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Abstract—We examine the problem of utilizing an autonomous
underwater vehicle (AUV) to collect data from an underwater
sensor network. The sensors in the network are equipped with
acoustic modems that provide noisy, range-limited communica-
tion. The AUV must plan a path that maximizes the information
collected while minimizing travel time or fuel expenditure. We
propose AUV path planning methods that extend algorithms
for variants of the Traveling Salesperson Problem (TSP). While
executing a path, the AUV can improve performance by commu-
nicating with multiple nodes in the network at once. Such multi-
node communication requires a scheduling protocol that is robust
to channel variations and interference. To this end, we examine
two multiple access protocols for the underwater data collection
scenario, one based on deterministic access and another based on
random access. We compare the proposed algorithms to baseline
strategies through simulated experiments that utilize models
derived from experimental test data. Our results demonstrate
that properly designed communication models and scheduling
protocols are essential for choosing the appropriate path planning
algorithms for data collection.

Index Terms—acoustic communication, path planning algo-
rithms, sensor networks, underwater robotics

I. INTRODUCTION

THE USE of sensor fields to monitor phenomena in un-

derwater environments is of growing interest. Examples

include monitoring of algal blooms [1], seismic activity [2],

depth surrounding oil platforms, and intrusion of enemy sub-

marines [3]. In underwater scenarios, many standard methods
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of communication are no longer feasible (e.g., WiFi, cellu-

lar, satellite). Acoustic modems can provide communication

underwater, but they suffer from severe range limitations and

channel variations [4].

Without reliable communication, collecting data from un-

derwater sensor networks becomes a challenging problem.

A potential solution is the use of a mobile autonomous

underwater vehicle (AUV) equipped with an acoustic modem

to gather data from the sensors. The problem now becomes

one of planning the AUV’s path to minimize its travel time and

maximize information gathered. We will refer to this problem

as the Communication Constrained Data Collection Problem

(CC-DCP).

The CC-DCP is closely related to the classical Traveling

Salesperson Problem (TSP) [5]. The key difference is that

information is gathered from sensors through a noisy channel,

the reliability of which decreases with distance and can

be modeled probabilistically. Thus, we are dealing with the

new problem of TSP with probabilistic neighborhoods. While

executing the data collection, improved performance can be

achieved if the AUV communicates with multiple nodes at

once. To this end, we examine canonical versions of two

multiple access protocols, one based on Time Division Mul-

tiple Access (TDMA) and one on Random Access (RA). We

compare these protocols to determine their relative benefits,

and we use the results to select parameters for the AUV path

planning algorithm.

In this paper, we design path planning algorithms and com-

munication protocols for the application of an AUV gathering

data from an underwater sensor network. The novelties of this

paper include: (1) formulation of the Communication Con-

strained Data Collection Problem (CC-DCP) as a Traveling

Salesperson Problem (TSP) with probabilistic neighborhoods,

(2) extension of path planning algorithms for the deterministic

prize-collecting TSP and TSP with neighborhoods for use in

the CC-DCP, (3) comparison of two multiple access protocols

for underwater data collection, and (4) the validation of pro-

posed solutions to the CC-DCP through simulated experiments

utilizing communication models derived from experimental

data. We presented a preliminary version of this work in a

prior conference paper [6]. The present paper extends the

conference version with data from an AUV deployment, more

advanced acoustic communication models, and the comparison

of multiple access scheduling protocols.
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Fig. 1. Representative example of a sensor deployment on the ocean floor
to monitor environmental conditions. Such sensors remain in place for many
months. Retrieving data from the sensors during deployment is challenging
due to limited communication underwater. A mobile AUV equipped with
an acoustic modem can act as a data collection device in this scenario
by traversing a path that minimizes travel time and maximizes information
gathered.

The remainder of this paper is organized as follows. We first

examine related work (Section II) and then formulate the CC-

DCP (Section III). We next propose a number of algorithms

for solving the CC-DCP approximately (Section IV). We

then develop realistic acoustic communication models from

experimental test data (Section V), and we derive two multiple

access protocols for use during data collection (Section VI).

We validate our approach through simulated deployments

(Section VII) before concluding and discussing the avenues

for future work (Section VIII).

II. RELATED WORK

The underwater data collection problem is closely related to

TSP. In TSP, a mobile agent must visit a number of locations

in the minimal amount of time. This problem is known to

be NP-hard and has a long history of both approximate and

optimal solutions. With current methods, it is possible to

solve regular TSP instances optimally with more than 10,000

locations [5]. The two key differences between our work

and the classical TSP are: (1) the locations are associated

with sensor measurements that may provide different amounts

of information regarding the phenomena of interest, and (2)

information is gathered from locations based on a probabilistic

communication model over an unreliable channel.

The case where locations are associated with different

“prizes” has been studied by a number of researchers. The

prize-collecting TSP was originally introduced by Balas [7]

and has been extended to a number of related variants [8],

depending on the type of path required, restrictions on the

prizes, and the appearance of new locations during the tour [9].

Goemans and Williamson proposed an approximation algo-

rithm for prize-collecting TSP using a LP primal/dual scheme

that achieves a factor of two guarantee [10]. Slightly better

approximation guarantees are also possible at the cost of

computation and implementation complexity [11].

TSP with deterministic neighborhoods has also been stud-

ied. In this formulation, the agent visits a location by moving

within a fixed radius of the location. Constant factor approx-

imation algorithms are available for TSP with neighborhoods

for both disjoint and overlapping regions of the same size [12]

as well as regions of varying sizes [13]. To our knowledge, the

combination of TSP with neighborhoods and prize-collecting

TSP has not been studied, and the use of probabilistic com-

munication models to describe the neighborhoods has also not

previously been examined.

Related problems have been studied in the context of

robotic data mules. Bhadauria and Isler derived approximation

algorithms for multiple data mules that must traverse a sensor

field and download data [14]. In their work, downloading time

is considered as part of the tour, and the communication radii

are assumed to be uniform, fixed, and deterministic (i.e., data

from a sensor is known to be accessible at a given location). In

the present paper, we utilize a probabilistic acoustic commu-

nication model that degrades with distance. Such models have

been used to optimize control strategies for both underwater

station-keeping [15] and underwater search [3].

Vasilescu et al. developed a system of mobile and stationary

nodes for underwater data collection based on the use of both

optical and acoustic communication [16]. They described the

networking architecture and sensor specifications necessary

for underwater data collection and presented field experiments

using a mobile network. They assume that the AUV commu-

nicates with a single node at once, and they do not examine

scheduling protocols for multiple access. Their experiments

showed the feasibility of utilizing AUVs for underwater data

collection, but the authors left open the problem of path

planning for the mobile nodes in large networks.

A common assumption in prior work is that the AUV

communicates with a single node at a time while executing

the tour [6], [16]. For the multiple access case, there has

been much work on the design of medium access control

methods for underwater acoustic communication networks in

both contention-free [17], as well as contention-based [18],

[19] categories. The emphasis in these works has been on

compensating for the extensive acoustic propagation delay in

ad hoc networks. In contrast, our collection of sensor nodes is

fixed, and network information is known a priori by the AUV.

In fact, it is the AUV that determines which nodes will access

the medium via the neighborhood design.

In terms of methods for multiple nodes accessing the

network, the classical techniques employed in radio fre-

quency wireless networks [20] include interference avoiding,

such as time-division multiple access (TDMA), code-division

multiple-access (CDMA), frequency division multiple access

(FDMA), and random access methods. FDMA is impractical

for underwater channels, due to the severe limits on available

bandwidth. CDMA schemes show promise [21]; however

there is higher overhead in determining and distributing the

spreading codes for a large-scale sensor network. Thus, we

focus herein on the comparison of TDMA and a random-

access scheme.

III. PROBLEM SETUP

We are given a pre-deployed network of N sensors located

in R
dim. For this paper, we limit analysis to dim ∈ {2, 3},

which yields the 2D and 3D problems respectively. We assume

that the location xn ∈ R
dim is given for each sensor n ∈ N ,

whereN is the set of deployed sensors. Each sensor n contains
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data for retrieval, which we denote as Yn. We define the

information quality of the data as I(Yn), which corresponds to
the expected value of information (e.g., information gain in an

inference problem [22], or variance reduction in a regression

problem [23]).

In the general case, coupling between the sensor measure-

ments can lead to information being subadditive or superad-

ditive. In the context of data collection, we will assume that

information is either additive or subadditive (i.e., I(Yn, Ym) ≤
I(Yn)+I(Ym) for all n �= m) and that multiple observations

of any Yn do not provide additional information. Relaxing

either of these assumptions leads to interesting extensions (see

Section VIII).

The sensors are assumed to have limited capabilities. Each

sensor is capable of transmitting data over a noisy channel.

A single mobile vehicle has the capability to communicate

with the sensors. The location xv ∈ R
dim of the vehicle

is controlled and may be subject to constraints, such as

obstacles or vehicle kinematics. Based on these constraints,

a traversal cost c(x1, x2) is defined for all pairs of points
x1, x2 ∈ R

dim. Traversal cost may be defined as the distance,

time, energy, or other quantity necessary to move between two

points. We assume that the traversal cost obeys the triangle

inequality and that the location of the AUV is known. The

communication quality of a location degrades with distance:

C(xv, xn) = f(D(xv , xn)), where D(xv, xn) = |xn − xv|,
and f decreases monotonically with distance.

The path planning optimization problem is to generate a

path for the vehicle that retrieves data from the sensors and

minimizes the traversal cost of the path. For the following

derivation, P (xv, xn) represents the probability that data from
a sensor at xn is received by a vehicle at xv (i.e., the

probability that the AUV has successfully received data from

the sensor). We will set C(xv, xn) = P (xv, xn), noting that
more general communication quality models can be used. If

the information quality of sensors is independent, the expected

received information quality at point xv can be written as

R(xv) =
∑

n∈N

P (xv, xn)I(Yn). (1)

With the independence assumption, we can also calcu-

late the expected received information along a path P =
[xv(1), xv(2), . . . , xv(T )] as

R(P) =
∑

n∈N

⎡

⎣1 −
∏

t∈{1,...,T}

[1 − P (xv(t), xn)]

⎤

⎦ I(Yn).

(2)

The equations above assume that (1) the information quality

of the sensors is independent, (2) the AUV is always attempt-

ing to communicate with all sensors, and (3) that the sensors’

replies do not cause packet collisions. We relax these three

assumptions in Section VI, which requires the development of

more sophisticated scheduling protocols, as well as techniques

to calculate the information quality R(P) at a given AUV
location. Given an expression for R(P), we can state the
Communication-Constrained Data Collection Problem (CC-

DCP) formally.

Problem 1: Given path costs c, information quality I, com-
munication quality C, and a set of possible AUV paths Ψ, find

P∗ = argmax
P∈Ψ

R(P) − l
∑

t∈{1,...,T}

c(P(t − 1),P(t)), (3)

where T is the index of the last location on the path, and l is

a scaling parameter that adjusts the relative tradeoff between

information quality and traversal cost.

In some cases, we may want to set the hard constraint to

gather information from all sensors. For this case, the optimal

solution is a mapping 2N × R
dim → R

dim from the 2N

possible received or not received states of the N sensors and

the current location of the AUV to the next best location.

IV. ALGORITHMS

We now present algorithms for solving the CC-DCP both

optimally, at the cost of high computation, and heuristically,

based on existing algorithms for TSP variants.

A. Optimal MDP Algorithm

The optimal solution to the CC-DCP can be encoded as

a policy mapping from states to actions. To see this, note

that the problem can be formulated as a Markov Decision

Process (MDP) [24]. In the 3D problem, the states in the

MDP are defined as S = X × Y × Z × 2N , where X ,
Y , and Z are the coordinate spaces for the location of the

AUV. The 2N states represent whether or not data has been

collected from each of the N sensors. Let xs be the 2D

or 3D AUV location encoded in s. The reward function

R(s, s′) =
∑

n∈F I(Yn)− l c(xs, xs′), where F is the set of

sensors that go from uncollected to collected between s and

s′, c is the movement cost, and l is a scaling parameter. The

state transitions T (s, s′) are defined by the communication
model and the motion model of the AUV.

If the environment is discretized, the MDP above can be

solved using any standard method (e.g., value iteration or

policy iteration) [24]. However, it is important to note that

the number of states is exponential in the number of sensors

and polynomial in the size of the environment (to the power

of 2 or 3 depending on the dimension). Thus, we can expect

optimal solutions to become infeasible for any instance of

more than a few sensors. In addition, there may be additional

errors that arise from discretizing the possible locations of the

AUV.

B. Approximate Algorithms

Due to the computational intractability of the optimal so-

lution for large networks, we develop heuristics for solving

the CC-DCP approximately. The key difference between the

CC-DCP and the TSP with neighborhoods [12] is that com-

munication is modeled probabilistically. Our approach is to

generate contours of equal probability around the sensors and

utilize these as if they were deterministic neighborhoods.

We define a probabilistic neighborhood Gn ⊂ R
dim as all

locations xv where the probability of successful data transfer

P (xv, xn) is greater than p. The value of p ∈ [0, 1] determines
how conservative the probabilistic neighborhood is. As p → 1,
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Fig. 2. Example tours using different neighborhood types. Left: Standard
traveling salesperson tour [5]. Center: Tour circling a maximal independent
set of neighborhoods [12]. Right: Tour visiting the center of a covering set
of neighborhoods. All tours travel within the contour distance of all nodes,
but the covering set tour is shortest.

it will be near certain that information will be received from

sensor n if the AUV is within the neighborhood. As p → 0,
the AUV may need to query a sensor multiple times before

receiving data from it.

Once the probabilistic neighborhoods are defined, we can

generate a maximal independent set (MIS) of neighborhoods

by greedily choosing sensors and removing adjacent sen-

sors with overlapping neighborhoods. The greedy algorithm

chooses the sensor neighborhood that covers the largest num-

ber of additional sensor neighborhoods and then removes those

neighborhoods from further consideration. A valid tour can

then be found by circling the neighborhoods in the MIS.

We note that the resulting algorithm has a constant factor

performance guarantee relative to optimal in the case of

deterministic neighborhoods [12].

In the case of probabilistic neighborhoods, it may be

necessary to wait for information to be received from the

entire neighborhood before moving to the next neighborhood.

In addition we make the following modification: instead of

generating an MIS and circling the entire neighborhoods, we

generate a covering set at half the contour distance. This

allows us to visit all sensors by simply planning a tour of

the locations in the covering set. This modification improves

performance in practice and also allows straightforward exten-

sion to 3D environments. In the following sections, we will

denote the covering set of neighborhoods as G. Figure 2 gives
a visualization of planning with varying neighborhood types.

For the case where all nodes must be visited, we design the

following heuristics for planning the path of the AUV:

• Myopic: Move towards closest sensor. Once data is

received, move to next sensor.

• TSP Solution: Find an optimal TSP ordering of the

sensors using the Concorde solver [5]. Visit sensors in

that order. Shortcut sensor once data is received.

• TSP Solution with neighborhoods: Find a covering set

of probabilistic neighborhoods. Find the optimal TSP

ordering of the covering set using Concorde. Visit the

neighborhoods in that order. Shortcut once data is re-

ceived.

The myopic strategy is simply to move towards the closest

sensor. This is a reactive strategy and will perform well when

communication quality is high. In such cases, the benefit of

long-term planning is negated by the homogeneity of the

expected received information across the environment. The

second approach is to solve the TSP of the sensors and ignore

the communication model. This technique will perform well

when communication is poor, since this situation requires the

AUV to move near all sensors to gain information from them.

Finally, the TSP solution with neighborhoods incorporates the

communication model as a probabilistic neighborhood.
For the case where all sensors do not need to be visited, we

propose the use of a prize-collecting TSP algorithm (PC-TSP)

to improve performance. The PC-TSP assigns a penalty ζ(Yn)
to each location based on its information content. The tour

now has the option of neglecting some locations and paying

the required penalty. The total cost of the tour is then the

movement cost plus ζ(n) for all n not visited. In our case,

ζ(n) = l I(Yn), where l is a scale factor. We employ the

following strategies for the prize-collecting case:

• Myopic: Ignore the penalties and act as above. Terminate

if the sum of remaining benefits is less than minimum

distance to a sensor’s probabilistic neighborhood.1

• PC-TSP Solution: Use the primal/dual algorithm

from [10] to determine sensors to visit. Find optimal

ordering of this subset using the Concorde solver [5].

Visit sensors in that order. Shortcut once data received.

• PC-TSP Solution with Neighborhoods: Find a covering

set of the sensors using probabilistic neighborhoods.

Use the primal/dual algorithm on the covering set to

determine a subset to visit. Find the optimal ordering of

the subset using Concorde [5]. Visit in that order. Shortcut

once data is received.

The non-myopic algorithms for the case of differing sensor

information utilize an existing PC-TSP approximation algo-

rithm to determine which sensors (or neighborhoods) to visit

during the tour. The selected locations are then treated in a

similar fashion to the problem with equal sensor information.

Additional implementation details and derivation of perfor-

mance guarantees for the prize-collecting case are available

in the conference version of this paper [6].

V. ACOUSTIC COMMUNICATION

We now discuss the acoustic communication model that

we utilize to improve path planning for the AUV in the

data collection scenario. Acoustic propagation is characterized

by energy spreading and absorption that occur in an unob-

structed medium over a single propagation path, as well as by

additional distortions caused by multipath propagation (i.e.,

surface-bottom reflections and refraction due to sound speed

variation with depth [25]).
While there is no well-accepted acoustic channel model,

statistical approaches and geometric approaches are both avail-

able. Ray tracing, a geometric approach, offers an accurate

picture of the resulting sound field at a given frequency and

a given location in a ocean, which can be used to predict

signal strength prior to system deployment. However, the

actual signal strength, observed in a finite bandwidth and

over finite intervals of time, deviates from the predicted value.

These variations appear as random, and our goal is to describe

them statistically based on experimental data. Such data-driven

models allow us to capture environmental factors typical of an

AUV deployment.

1An alternative myopic strategy is to move to the node with highest
benefit/cost ratio. In practice, this did not perform as well as the simple
nearest neighbor.
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Fig. 3. The AUV Lucille being recovered after a successful dive. The ITC
transducer used during this experiment is visible protruding upwards from
the back of the bottom hull, below the thrusters. Image courtesy of the San
Andreas Fault 2010 Expedition, NOAA-OER.

A. Data from AUV Deployment

We utilize data acquired by the AUV Lucille, shown in

Figure 3. Lucille, a SeaBED-class AUV [26] operated by

the NOAA Northwest Fisheries Science Center, is equipped

with a WHOI Micro-Modem [27] and a 12.5 kHz ITC-3013

hemispherical transducer for acoustic communications. In

September of 2010, Lucille assisted in mapping the submerged

portion of the San Andreas Fault off Northern California,

at approximately 39 ◦50′N, 124 ◦W. During this survey, the

AUV’s onboard networking stack periodically transmitted a

three-second long packet. These packets were modulated us-

ing Phase Shift Keying (PSK) and transmitted using 4 kHz

bandwidth around a center frequency of 10 kHz.

Throughout the course of the dive, the vehicle maintained

a constant altitude three meters above the seafloor, at a depth

of approximately 130 m. The surface ship, the R/V Pacific

Storm, received packets from the AUV at varying slant ranges

from 100 m to 1 km. The surface ship remained underway

with the hydraulics running during this experiment, resulting

in significant noise being generated across the frequencies

used for communication. These conditions are typical of

those experienced by AUVs operating from near-shore vessels

on the continental shelf, and our proposed statistical model

incorporates these effects.

B. Acoustic Link Gain Model

To specify a propagation model, we represent the link gain

as

g(d, t) = g(d) + y(t), (4)

where g(d) is the mean value of the gain at a distance d,2 and

y(t) is a random process.

We now proceed to establish two models based on our

experimental data: one that relates the mean value g to the

distance d, and another that specifies the probability distribu-

tion function (pdf) of the random component y. These models

will be valid for the chosen operating conditions (frequency

2The distance is varying with time, i.e. d = d(t).
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Fig. 4. Gain (normalized) vs. transmission distance. Dots show measured
values; solid curve shows an estimated trend (a first-order logarithmic-scale
polynomial fit to the ensemble mean at each distance yields k0=1.9).

band and transmission distances). Specifically, we make the

following conjectures:

(i) the mean value obeys a log-distance model

g(d) = g0 − k0 · 10 log d, (5)

(ii) the random component obeys a Gaussian distribution, y ∼
N (0, σ2).
Figure 4 summarizes the recorded values (from the deploy-

ment described above) of the gain as a function of distance.

The solid curve represents the log-distance model (5), whose

parameters g0 and k0 were obtained by first-order polynomial

fitting.3 We emphasize again that the model parameters will

in general depend on the operational conditions [28], i.e. that

the values indicated in the figure are representative of the 8-

12 kHz acoustic band and transmission distances on the order

of several hundreds of meters.
Shown in Figure 5 is the histogram of the random compo-

nent y = g − g. This figure motivates our second conjecture,

i.e. the Gaussian model for y. The variance σ2 is calculated

from the data at hand. We note that its value appears to

be invariant for the range of distances considered, although

greater distance spans could require sectioning. We also note

that the variance will depend on the bandwidth, decreasing as

the bandwidth increases. Similar conclusions have been found

using different data sets [29].

C. Packet Error Approximations

In addition to the log-normal link gain model justified

in the prequel, we adopt a previously employed [3], [15]

colored noise model that incorporates multiple environmental

factors, including wind, shipping activity, thermal noise, and

turbulence [25]. We assume a block log-normal fading model

for SNR with instantaneous SNR being constant over the

duration of one block. We also assume that successive blocks

fade independently. With BPSK modulation, the probability

of bit error at an SNR of γ is given by:

Pb(γ) = Q
(

√

2γ
)

, (6)

3Logarithms are taken with base 10.
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where Q(·) denotes the tail probability function for the

standard normal distribution. For simplicity, we suppress the

dependence of γ on transmission range, i.e. γ = γ(d).
Assuming J bits per block, the probability of block error at

an SNR of γ is given by:

PS(γ) = 1 − (1 − Pb(γ))
J ≈ J · Q

(

√

2γ
)

, (7)

where the approximation holds for large γ. For a packet

spanning V blocks encoded with a code of rate r to exploit

selection diversity, the packet error rate averaged over γ is

given by:

PD = 1 −
(

1 − PS

)rV
≈ r · V · PS , (8)

where PS = Eγ [PS(γ)], and the approximation holds for
small values of PS .

There is no known simple closed form approximation to PS

when γ is log-normally distributed, and so we employ semi-

analytic Monte-Carlo methods to compute the packet error.

In this model, the packet success rate of 1 − PD between

a vehicle at xv and a sensor at xn represents the expected

communication quality C(xv, xn) (see Section III).

VI. SCHEDULING PROTOCOLS

We now examine two multiple access protocols to allow

the AUV to communicate with multiple nodes at once while

executing the tour. We assume that a single carrier, half-

duplex, narrowband communication system is present on the

AUV as well as on each node. The protocols are described

below followed by a performance analysis in the following

subsection.

A. Protocol Description

1) Time Division Multiple Access (TDMA): We assume

fixed locations for sensor nodes in each neighborhood and that

synchronization (see e.g. [30]) among them has been accom-

plished. The number of transmission slots per neighborhood

is fixed at Ns for the given tour and length of each slot is

sufficient to receive all packets from a single node. A three

phase TDMA protocol is described below:

1) Initiation: The nodes begin in a low power state wherein

they can hear broadcast wake-packets from the AUV

if in range. The AUV sends a high power broadcast

wake-packet of size BS that brings into an active state,

the nodes within the AUV’s current neighborhood (see

e.g. [31]). The broadcast wake-packet also contains

initial communication schedules for all nodes in the

neighborhood.

2) Scheduling: The functional nodes that receive the broad-

cast correctly reply with an acknowledgement packet

of size BA according to the schedule. The AUV sends

out the next round of scheduling information to these

nodes.4

3) Data Transfer: The nodes reply with data packets. After

all nodes have completed their transmissions, this phase

restarts for a second round of transmissions under the

same schedule. The number of transmission rounds

executed is a design parameter.

2) Random Access (RA): We assume that nodes lack

carrier-sense capability. We also suppose that any packet

collision at the AUV leads to reception error. A two phase

unslotted RA protocol is described below:

1) Initiation: The nodes begin in a sleep state. The AUV

sends a high power broadcast wake-packet which brings

the nodes into an active state.

2) Data Transfer: Each node transmits data packets with

a random backoff between successive packets. When a

node completes its transmission, it restarts for a second

round of transmission. The number of transmission

rounds executed depends on the neighborhood.

The absence of node scheduling and selection reduces data

transfer overhead for RA as compared to TDMA, but a

non–zero probability of packet collision decreases throughput.

We note that the TDMA and RA protocols do not use

acknowledgements (ACKs) for data packets, which simplifies

implementation at the expense of gain from feedback and

reduces the round trip propagation delay.5

B. Protocol Performance Analysis

We now develop expressions that will allow us to evaluate

the performance of the two representative protocols described

above. We assume that the AUV receives a packet correctly

if at least one of the many transmitted copies of the packet is

received correctly. While the transmissions from the nodes to

the AUV will incur errors, we assume that transmissions from

the AUV to the nodes are perfectly decoded.

Let N denote the set of all deployed sensor nodes, and

let M denote the subset of nodes covered by the AUV in

the course of its entire tour. We denote by G the set of

neighborhoods that are visited by the AUV (see Section IV).

The |M| sensors are divided into |G| neighborhoods, and
we assume that each sensor in M belongs to exactly one

4A subset of nodes can be easily accommodated as well if AUV constraints
such as power necessitate communication with a smaller set.
5We consider uncoded performance in Section VII to focus on the interplay

between the scheduling protocols and the path planning algorithms. However,
error correction can easily be incorporated by increasing the effective channel
SNR appropriately.
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neighborhood in G. We define h : M → G and K : G → Z
+

to be functions respectively mapping a node m ∈ M to

its neighborhood h(m) ∈ G, and a neighborhood b ∈ G to

the number of transmission rounds executed K(b) ∈ Z
+.

We note that definition of a transmission round is protocol

dependent as described in Section VI-A. Without loss of

generality, if xv is the location of the AUV when at the

center of the neighborhood, we can assume the nodes to

satisfy D(xv, xm) ≤ D(xv, xn) whenever node indices m

and n satisfy m < n and h(m) = h(n). Let C1 and

C2 denote proportionality constants, respectively transforming

physical distance into propagation delay, and packet size into

transmission time.

1) Expected Information Gain: The expression for ex-

pected information gain can be developed independently of the

underlying protocol. Let Zi denote the data stream of sensor

i ∈ M and let ZS denote the set of data streams of all sensors

in the subset S ⊆ N . For now, we assume that all sensors are
equally informative meaning that H(Zi) is independent of i,

where H(·) is the entropy function. In an actual deployment,
information from different sensors are typically correlated.

To capture this effect, we define the conditional common

information for the sensor pair (i, j) ∈ N × N as the

quantity I(Zi; Zj|ZN−{i,j}) where I(· ; ·|·) is the conditional
mutual information function. For consistency, we also define

the conditional innovation for sensor i ∈ N as the quantity

I(Zi; Zi|ZN−{i}) = H(Zi|ZN−{i}). To simplify book keep-
ing, we further suppose that any correlated information in N
can be captured by the conditional common information for

some subset of sensor pairs (i, j) ∈ N ×N , which essentially
means the following is assumed:

I(Zi; Zj |Zk) = I(Zi; Zj) ∀k ∈ N − {i, j}. (9)

We consider a fixed packet size of BD bits and assume that

all packets from a single node in one transmission round carry

independent but equal quantities of information. This means

that we can assume equal number of packets at each sensor

in accordance with nodes being equally informative. Let this

number be Np. We further assume that the AUV performs joint

decoding of information streams from different nodes and can

distinguish between packets containing common information

and innovation packets.

We can now compute the expected information gain at the

AUV for an entire tour P in terms of the number of correctly

received packets carrying distinct information. A packet at

sensor m ∈ M is transmitted K(h(m)) times over the node
m to AUV link. So, the probability of packet failure over this

link is given by:

Prm (failure) = Pm
D

K(h(m))
, (10)

where Pm
D is given by (8) after substituting fading statistics

for node m to AUV link. For S ⊆ N with |S| = 2, let Np(S)
denote the conditional common information between sensors

in S. Since conditional common information resides at both

sensors in S, the probability of failure of such a packet is

given by:

PrS (failure) =
∏

n∈S

Prn (failure) =
∏

n∈S

Pn
D

K(h(n))
. (11)

Using (11) and letting Np(S) denote conditional innovation
for |S| = 1, the total expected information gain for an entire
tour P is given by:

R(P) =
∑

S⊆N : |S|≤2

Np(S) · (1 − PrS (failure))

=
∑

S⊆N : |S|≤2

Np(S) ·

(

1 −
∏

n∈S

Pn
D

K(h(n))

)

, (12)

where we assume K(h(n)) = 0 for any sensor n ∈ N −M.

Equation (12) is directly applicable to TDMA. However,

for RA, the packet collision probability needs to be accounted

for in the packet error probability. We define λ : G → R
+

to be a function mapping a neighborhood b ∈ G to the

average packet arrival rate at the AUV λ(b) ∈ R
+ per

C2 · BD unit of time. Assuming no synchronization between

nodes, the number of packets arriving at the AUV at any

given time is well approximated by a Poisson process with

parameter
λ(b)

C2 · BD

[32]. Let us denote the number of nodes

in neighborhood b ∈ G as s(b) ∈ Z
+. Given that a packet

arrives at time t from node n, a collision occurs if additional

packets arrive in the interval (t − C2 · BD, t + C2 · BD) and
so the probability that no collision occurs is given by:

Prb (no collision) = exp

(

−2 · λ(b) ·

(

1 −
1

s(b)

))

(13)

≈ exp (−2 · λ(b)) , (14)

where the packet arrival rate λ(b) has been adjusted to exclude
node n and the approximation holds for large neighborhoods.

Probability of packet error given that no collision occurs is

same as Pn
D. So, effective average packet error rate for RA is

given by:

Pn
Deff

= Prh(n) (collision) + Prh(n) (no collision) · Pn
D

= 1−exp

(

−2 · λ(h(n)) ·

(

1−
1

s(h(n))

))

·
(

1 − Pn
D

)

(15)

≈ 1 − exp (−2 · λ(h(n))) ·
(

1Pn
D

)

. (16)

We substitute Pn
Deff

for Pn
D in (12) which gives the total

expected information gain for RA.

Although the expression for expected information gain is

valid for any information correlation model, for simulation

purposes we consider the following model. We define the

information correlation between sensors m, n ∈ N as:

ρm,n =
I

(

Zm; Zn|ZN−{m,n}

)

H(Zm)
, (17)

and assume it to decay exponentially6 with separation form �=
n as:

ρm,n = exp

(

−
D(xm, xn)

α

)

, (18)

where α is scaling parameter.

6The exponential decay model is commonly used in Kriging and Gaussian
Process models of spatial correlations [33].
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Using (17) and then (9) we get ρm,m as:

ρm,m =
∑

n∈N

ρm,n −
∑

n∈N
n�=m

ρm,n

=
∑

n∈N

I
(

Zm; Zn|ZN−{m,n}

)

H(Zm)
−

∑

n∈N
n�=m

ρm,n

= 1 −
∑

n∈N
n�=m

ρm,n (19)

In terms of packets, this means that data streams Zm and Zn

share Np · ρm,n packets of information for m �= n.

2) Expected Communication Cost: We define G : G → R
+

to be the function mapping a neighborhood b ∈ G to the cost
of communication in that neighborhood G(b) ∈ R

+ during

the tour. Let e(b) denote the farthest sensor from the AUV

in neighborhood b ∈ G. The total communication cost for the
entire tour is then

∑

b∈G

G(b). The value of G(b) depends on the

communication protocol and is computed below for TDMA as

well as RA.

a) TDMA: The initiation phase has a broadcast of size

BS . This must reach the farthest sensor, so round-trip propa-

gation delay is C1 · 2 ·D(xv, xe(b)), and the transmission cost
is C2 ·BS . In the scheduling phase, the reception time for all

ACK packets is C2 · BA · s(b) in addition to scheduling and
propagation delay equivalent to initiation phase. If τmax is the

maximum delay spread, we need a guard interval of Ns ·τmax

for each transmission round and 2 ·s(b)·τmax for the initiation

phase. Data transfer spans K(b) transmission rounds with Ns

slots per round, Np packets per slot and C2 ·BD transmission

time per packet. The communication cost for TDMA is given

by:

G(b) = Initiation Cost+ Scheduling Cost

+ Guard Interval+ Data Transfer Cost

= 2 ·
(

2 · C1 · D(xv, xe(b)) + C2 · BS

)

+ C2 · BA · s(b)

+ 2 · s(b) · τmax + Ns · τmax · K(b)

+ C2 · BD · Np · Ns · K(b) (20)

≈ C2 · BD · Np · Ns · K(b), (21)

where the approximation holds for long data streams.

b) RA: The initiation phase has a round trip propagation

delay of C1 · 2 ·D(xv, xe(b)) like TDMA. Data transfer spans
K(b) transmission rounds with Np packets per sensor at a

transmission rate of
λ(b)

s(b)
packets per sensor per C2 ·BD unit

of time. This gives the communication cost as:

G(b) = 2 · C1 · D(xv, xe(b)) +
C2 · BD · Np · K(b) · s(b)

λ(b)
(22)

≈
C2 · BD · Np · K(b) · s(b)

λ(b)
, (23)

where the approximation holds for long data steams.

The expressions derived above provide the basis for sim-

ulations that compare the respective benefits of TDMA and

random access in the underwater data collection domain. We

next employ these expressions to evaluate the performance

of the path planning algorithms on a number of simulated

deployments.

VII. SIMULATIONS

A simulation environment was implemented in C++ running

on Ubuntu Linux to test the CC-DCP algorithms. The simu-

lated experiments were run on a 3.2 GHz Intel i7 processor

with 9 GB of RAM. We first test the AUV path planning

component of the proposed algorithm, and we then compare

the two multiple access protocols with different parameter

settings to optimize communication scheduling during the data

collection.

A. Path Planning Comparison

This section validates the path planning component of the

proposed algorithm. The simulations utilize random deploy-

ments of 100 sensors in 100 km × 100 km 2D environments.

The simulated AUV moves at 5 km/hr. Random deployments

are used to determine average-case behavior of the proposed

algorithms. The simulations utilize the model built from the

AUV deployment data (see Section V-A). Further experimental

validation of the models is an important avenue for future

work. We note that the proposed algorithms are general

enough to be used with a wide range of communication models

that provide a probability of receiving data from a given node

that degrades with distance.

For the initial simulations, the node utilities are set to

uniform, and the requirement is to visit all nodes. In these large

environments, the communication time is negligible when

compared to the travel time, so we do not consider the choice

of scheduling protocol. The optimal MDP solution using value

iteration was able to solve problems with up to 3 nodes on

a 15 km × 15 km environment with a 1 km grid resolution.

For these small problem sizes, the myopic nearest neighbor

heuristic performed competitively with the optimal solution.

Based on this finding, we scale up the size of the instances

to compare the approximate methods, and we remove the

infeasible optimal method from consideration.

We next compare the myopic nearest neighbor strategy to

the TSP strategy and the TSP with probabilistic neighborhoods

of p = 0.8. This value of p was selected empirically, and we

give a more thorough analysis of selection of neighborhood

size in Section VII-B. Figure 6 shows results from these trials.

At low transmission power (poor communication), the value

of utilizing the neighborhoods is minimal, and the problem

reduces to the classical TSP. At high transmission power (good

communication), the value of planning is reduced, and the

simple myopic strategy moves closer to the quality of the non-

myopic strategies. At moderate communication levels, there is

some improvement from both solving the TSP and utilizing

neighborhoods. We also compare to a standard lawnmower

pattern that determines the coarsest layout of vertical traversals

that collect data from all nodes. The lawnmower patterns

perform poorly relative to the proposed algorithms because

they do not consider the communication neighborhoods or the

exact locations of the nodes.
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The same simulations were run with random information

values from 0 to 25 added to the 100 sensors. The total

cost is calculated by summing traveled distance plus the

scaled information values of sensors not collected. The scale

factor was set as l = 1 for these simulations. Modifying l

would allow for tuning the number of sensors visited. The

PC-TSP approximation algorithm was compared with and

without neighborhoods to the nearest neighbor strategy and

the lawnmower patterns.

Figure 7 shows the numerical results for the prize-collecting

case. Solving the underlying PC-TSP without neighborhoods

does not perform well, even when compared to the myopic

strategy. Since the PC-TSP algorithm cannot account for the

cost of the neighborhoods when determining which sensors

to visit, it chooses to ignore a number of sensors that would

actually improve the final cost. In contrast, the combination of

the neighborhoods and the underlying PC-TSP approximation

algorithms performs well. Combining Figures 6 and 7, we see

that considering neighborhoods helps marginally in the case

without prizes and more significantly when prizes are consid-

ered. The lawnmower pattern can also be applied to the prize-

collecting case; however, in this case the coarsest layout may

not yield the lowest cost. We choose the lawnmower pattern

that provides the lowest cost, though it may pay the penalty

for missing some nodes. Even with these modifications, the

lawnmower pattern still performs poorly.

The running time of the algorithms is dominated by the

cost of calculating the TSP tour with the Concorde solver. In

the worst-case, this computation time can grow exponentially

in the number of nodes. In practice, typical instances of

100 nodes were solved in 10-100 ms. For a more extensive

discussion of the running time of Concorde, see [5]. When

probabilistic neighborhoods are taken into account, the TSP

solver uses a reduced set of nodes (those in the covering set).

Thus, utilizing neighborhoods actually reduces the running

time of the algorithm.

B. Multiple Access Protocol Comparison

We now examine the performance of the proposed schedul-

ing protocols integrated into the contour-based TSP path

planning algorithm. In the following simulations, we allow

the vehicle to access all nodes in the neighborhood when it

reaches the center of the neighborhood. We also assume that

no communication occurs while the vehicle is moving between

neighborhoods. Relaxing this assumption is an avenue for

future work.

A random 2D deployment of 100 sensors was generated in

a 5 km × 5 km area, and a simulated AUV was added to

the environment that moves at a speed of 1 m/s. The size of

the environment is smaller than in the previous simulations to

explore cases where AUV travel time does not dominate the

mission time. The AUV modem was assumed to operate at low

power in this smaller environment, which creates a tradeoff

between staying in the current neighborhood for additional

transmission rounds or moving to the next neighborhood. We

considered 200 data packets per node with packet transmission

period of 10 ms. A carrier frequency of 13 kHz was used

with a maximum channel delay spread of 30 ms. The TDMA
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Fig. 6. Communication-constrained data collection simulations. Error bars
are one SEM, and averages are over 100 random deployments. Solving the
TSP provides improvement over myopic and lawnmower techniques, and
utilizing neighborhoods provides some additional improvement.
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Fig. 7. Prize-collecting communication-constrained data collection simula-
tions. Data are not collected from some sensors, and the required penalty is
paid. Error bars are one SEM, and averages are over 100 random deployments.
Considering neighborhoods significantly improves performance.

protocol was set to use 10 transmission slots per transmission

round while the RA protocol was set for each node to transmit

0.2 packets per transmission period. The presented results are

averaged over 105 Monte-Carlo runs.

Neighborhoods were generated as in the previous simula-

tions, and a TSP tour was calculated to visit all neighborhoods.

To focus on the evaluation of the scheduling protocols, we do

not consider tours that avoid neighborhoods. Simulations were

run for the two multiple access protocols with varying values

of the number of transmission rounds and the parameter p.

The value of p describes the size of the probabilistic neigh-

borhoods, and we note that a higher p corresponds to smaller

neighborhood size (see Section IV). These two parameters

represent design decisions when implementing the contour-

based TSP algorithm. Figure 8 shows the results of these

simulations. As expected, both information gain in Figure 8(a)

and communication cost in Figure 8(b) increase as the number

of transmission rounds are increased. In addition, increases
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Fig. 8. Communication-constrained data collection simulations in a 5 km × 5 km area with 100 randomly placed nodes. Increasing the value of p decreases
the neighborhood size in the path planning algorithm. A value of p = 0.1 corresponds to approximately 4–5 nodes per neighborhood, p = 0.5 to approximately
3–4 nodes per neighborhood, and p = 0.9 to approximately 2–3 nodes per neighborhood. The maximum gain/cost ratio occurs at different parameter settings
depending on the information correlation and gain variance.
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Fig. 9. Communication-constrained data collection simulations in a 5 km ×
5 km area with 100 nodes. A frontier of solutions is generated that provides
a tradeoff between information gain and mission time.

in p (corresponding to decreased neighborhood size) lead to

longer paths for the AUV and increased cost.

More interesting observations arise when we examine the

gain to cost ratio in Figure 8(c). We see that the gain to cost

ratio first increases with increasing transmission rounds and

then decreases. The maximum appears at a different number

of transmission rounds for varying probabilistic neighborhood

size. If we examine the effect of correlated information on

the choice of scheduling protocol parameters in Figure 8(d),

we see that increases in information correlation favor fewer

transmission rounds to maximize gain/cost ratio. This result

is expected, since correlated data allow for high information

gain without receiving data from the entire neighborhood. We

observe a different effect when the variance of the link gain

σ is increased from Figure 8(e) to Figure 8(f). At higher vari-

ances, larger neighborhood sizes and additional transmissions

are favored to maximize the probability of receiving data.

The ability to handle these various cases by changing the

neighborhood size demonstrates the flexibility of the contour-

based TSP path planning algorithm in this domain.

If we look at the gain/cost frontier, we see that the solutions

can be tuned based on different weightings of cost and gain

(see Figure 9). By varying the value of p and the transmission

rounds, we create a frontier of solutions that provides a

tradeoff between mission time and information gain.

We note that the TDMA protocol outperforms the RA

protocol in terms of gain/cost ratio. In most underwater

data collection scenarios, the quantity of information at each

sensor is large, which makes TDMA the favored protocol. In

applications where the information content at each node is

small, poor synchronization and poor communication quality

can lead to significant overhead for TDMA. In such cases,

RA becomes a better choice for multiple access. In addition,

random access allows for ad hoc networking and is easily

extended to the case where there is error in the node locations.

We note that in many cases, the benefit of TDMA over random

access is quite small, and random access may be preferred due

to its relative ease of implementation.

VIII. CONCLUSIONS AND FUTURE WORK

This paper has shown that communication-constrained data

collection is feasible with robotic sensor networks. When

communication quality is high (relative to the sparsity of

the network), planning is less essential. When communication

quality is low, it is important to solve the underlying TSP,

rather than using a fully reactive approach. Finally, at moderate

levels of communication, it is beneficial to consider the

communication neighborhoods during planning. In addition,

when information quality of the sensors is considered and all

sensors do not need to be visited, considering neighborhoods

improves performance. This analysis provides insight into the

level of planning required to optimize information gathering

at different levels of network sparsity, communication, and

information quality. Such insight motivates the use of realistic

communication models in the development and analysis of

planning algorithms.

We have also demonstrated the benefit of utilizing schedul-

ing protocols to design path planning algorithms for au-

tonomous data collection. We have shown that simulated

analysis with varying parameters can be used to build up a

frontier of solutions that tradeoff between mission time and

information gain. Without such analysis, it would not be possi-

ble to generate this frontier of solutions, and the path planning

algorithm would need to execute blindly. Thus, improved

scheduling protocols and analysis of communication provide

powerful tools for optimizing path planning algorithms in data

collection scenarios.

A number of interesting extensions provide avenues for

future research. The case where sensor communication quality

varies between sensors results in probabilistic neighborhoods

of different sizes. While it is possible to apply our techniques

directly to such cases, it is not clear if additional methods

are necessary to provide good performance. Another potential

extension is the use of non-metric and asymmetric distances

between sensors. For instance, in the case of ocean currents,

it may be easier to travel in one direction than another. Such

cases have been examined for the classical TSP [34], but not

in the case of neighborhoods.

Another avenue to examine is the effect of communi-

cation quality dependencies between sensors on the appro-

priate scheduling parameters and path planning algorithms.

Similarly, correlated sensor information could be utilized in

the path planning algorithms, rather than considered after

planning by the scheduling protocol. Exploiting the locality

and submodularity of the information functions [23] may allow

for path planning algorithms with performance guarantees to

be extended to these cases. Assessing the impact of more

sophisticated network structures and cooperation between the

sensor nodes is also of interest [35], [36]. Ultimately, better

understanding of the connection between path planning and

communication has the potential to provide improved perfor-

mance for robotic data collection.
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