
1. Introduction

Underwater acoustics is the study of all phenomena related to the 

occurrence, propagation, and reception of sound waves in the water 

medium. Because electromagnetic waves undergo a significant 

attenuation in water, sound waves, which have relatively low 

propagation loss and high propagation speed, are used for underwater 

communication and detection. In the field of underwater acoustics, 

studies are mainly conducted on underwater communications, 

underwater target detection, marine resources, and measurement and 

analysis of underwater sound sources.

Most applications for underwater acoustics can be described as 

remote sensing. Remote sensing is employed when an object, 

condition, or phenomenon of interest cannot be directly observed and 

information about the target of interest is acquired indirectly using 

data. In underwater acoustics, this can be described simply as a sound 

navigation and ranging (sonar) system. Sonar systems can be broadly 

classified into passive and active systems. Passive sonar systems 

acquire information by using sensors to measure the acoustic energy 

(signal) emitted by the target of interest. In active sonar systems, the 

observer obtains information by directly emitting an acoustic pulse 

and gathering the returning signals that are reflected by the target.

Machine learning, which is widely known today, was initially used 

in academia for developing artificial intelligence. Recently, the use of 

machine learning has become widespread owing to the introduction of 

high-speed parallel computing that uses graphics processing units 

(GPUs) and can perform reliable learning based on big data, as well as 

develop various machine learning techniques that can find optimal 

solutions. Machine learning has contributed to the evolution of 

acoustic signal processing and voice recognition, and it is also utilized 

in various ways in the field of underwater acoustics. It is used for 

traditional remote sensing, such as in detection/classification of 

underwater sound sources and targets and localization. In addition, it is 

being used in the field of acoustic signal processing for seabed 

classification and marine environment information extraction and is 

producing an abundance of scientific results.

Data-driven machine learning divides the data into a training set and 

test set. The training set is used to create a model that is suitable for 

machine learning, and the model’s accuracy is increased through a 

repetitive model update process in which the model is validated via the 
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test set (Bishop, 2006; Murphy, 2012). Here, it is necessary to have a 

process for extracting features from the training set. Some existing 

machine learning algorithms require these features to be found through 

human intervention. However, if deep learning is used, this feature 

extraction process can be performed automatically, and the model’s 

accuracy can be improved markedly at the same time (Goodfellow et 

al., 2016). To use deep learning, big data is required, and the existing 

machine learning methods may be more appropriate than deep learning 

when a small number of computations are required in situations where 

there is insufficient data. Therefore, it can be said that there is a 

complementary relationship between deep learning and machine 

learning.

Many recent attempts have been made to apply various machine 

learning techniques, such as deep learning, to each aspect of 

underwater acoustics. However, due to the nature of the underwater 

environments, the use of these aggressive and open techniques is 

challenging because the data acquisition/processing procedure is more 

constrained than that on land (in the air). Therefore, in the field of 

underwater acoustics, there is a movement towards combining 

traditional underwater acoustic research techniques with machine 

learning and developing them in concert with each other.

This paper aims to understand how machine learning is applied to 

each aspect of underwater acoustics. The next section discusses the 

theories regarding the definitions, types, and basic concepts of 

machine learning.

2. Machine Learning Theory

2.1 Definitions, Types, and Basic Concepts of Machine Learning

Machine learning is a technology in which a machine (computer) 

uses data to automatically detect and even predict hidden 

characteristics or patterns (Bishop, 2006; Murphy, 2012). Therefore, 

machine learning can be regarded as data-driven, and the system 

performance is determined by the quality of the data. As such, it is very 

important to build databases that are quantitatively and qualitatively 

excellent. Machine learning methods can be generally classified into 

supervised and unsupervised learning. Supervised learning refers to 

learning the following mapping from  number of training data 

input/output pairs   
  (Murphy, 2012).

 ϵ (1)

Here,  is the training data input and is referred to as a feature. It can 

have a complex structure such as an image or a time-series signal. In 

principle, the output  can be anything, but generally in the case of 

categorical variables, the problem in Eq. (1) becomes a problem of 

classification or pattern recognition. When  is a real value, it results in 

a regression problem (Bishop, 2006; Murphy, 2012). The most basic 

data set for creating such a system is called a sample. Normally, the 

collected samples are divided into two sets: a training set that is used to 

create the system and a test set that is used to evaluate the system’s 

performance after it has been created. The difference between  

which is predicted from the input , and  which is actually obtained, 

is expressed as ϵ. In acoustics, this normally corresponds to noise.

In the second type of machine learning that is unsupervised learning, 

only the input  is provided without any sample class information, and 

the goal is to find new patterns in this input data. As such, it is a much 

less clear problem than supervised learning, and there is no clear error 

metric. In underwater acoustics, a considerable number of previous 

sonar application studies have used machine learning for classification 

purposes, such as target type/state classification (Choi et al., 2019; 

Fischell and Schmidt, 2015; Ke et al., 2018; Wang et al., 2019) and 

target and clutter signal classification (Allen et al., 2011; Murphy and 

Hines, 2014; Young and Hines, 2007). In many of these studies, the 

properties of the data that were used for learning were recognized 

beforehand owing to the goals of the studies. As such, supervised 

learning was mainly used rather than unsupervised learning. Besides, 

studies on underwater source localization (Das, 2017; Das and 

Sejnowski, 2017; Gemba et al., 2019; Gerstoft et al., 2016; Nannuru et 

al., 2019) or seabed classification (Buscombe and Grams, 2018; 

Diesing et al., 2014) have used various machine learning algorithms 

that include unsupervised learning.

In the aforementioned studies, the system input was also referred to 

as features. When performing learning, such as pattern recognition or 

classification, it is necessary to extract the features that will be used to 

classify samples. Features are more useful for classification when  

number of classes have different values from each other; therefore, 

these can be considered good features. Observed samples are generally 

expressed in the form of feature vectors. However, because using 

many features is not necessarily favorable, it is important to select only 

the part of the feature set that is highly useful. In addition, the amount 

of computation may increase exponentially as the dimensions of the 

feature vectors increase. This is called the curse of dimensionality 

(Hastie et al., 2009; Murphy, 2012). As a result, feature extraction 

methods may vary according to the field where pattern recognition is 

used, and researchers often use methods that reduce dimensionality by 

converting the extracted feature values into different values or 

employing techniques such as principal component analysis (PCA) 

(Murphy, 2012). 

There may be a vast variety of models in which a certain entered 

input is classified into one out of  number of classes. Sometimes, 

when there are models with various degrees of complexity, each 

model’s misclassification rate for the training set is calculated and 

compared to the others in order to select the most appropriate model 

(Hastie et al., 2009). However, machine learning systems are created 

to build models that recognize and classify new samples. Therefore, a 

true performance evaluation can only be accomplished by measuring 

the performance of the system using a sample set other than the 

training set, i.e., a test set. The performance that the system shows in 

regard to the test set is called generalization ability (Hastie et al., 

2009). The standard for selecting machine learning models is to select 
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models with excellent generalization ability. However, it may not be 

possible to use a test set depending on the circumstances. In such 

cases, the training set may be split in two, with one part used for 

training and other part used for measuring the model’s performance, 

assuming that the training set is very large. The latter sample set is 

called the validation set. In this case, the learning and validation 

process are repeated for several models, and the best model is selected 

(Hastie et al., 2009). In reality, there are many cases where there is 

insufficient data to split the training set in two. In such cases, 

researchers use resampling techniques that use the same sample 

several times. Typical methods include cross-validation and 

bootstrapping (Kohavi, 1995).

When we “recognize” events or objects, we usually calculate a 

“possibility” and recognize things as being “most likely.” This is a 

universal decision-making method, and machine learning systems also 

follow this principle. Samples that are observed from input patterns are 

expressed in the form of feature vector , and this must be classified as 

the most likely class. Here, the qualitative standard of “most likely” is 

defined as the quantitative standard of the posterior probability . 

That is, in classification problems, success is achieved by finding the 

class with the greatest posterior probability and classifying the target 

as that class. If it is based on Bayesian statistics,  can be 

estimated by using the Bayes rule shown below (Bishop, 2006).




(2)

That is, it can be replaced by the product of prior probability  

and likelihood . The probability distributions of each of these is 

estimated through learning or training, and the estimation methods can 

be broadly divided into parametric and nonparametric methods 

(Murphy, 2012). Parametric methods can only be applied to certain 

types of probability distributions that can be expressed as parameters. 

Typical methods include the maximum likelihood method and the 

maximum posterior method. The nonparametric method is suitable for 

cases that do not actually follow a certain probability distribution, and 

a well-known typical method is the k-nearest neighbor method.

In many cases, the process of estimating probability distributions is 

ultimately an optimization problem. The most important part of 

formulating a given problem as an optimization problem is defining 

the cost function. The cost function includes parameters, and the 

parameters that minimize or maximize the cost function are found. The 

process of finding the optimal solution depends greatly on 

differentiation and gradient-based algorithms, but other optimization 

algorithms can also be used (Goodfellow et al., 2016). 

2.2 Supervised Learning

As mentioned previously, supervised learning can be divided into 

classification and regression. Classification can be categorized 

according to the number of output classes, from the simplest binary 

classification to multiclass classification. Regression is about 

estimating a certain continuous variable as the output.

2.2.1 Support vector machine (SVM)

An SVM is basically an algorithm that learns rules for data 

classification and regression. SVM is a method of creating a 

non-stochastic linear classification model that determines which class 

the data belongs to (for example, determining which group the data 

belongs to, out of two groups), assuming that the given data is in an 

n-dimensional vector space. A model that is created in this way can 

determine which class the newly entered data belongs to. 

Classification is generally directed toward maximizing the margin, 

which is defined as the minimum distance between the decision 

boundary and data of each class (Murphy, 2012). 

The most basic goal of an SVM is to create the most complete linear 

classification model that classifies data into two groups (Fig. 1(a)). 

Such a classification model can generally be found by solving 

quadratic optimization problems. SVMs can be used even in cases 

where it is difficult to classify data with a linear model (Fig. 1(b)). To 

do this, the kernel trick is often used, as it transforms the dimensions of 

the training data and uses an SVM in a new space (Bishop, 2006).

2.2.2 Neural network: multi-layer perceptron

Deep neural networks are modeled after biological neural networks, 

and they have become widely known owing to deep learning. The 

neural networks that are described in this section are the initial form of 

the basic algorithm that was the precursor of deep neural networks. 

Neural networks are computation models in which there are many 

connections between numerous operators that perform simple 

calculations. The information processing procedure can be represented 

simply by  . The perceptron theory is an algorithm that can 

mathematically solve neural networks. The simplest perceptron model 

is a single-layer perceptron that consists of an input layer and output 

layer, as shown in Fig. 2(a) (Goodfellow et al., 2016).

In Fig. 2(a), the  value is the input value, and  is the weight for 

that value. The circle between the input layer and output layer is the 

activation function. The activation function makes the learning 

calculations easy by imitating a biological neuron that only allows 

signals to pass through if they are above a fixed level (Goodfellow et 

Fig. 1 Support vector machine. (a) Margin of support vector machine 

and (b) kernel trick (Learn OpenCV, 2018).
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Fig. 2 (a) Single-layer perceptron and (b) multi-layer perceptron 

(Guest Blog, 2016).

al., 2016). Single-layer perceptron can only be applied to problems that 

can be expressed linearly, and it is difficult to apply them to problems 

that have a nonlinear structure. This is resolved by adding new layers 

between the input layer and output layer. A neural network structure 

that includes a new layer between the input layer and output layer, i.e., 

a hidden layer, as shown in Fig. 2(b), is called a multi-layer perceptron. 

A neural network that has several hidden layers is called a deep neural 

network (Goodfellow et al., 2016). Deep neural networks are 

discussed again in the deep learning part of Section 2.4.

Each layer linearly combines the data inputted from the previous 

layer while considering the weights. The activation function is applied 

to these values, and they are sent to the next hidden layer. During this 

process, the activation function that is used for the hidden layer 

employs a threshold value to filter out insignificant values. Functions 

that allow for easy first-order differentiation (e.g., a sigmoid function) 

are often used to facilitate calculations. The number of hidden layers is 

solely determined by the intuition and experience of the designer 

(Goodfellow et al., 2016). However, it is necessary to consider the 

possibility of overfitting and the problem of computational complexity 

unavoidably increasing as the number of hidden layers increases. 

However, to properly design a neural network, it is also necessary to 

consider the problem of reduced calculation accuracy that can occur 

when there are too few hidden layers. The process of finding the 

optimal value for the weights in each layer is called learning.

2.3 Unsupervised Learning

The goal of unsupervised learning is to find an interesting structure 

that can properly describe new patterns or data from input data  

without the sample’s class information. In sonar application research, 

various techniques that employ unsupervised learning have been 

attempted in studies on underwater source localization and seabed 

classification.

2.3.1 K-means clustering

K-means clustering is a simple unsupervised learning algorithm that 

performs clustering without the sample’s class information 

(MacQueen, 1967). K-means clustering assumes that the sample can 

be divided into k number of clusters and classifies the training data 

into the most appropriate clusters. This process is generally performed 

by considering the distance-based similarity between groups or 

minimizing the cost. Each data item is classified into the most 

appropriate cluster as the total cost or the sum of the total distance 

between the data and clusters is steadily reduced.

2.3.2 Principle component analysis 

In PCA, the training set is used to estimate the parameters that are 

needed for data transformation, and these results are used to transform 

the feature space. That is, PCA transforms the raw signal into a 

lower-dimension feature vector. To perform the transformation, the 

high-dimension data’s variance is preserved as much as possible while 

finding a new low-dimension basis that is orthogonal and not linearly 

related (Murphy, 2012). The feature’s principal component can be 

obtained from the eigenvector of the covariance matrix ∑ of the data.

 (3)

Here,  ⋯ ∈× is the principal component vector, and 

  
⋯

 ∈× is the variance resulting from the 

principal component direction defined by the principal component . 

They can be found even when using singular value decomposition 

(Murphy, 2012). Generally, the direction of the axis that is selected by 

the first principle component shows the largest variance in the data, 

and the amount of variance becomes progressively smaller. Therefore, 

PCA can be used to reduce the dimensions of feature vectors while 

minimizing information loss. Because of this, it is widely used in fields 

such as data visualization and compression (Murphy, 2012).

2.3.3 Gaussian mixture model

As stated in the name, a Gaussian mixture model (GMM) is a 

clustering model that combines several Gaussian distributions. 

Complex forms of probability distributions that actually exist are 

depicted by combining the K number of Gaussian distributions 

(McLachlan et al., 2019). In a GMM, for a given data item , the 

probability that  will occur is expressed as the sum of several 

Gaussian probability density functions, as shown below.
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Fig. 3 A single-layer autoencoder

 
 



 (4)

Here, the mixture coefficient  shows the probability of selecting 

the k-th Gaussian distribution. It is set so that 〈 ≤ and 
 



  , 

and the appropriate , , and  are estimated for the given data. The 

expectation-maximization (EM) method is generally employed as the 

estimation method (Dempster et al., 1977).

2.3.4 Autoencoder

An autoencoder is a type of unsupervised neural network, and it is 

often used to reduce dimensions or search feature spaces. In simple 

terms, an autoencoder is a neural network that copies the input values 

to the output values, but it has evolved in various ways via methods 

that apply several types of regularization to the neural network 

according to its purpose (Goodfellow et al., 2016). For example, as 

shown in Fig. 3, various autoencoders can be created, such as 

autoencoders that compress data by making the number of hidden 

layer neurons smaller than the input layer or autoencoders that train 

neural networks so that they can restore the original input after noise is 

added to the input data. This regularization prevents the unsupervised 

neural network from simply copying the input directly to the output, 

and it is adjusted to learn methods of efficiently representing data.

2.3.5 Sparse dictionary learning

Researchers have developed and applied various types of methods 

for introducing sparse coding to reduce the dimensions of the data that 

is to be processed (Elad, 2010). One of these, sparse dictionary 

learning, has the goal of finding sparse representations of input data in 

the form of the input data’s basic elements or linear combinations of 

basic elements (Elad, 2010; Tosic and Frossard, 2011). For example, 

in ,  is the input data, and  is defined as the dictionary matrix. 

Here, the elements of  are defined as atoms. That is,  can be 

expressed as a linear combination of the column vector atoms that 

make up the dictionary. The solution that has the most coefficients that 

are 0 is found from among . This is expressed mathematically, as 

shown below.

  arg
∈ 
min ‖‖    (5)

 is the sparse representation coefficient. The constraint condition 

‖∙‖ represents the -norm. This is a method of finding the total 

number of elements that are not 0 in the vector. However, the -norm 

is a non-convex function, and thus, it has difficulty finding an accurate 

solution. As an alternative, it is sometimes changed to the -norm 

constraint condition, and a fast approximate solution method such as 

orthogonal matching pursuit (Elad, 2010) or sparse Bayesian learning 

(Wipf and Rao, 2004) is used.

2.4 Deep learning

As implied by the name, today’s deep learning methods are 

learning techniques that employ deep neural networks (Goodfellow et 

al., 2016). Previously, it was mentioned that a deep neural network is 

a complex neural network structure that includes several hidden 

layers and is based on a multi-layer perceptron structure. As such, it 

can be considered a machine learning model with a high level of 

complexity, and this is a structure that is similar to the series of neural 

layers that gradually extract complex information in the human brain. 

That is, relatively simple information processing is performed in the 

lower layers, and more complex information is extracted at the higher 

layers.

In deep neural networks, learning is performed by optimizing the 

Fig. 4 Basic architecture of convolutional neural network (Saha, 2018).
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weights in each layer. The main method for deep neural network 

learning is the backpropagation algorithm (Rumelhart et al., 1986). 

This approach mainly uses the gradient descent method to continually 

propagate the error in the back direction to obtain the optimal weights. 

The backpropagation method shows very good performance for 

simple problems, but as the neural network’s structure becomes more 

complex, several serious weaknesses become apparent. First, as the 

neural network’s structure becomes more complex, the number of 

weights increases, and a large amount of learning data is required. In 

addition, the number of hidden layers increases, and the strength of the 

error weakens as it is backpropagated from the output layer to the 

input layer, making it difficult to perform learning. Because of these 

limitations, research on deep neural networks was stagnant for some 

time. Later, a considerable number of the aforementioned problems 

were resolved by using methods such as preprocessing each layer of 

the neural network using an unsupervised learning technique such as a 

restricted Boltzmann machine (RBM), using a rectified linear unit 

(ReLU) function as a new activation function, and preventing 

overfitting by including a regularization step in the learning process 

(Goodfellow et al., 2016). In addition to these technological advances, 

the construction of systems that can easily acquire large amounts of 

data, as well as huge advances in the computing capacity of GPUs, 

have allowed current learning techniques that use deep neural 

networks to provide performance that is vastly superior to the 

conventional machine learning techniques.

Currently, most deep learning models are based on convolutional 

neural networks (CNN). A CNN (Fukushima, 1980; LeCun et al., 

1998) is a deep neural network that imitates the human visual 

recognition process, and it can be considered a neural network that is 

optimized for the field of image recognition. CNNs support 

convolution, and because of this characteristic, they are more useful 

than normal neural networks for receiving and learning input data of 

two dimensions or more. They have the advantage of being able to 

learn high-dimension data with relatively few parameters. Normally, 

CNNs consist of convolutional layers and pooling layers that extract 

the features of high-dimension data, as well as a fully connected layer 

that ultimately classifies the data. The order and number of the 

convolutional and pooling layers can be adjusted as needed according 

to the problem that the user is solving.

Convolution is used to separate and extract the features of input 

data, such as images. Specialized filters are used to extract features 

that consist of certain colors or tones in an image, and these filters 

and the input data can be convoluted to extract emphasized image 

features according to the characteristics of each filter. If this is 

repeated several times, ultimately the CNN can recognize the image. 

Due to these structural features, for higher-dimension analysis 

problems using images, CNNs show unrivaled performance 

compared to other algorithms. In the field of underwater acoustics, 

CNNs are actively being used to solve recognition and classification 

problems by transforming the input data into a frequency-time 

domain image using a short-time Fourier transform or a wavelet 

transform, depicting the input data in the range-azimuth domain, or 

using array signal processing.

3. Conclusions

In this paper, a brief discussion of the theory of machine learning, 

including deep learning is provided from a general perspective before 

examining the research trends in underwater acoustics using machine 

learning. This paper outlines the definitions, types, and basic concepts 

of machine learning and introduces the main techniques that are used 

in underwater acoustics and sonar applications, which will be 

discussed in earnest in a follow-up paper. The follow-up paper will 

provide a more detailed discussion of how machine learning is used in 

the main fields of interest in underwater acoustics, including 

underwater sound source and target detection/classification, 

localization, and ocean information extraction.

The process of data-driven machine learning includes establishing a 

model that is suitable for its purpose, performing training and 

validation via datasets, and improving accuracy by performing 

repeated model updates. Considering that the measurement 

environment and measurement data quality in each research field are 

completely different, it would be best to use machine learning in 

concert with conventional methods in accordance with the goals of the 

research. Owing to the nature of underwater environments, there are 

some challenges in using more aggressive and open techniques 

because the data acquisition/processing procedure is more constrained 

than that used on land (in the air). Therefore, there is a movement 

towards combining traditional research techniques and machine 

learning techniques and developing them in concert with each other. 

The follow-up to this paper will provide a detailed examination of the 

research flow for underwater acoustics and sonar signal processing 

that directly employs machine learning.
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