve behavior of DNNs is different from that of shallow models during the gradient descent training.
To demonstrate this, a simple two-layer perceptron regression model is constructed. A synthetic
dataset is generated as following. Each data point is constructed i.i.d. using y = x0x1 + ϵ, where
x0 and x1 are drawn from uniform distribution [−1, 1] and ϵ is drawn from uniform distribution
[−0.01, 0.01]. The training set and test set sizes are 200 and 10,000, respectively. We use a very
simple two-layer MLP structure with 2 inputs, 20 hidden neurons and 1 output.

We randomly initialized the model parameters and trained the model on the synthetic training dataset.
As a control setup we also tried to freeze model weights in the first layer to prevent it from learning
features. Note that a two layer MLP with the first layer frozen is equivalent to a linear regression
model. That is, regression weights are learned on the second layer using fixed features extracted by
the first layer. We plot the average GSNR of the second layer parameters for both the frozen and
non-frozen cases. Figure 5 shows that in the non-frozen case, the average GSNR over parameters of
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Figure 5: Average GSNR (a) and loss (b) curves for the frozen and non-frozen case. (c): GSNR
curves of individual parameters for the non-frozen case.

the second layer shows a significant upward process, whereas in the frozen case the average GSNR
decreases in the beginning and remains at a low level during the whole training process.

In the non-frozen case, GSNR curve of individual parameters of the second layer are shown in Figure
5. The GSNR for some parameters show a significant upward process. To measure the quality of
these features, we computed the Pearson correlation between them and the target output y, both at
the beginning of training and at the maximum point of their GSNR curves. We can see that the
learning process learns “good” features (high correlation value, i.e. with stronger correlation with y)
from random initialized ones, as shown in Table 1. This shows that the GSNR increasing process is
related to feature learning.

3.3 ANALYSIS OF TRAINING DYNAMICS BEHIND DNNS’ GSNR BEHAVIOR

In this section, we will investigate the training dynamics behind the GSNR curve behavior. In the
case of fully connected network structure, we can analytically show that the numerator of GSNR,
i.e. the squared gradient mean of model parameters, tends to increase in the early training stage
through feature learning.

Consider a fully connected network, whose parameters are θ = {W(1),b(1), ...,W(lmax),b(lmax)},

where W(1),b(1) are the weight matrix and bias of the first layer, and so on. We denote the ac-

tivations of the l-th layer as a(l) = {a
(l)
s (θ(l−))}, where s is the index for nodes/channels of

this layer, and θ(l−) is the collection of model parameters in the layers before l, i.e. θ(l−) =
{W(1),b(1), ...,W(l−1),b(l−1)}. In the forward pass on data sample i, {als(θ

(l−))} is multiplied

by the weight matrix W(l):

o
(l)
i,c =

∑

s

W (l)
c,sa

(l)
i,s(θ

(l−)) (26)

where o(l) = {o
(l)
i,c} is the output of the matrix multiplication, for the i-th data sample, on the l-th

layer, c = {1, 2, ..., C} is the index of nodes/channels in the (l + 1)-th layer. We use g
(l)
D to denote

the average gradient of weights of the l-th layer W(l), i.e. g
(l)
D = 1

n

∑n
i=1

∂Li

∂W(l) , where Li is the
loss of the i-th sample.

Here we show that the feature learning ability of DNNs plays a crucial role in the GSNR increasing

process. More precisely, we show that the learning of features a(l)(θ(l−)), i.e. the learning of pa-

rameters θ(l−) tends to increase the absolute value of g
(l)
D . Consider the one-step change of gradient

mean ∆g
(l)
D = g

(l)
D,t+1 − g

(l)
D,t with the learning rate λ → 0. In one training step, θ is updated by

∆θ = θt+1 − θt = −λgD(θ). Using linear approximation with λ → 0, we have

∆g
(l)
D,s,c ≈

∑

j

∂g
(l)
D,s,c

∂θj
∆θj =

∑

θj∈θ(l−)

∂g
(l)
D,s,c

∂θj
∆θj +

∑

θj∈θ(l+)

∂g
(l)
D,s,c

∂θj
∆θj (27)

where θ(l−) and θ(l+) denote model parameters before and after the l-the layer (including the l-th),
respectively.
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We focus on the first term of eq. (27), i.e. the one-step change of g
(l)
D caused by learning θ(l−).

Substituting g
(l)
D = 1

n

∑n
i=1

∂Li

∂W(l) and ∆θj = (−λ 1
n

∑n
i=1

∂Li

∂θj
) into eq. (27), we have

∆g
(l)
D,s,c = −

λ

n2

∑

θj∈θ(l−)

W(l)
s,c(

n∑

i=1

∂Li

∂o
(l)
i,c

∂a
(l)
i,s

∂θj
)2 + other terms (28)

The detailed derivation of eq. (28) can be found in Appendix B. We can see the first term (which is a

summation over parameters in θ(l−)) in eq. (28) has opposite sign with W
(l)
s,c. This term will make

∆g
(l)
D,s,c negatively correlated with W

(l)
s,c. We plot the correlation between ∆g

(l)
D,s,c with W

(l)
s,c for a

model trained on MNIST for 200 epochs in Figure 6a. In the early training stage, they are indeed
negatively correlated. For top-10% weights with larger absolute values, the negative correlation is
even more significant.

Here we show that this negative correlation between ∆g
(l)
D,s,c and W

(l)
s,c tends to increase the ab-

solute value of g
(l)
D through an interesting mechanism. Consider the weights W

(l)
s,c with {W

(l)
s,c >

0,g
(l)
D,s,c < 0}. Learning θl− would decrease g

(l)
D,s,c and thus increase its absolute value because

the first term in eq. (28) is negative. On the other hand, learning W
(l)
s,c would increase W

(l)
s,c and its

absolute value because ∆W
(l)
s,c = −λg

(l)
D,s,c is positive. This will form a positive feedback process,

in which the numerator of GSNR, (g
(l)
D,s,c)

2, would increase and so is the GSNR. Similar analysis

can be done for the case with {W
(l)
s,c < 0,g

(l)
D,s,c > 0}.

On the other hand, when {W
(l)
s,cg

(l)
D,s,c > 0}, we show that the weights tend to change into the earlier

case, i.e. {W
(l)
s,cg

(l)
D,s,c < 0} during training. Consider the case of {W

(l)
s,c > 0,g

(l)
D,s,c > 0}, the first

term in eq. (28) is negative, learning θ(l−) tends to decrease g
(l)
D,s,c or even change its sign. Another

posibility is that learning W
(l)
s,c changes the sign of W

(l)
s,c because ∆W

(l)
s,c = −λg

(l)
D,s,c is negative.

In both cases the weights change into the earlier case with {W
(l)
s,cg

(l)
D,s,c < 0}. Similar analysis can

be done for the case of {W
(l)
s,c < 0,g

(l)
D,s,c < 0}.

Therefore {W
(l)
s,cg

(l)
D,s,c < 0} is a more stable state in the training process. For a simple model

trained on MNIST, We plot the proportion of weights satisfying {W
(l)
s,cg

(l)
D,s,c < 0} in Figure 6b

and find that there are indeed more weights with {W
(l)
s,cg

(l)
D,s,c < 0} than the opposite. Because

weights with small absolute value easily change sign during training, we also plot this proportion
for the top-10% weights with larger absolute values. We can see that for the weights with large
absolute values, nearly 80% of them have opposite signs with their gradient mean, confirming our

earlier analysis. For these weights, the numerator of GSNR, (g
(l)
D,s,c)

2, tends to increase through the

positive feedback process as discussed above.

Figure 6: MNIST experiments. Left: Correlation between ∆g
(l)
D,s,c

and W
(l)
s,c. Right : Ratio of weights that have opposite signs with

their gradient mean.

Table 1: Pearson correlation
between features and target
output y, where ct0 and ctmax

are correlations at the begin-
ning of training and maxi-
mum of GSNR curve respec-
tively.

feature id ct0 ctmax

0 -0.11 0.47
5 0.11 0.44
13 0.07 0.40
14 -0.21 -0.27
17 -0.33 0.53
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4 SUMMARY

In this paper, we performed a series of analysis on the role of model parameters’ GSNR in deep
neural networks’ generalization ability. We showed that large GSNR is a key to small generalization
gap, and gradient descent training naturally incurs and exploits large GSNR as the model discovers
useful features in learning.
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A APPENDIX A

A.1 MODEL STRUCTURE IN SECTION 2.4

As shown in Table 2, all models in the experiment consist of 2 Conv-Relu-MaxPooling blocks and
2 fully-connected layers, but they are different in the number of channels. We choose the number of
channels p from {6, 8, 10, 12, 14, 16, 18, 20}.

Table 2: Model structure On MNIST in Section 2.4. p is the number of channels and q = int(2.5∗p)

Layer input #channels output #channels

conv + relu + maxpooling 1 p
conv + relu + maxpooling p q
flatten - -
fc + relu 16 * q 10 * q
fc + relu 10 * q 10
softmax - -

A.2 EXPERIMENT ON CIFAR10

Different from the experiment on MNIST, we use a deeper network on CIFAR10. We also include
the Batch Normalization (BN) layer, because we find that it’s difficult for the network to converge
in the absence of it. The network consists of 4 Conv-BN-Relu-Conv-BN-Relu-MaxPooling blocks
and 3 fully-connected layers. More details are shown in Table 3.

Table 3: Model structure on CIFAR10. p is the number of channels.

Layer input #channels output #channels

conv + bn + relu 3 p
conv + bn + relu p p
maxpooling - -

conv + bn + relu p 2p
conv + bn + relu 2p 2p
maxpooling - -

conv + bn + relu 2p 4p
conv + bn + relu 4p 4p
maxpooling - -

conv + bn + relu 4p 8p
conv + bn + relu 8p 8p
maxpooling - -

flatten - -
fc + relu 32 * q 8 * q
fc + relu 8 * q 8 * q
fc 8 * q 10
softmax - -

The experiment is conducted under a similar setting as that of MNIST in section 2.4. We choose
n ∈ {2000, 4000, 6000, 8000, 10000}, prandom ∈ {0.0, 0.2, 0.4}, ch ∈ {6, 8, 10, 12, 14, 16, 18}.
We use the gradient descent training (Not SGD), with a small learning rate of 0.001. The left and
right hand sides of 19 at different epochs are shown in Figure 7, where each point represents one
specific combination of the above settings. Note that at the evaluation step of every epoch, we use
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Figure 7: Left hand (LHS) and right side (RHS) of eq. (19). Points are drawn under different
experiment settings. Left figure: LHS vs RHS relation at epoch 20, 100, 500, 1000.

Figure 8: Similar with Fig. 3, but for a toy regression model discussed in in Appendix A.3.

the same mean and variance inside the BN layers as the training dataset. That’s to ensure that the
network and loss function are consistent between training and test.

At the beginning of training, compared to that of MNIST, the data points no longer perfectly resides
on the diagonal dashed line. We suppose that’s beacuse of the presence of BN layer, whose internal
parameters, i.e. running mean and running variance, are not regular learnable parameters in the
optimization process, but change their values in a different way. Their change affects the OSGR,
yet we could not include them in the estimation of OSGR. However, the strong positive correlation
between the left and right hand sides of eq. (19) can always be observed until the training begins to
converge.

A.3 EXPERIMENT ON TOY DATASET

In this section we show a simple two-layer regression model consists of a FC-Relu structure with
only 2 inputs, 1 hidden layer with N neurons and 1 output. A similar synthetic dataset with the
training data used in the experiment of Section 3.2 is generated as follows. Each data point is
constructed i.i.d. using y = x0x1 + ϵ, where x0 and x1 are drawn from uniform distribution of
[−1, 1] and ϵ is drawn from uniform distribution of [−ηnoise, ηnoise].

To estimate eq. (24), we randomly generate 100 training sets with n samples each, i.e. M=100,
and a test set with 20,000 samples. To cover different conditions, we (1) choose n ∈
{50, 100, 300, 600, 1000, 2000, 6000}; (2) inject noise with ηnoise ∈ {0.2, 2, 4, 6, 8}; (3) perturb
model structures by choosing N ∈ {6, 8, 10, 12, 14, 16, 18, 20}. We use gradient descent with learn-
ing rate of 0.001.

Figure 8 shows a similar behavior as Fig. 3. During the early training stages, the LHS and RHS of
eq. (19) are very close. Their highly correlated relation remains until training converges, whereas
the RHS of eq. (19) decreases significantly.
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B APPENDIX B

Derivation of eq. (28)

∆g
(l)
D,s,c =

∑

θj∈θ(l−)

∂g
(l)
D,s,c

∂θj
∆θj + other terms (29)

=
∑

θj∈θ(l−)

∂( 1
n

∑n
i=1

∂Li

∂W
(l)
s,c

)

∂θj
(−λ

1

n

n∑

i=1

∂Li

∂θj
) + other terms (30)

=
∑

θj∈θ(l−)

∂( 1
n

∑n
i=1

∂Li

∂o
(l)
i,c

∂o
(l)
i,c

∂W
(l)
s,c

)

∂θj
(−

λ

n

n∑

i=1

∑

s′,c′

∂Li

∂o
(l)
i,c′

∂o
(l)
i,c′

∂a
(l)
i,s′

∂a
(l)
i,s′

∂θj
) + other terms (31)

= −
λ

n2

∑

θj∈θ(l−)

∂(
∑n

i=1
∂Li

∂o
(l)
i,c

a
(l)
i,s)

∂θj
(

n∑

i=1

∑

s′,c′

∂Li

∂o
(l)
i,c′

W
(l)
s′,c′

∂a
(l)
i,s′

∂θj
) + other terms (32)

= −
λ

n2

∑

θj∈θ(l−)

n∑

i=1

(
∂Li

∂o
(l)
i,c

∂a
(l)
i,s

∂θj
+

∂2Li

∂o
(l)
i,c∂θj

a
(l)
i,s)(

∑

s′,c′

W
(l)
s′,c′

n∑

i=1

∂Li

∂o
(l)
i,c′

∂a
(l)
i,s′

∂θj
)

+ other terms (33)

Above we used
∂o

(l)

i,c′

∂a
(l)

i,s′

= W
(l)
s′,c′ and

∂o
(l)
i,c

∂W
(l)
s,c

= a
(l)
i,s that can both be derived from eq. (26). Consider

the first term of eq. (33). When s′ = s, c′ = c, we have

∆g(l)
s,c = −

λ

n2

∑

θj∈θ(l−)

W(l)
s,c(

n∑

i=1

∂Li

∂o
(l)
i,c

∂a
(l)
i,s

∂θj
)2 + other terms (34)

Note that the term related to ∂2Li

∂o
(l)
i,c

∂θj
a
(l)
i,s and the terms when s′ ̸= s or c′ ̸= c in eq. (33) are merged

into other terms of eq. (34).
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C APPENDIX C

Notations

Z A data distribution satisfies X × Y

s or (x, y) A single data sample

D Training set consists of n samples drawn from Z

D′ Test set consists of n′ samples drawn from Z

θ Model parameters, whose components are denoted as θj

gs(θ) or gi(θ) Parameters’ gradient w.r.t. a single data sample s or (xi, yi)

g̃(θ) Mean values of parameters’ gradient over a total data distribu-
tion, i.e., Es∼Z(gs(θ))

gD(θ) Average gradient over the training dataset, i.e., 1
n

∑n
i=1 gi(θ)

gD′(θ) Average gradient over the test dataset, i.e., 1
n′

∑n′

i=1 g
′
i(θ). Note

that, in eq. (5), we assume n′ = n

gD,j Same as gD(θj)

ρ2(θ) Variance of parameters’ gradient of a single sample, i.e.,
Vars∼Z(gs(θ))

ρ2j Same as ρ2(θj)

σ2(θ) Variance of the average gradient over a training dataset of size
n, i.e., VarD∼Zn [gD(θ)]

σ2
j Same as σ2(θj)

rj or r(θj) Gradient signal to noise ratio (GSNR) of model parameter θj

L[D] Empirical training loss, i.e., 1
n

∑n
i=1 L(yi, f(xi, θ))

L[D′] Empirical test loss, i.e., 1
n′

∑n′

i=1 L(y
′
i, f(x

′
i, θ)))

∆L[D] One-step training loss decrease

∆Lj [D] One-step training loss decrease caused by updating one param-
eter θj

R(Z, n) One-step generalization ratio (OSGR) for the training and
test sets of size n sampled from data distribution Z , i.e.,
ED,D′∼Zn (∆L[D′])

ED∼Zn (∆L[D])

λ Learning rate

▽ One-step generalization gap increment, i.e., ∆L[D] - ∆L[D′]

ϵ Random variables with zero mean and variance σ2(θ)

W(l) and b(l) Model parameters (weight matrix and bias) of the l-th layer

θ(l−) Collection of model parameters over all the layers before the
l-th layer

g
(l)
D Average gradient of W(l) over the training dataset

θ(l+) Collection of model parameters over all the layers after the l-th
layer, including the l-th layer

a(l) = {a
(l)
s (θ(l−))} Activations of the l-th layer, where s = {1, 2, ..., S} is the index

of nodes/channels in the l-th layer.

o(l) = {o
(l)
c } Outputs of matrix multiplication of the l-th layer, where c =

{1, 2, ..., C} is index of nodes/channels in the (l + 1)-th layer.

a
(l)
i,s and o

(l)
i,c a

(l)
s and o

(l)
c evaluated on data sample i
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