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ABSTRACT Due to the complexity of the underwater environment, underwater images captured by optical

cameras usually suffer from haze and color distortion. Based on the similarity between the underwater

imaging model and the atmosphere model, the dehazing algorithm is widely adopted for underwater image

enhancement. As a key factor of the dehazing model, background light directly affects the quality of image

enhancement. This paper proposes a novel background light estimation method which can enhance the

underwater image. And it can be applied in 30-60m depth with artificial light. The method combines

deep learning to obtain red channel information of the background light in the dark channel of the

underwater image. Then, the background light is obtained by adaptive color deviation correction. Finally,

the experiments of underwater images enhancement are carried out, using the dark channel prior algorithm

based on the proposed background light estimation method. The results show that the proposed method

effectively improves underwater image blur and color deviation, and is superior to other methods in multiple

non-reference image evaluation indicators.

INDEX TERMS Adaptive background light estimation, color correction, deep learning, dark channel prior,

underwater image enhancement.

I. INTRODUCTION

With the rapid development of underwater robots, the tasks of

underwater environment detection and deep-sea exploration

are increasing [1]. Clear underwater images are important for

exploring the marine environment and rescuing in underwa-

ter. However, the underwater image acquired by the camera

has poor visibility, which mostly due to haze caused by

light that is reflected from surface and is scattered by water

particles, and color deviation caused by the various attenua-

tion degrees of the light varies among different wavelengths

[2]–[4]. Also, in a complex underwater environment, both of

the fluidity of the water and the constant movement of the

object can cause the image becoming blurred.

To date, researchers have made important contributions

to underwater image enhancement. He et al. [4] proposed

a simple and effective dark channel prior model in 2011,

which has achieved remarkable results in image dehazing.

Then, based on the similarity between the underwater imag-

ing model and atmosphere imaging model, the dark channel
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prior model has gradually been applied to underwater image

restoration. Yang et al. [5] implemented a low-complexity

underwater image enhancement method based on dark chan-

nel prior. Galdran et al. [6] proposed a red channel prior

model for underwater environments based on dark channel

prior and corrected the transmission map in combination

with the saturation of the image to achieve natural color

correction and visibility improvement. Ding et al. [7] esti-

mated the transmission map by scene depth and used the

dark channel prior to achieve underwater image dehazing.

Finally, the white balance algorithm was used to correct color

deviation. Zhu et al. [8] integrated the histogram equalization

with the dark channel prior, which effectively improved the

contrast of underwater images. Ancuti et al. [9] improved

the accuracy of background light estimation by building on

the blending of two images that are directly derived from a

color-compensated and white-balanced version of the orig-

inal degraded image. Xie et al. [10] improved the dark

channel prior model by estimating the theoretical values of

global background light, and used the relationship between

the scattering coefficient and the wavelength to calculate

the transmission map of the three channels, which better
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solved the problems such as color deviation and blurring

caused by background scattering under illumination condi-

tions. Li et al. [11] proposed an improved bright channel

model, and a corresponding denoising algorithm and color

correction method. Akkaynak and Treibitz [12] calculates

backscatter using the darkest pixels in the image and their

known range information. Then, it uses an estimate of the

spatially varying illuminant to obtain the range-dependent

attenuation coefficient.

However, existing researches usually focused on improv-

ing the dark channel prior algorithm by refining the transmis-

sion map and estimating the background light by changing

the color channel, whereas ignoring the background light

information of the original image provided by the dark chan-

nel itself. In this paper, a novel background light estimation

method which combined maximum scene depth estimation

and adaptive color correction is proposed. The method can

improve the brightness of the underwater image, remove the

haze and correct the color deviation, only need to correct the

background light of the underwater image, and just need a

single image as an input.

The remainder of this paper is organized as follows,

Section 2 introduces the relevant theories and algorithms used

in this paper. Section 3 details the principles of adaptive

background light estimation. Experiments were carried out in

Section 4 to verify the proposedmethods. Finally, we summa-

rize this paper in Section 5.

II. RELATED WORK

A. UNDERWATER IMAGING MODEL

In 1980,McGlamery proposed a classical model of the under-

water imaging system in [13], which pointed out that water

and a large number of suspended particles can absorb and

scatter light, and make underwater images to be color distor-

tion, blurred detail, low overall brightness, and low contrast.

According to the underwater optical imaging model shown

in Fig.1. The total light intensity IT received by the under-

water imaging system is composed of three partials linear

superposition: 1) the direct components ID reflected by the

object; 2) the forward-scattering component IF which repre-

sents the small angle scattering during the object reflection

process; 3) the back-scattering component IB which repre-

sents the influence of light scattering caused by the suspended

particles.

IT (x, λ) = ID (x, λ) + IF (x, λ) + IB(x, λ) (1)

where x represents the pixel point in the image and

λ ∈ {R,G,B} is the color channel.

The energy components ID, IF and IB are exponentially

attenuated as they propagate from the target to the imaging

device, so the three light components can be represented as:

ID (x, λ) = I0 (x, λ) e−c(λ)d(x) (2)

IF (x, λ) = [I0 (x, λ) e−c(λ)d(x)] ∗ g (x, λ) (3)

IB (x, λ) = A (λ) [1−e−c(λ)d(x)] (4)

FIGURE 1. Underwater imaging model [10].

where I0 (x, λ) is the light intensity at the location of the

object, c(λ) is the total attenuation coefficient caused by the

absorption and scattering of the light, d (x) is the distance

between the object and the camera, and can also be seen as

scene depth, e−c(λ)d(x) is the underwater transmission map

expressed by t0 (x, λ), ∗ is the convolution operation, g(x, λ)

is the point spread function, and A(λ) is the background light

of λ channel. Comprehensive (1)-(4), the total light intensity

received by the camera can be expressed as:

IT (x, λ) = [I0 (x, λ) + I0 (x, λ) ∗ g (x, λ)] e−c(λ)d(x)

+ A (λ) [1 − e−c(λ)d(x)] (5)

The target reflection image J (x, λ) is defined as:

J (x, λ) = I0 (x, λ) + I0 (x, λ) ∗ g (x, λ) (6)

Then equation (5) can be reduced to:

IT (x, λ) = J (x, λ) t0 (x, λ) + A (λ) [1 − t0 (x, λ)] (7)

where, IT (x, λ) is equivalent to low-quality underwater

image, and J(x, λ) is clear image. In summary, accurate

prediction of underwater transmission map t0 (x, λ) and

background light A (λ) is essential for underwater image

enhancement.

Also, as shown in Fig. 2. When light propagates underwa-

ter, the underwater attenuation of light vary among different

FIGURE 2. Underwat attenuation of light with different wavelengths [13].
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wavelengths, in which red light has longer wavelengths and

lower frequencies. Therefore, red light is attenuated faster

than blue and green light, which makes the underwater image

blue-green tone [14], [15].

B. DARK CHANNEL PRIOR

He et al. [4] proposed that most local patches in haze-free

outdoor images contain some pixels which have very low

intensities in at least one color channel [4], which is:

Jdark (x) = min
cǫ{r,g,b}

( min
yǫ�(x)

(J c(y))) → 0 (8)

where J is a haze − free outdoor image, J c and Jdark (x)

is a color channel and a dark channel of J , and �(x) is a

local patch centered at x. The dark channel prior states that

except for the sky region, the intensity of Jdark (x) is low and

tends to be zero. According to the dark channel prior and the

traditional air-based mathematic image acquirement model,

the transmission map is calculated by

min
cǫ{r,g,b}

( min
yǫ�(x)

(I c (y)) = min
cǫ{r,g,b}

( min
yǫ�(x)

(

J c (y) t (x)

+Ac [1 − t (x)]
)

) (9)

t (x) = 1 − ω min
cǫ{r,g,b}

min
yǫ�(x)

(
I c (y)

Ac
) (10)

where the value of ω is between 0 and 1 according to

application-based. Atmospheric light Ac is calculated by ini-

tially choosing the 0.1% brightest pixels of the image. Finally,

the dehazing image can be obtained.

J c (x) =
I c (x) − A (λ)

max(t (x) , t0)
+ A (λ) (11)

where t0 is a constant, in order to avoid the t (x) is close to

zero and the value of J c (x) is infinite. The value of t0 should

be set according to the actual situation.

C. FULLY CONVOLUTIONAL RESIDUAL NETWORKS

Laina et al. [16] proposed a new method to solve the depth

estimation problem of a single image. The method replaced

the fully-connected layer, which was part of the original

architecture, with the novel up-sampling blocks and used

the reverse Huber [17], [18] as loss function to improve the

convolutional neural network. Compared to a typical convo-

lutional neural network (CNN), the model is not only simpler

than existing methods, can be trained with less data in less

time, but also achieves higher quality results. The proposed

architecture builds upon Res Net-50[19], and the network is

trained using NYU Depth v2 [20] and Make3D [21] datasets

respectively.

Ultimately, the method achieves more accurate depth esti-

mation of a single image. The method code is open-source

and can be downloaded at https://github.com/iro-cp/FCRN-

DepthPrediction.

III. ADAPTIVE BACKGROUND LIGHT ESTIMATION

Equation (11) indicates that the acquisition of background

light A (λ) has a crucial influence on the clear image J (x, λ).

Fig.3 shows the underwater image enhancing process. The

background light estimation in this paper can be divided into

the following steps:

1) The scene depth is accurately estimated by pre-

processing the underwater blurred image with CLAHEwhich

can enhance the contrast of blurred images;

2) Using the Fully Convolutional Residual Networks

(FCRN) to estimate the depth of the underwater image and

find the maximum scene depth dmax(x, λ);

3) Obtaining the RGB values (Ar ,Ag,Ab) at the maximum

scene depth in the dark channel map;

4) Using the RGB values of the maximum scene depth in

the original image to obtain the ratio of the three color lights,

represented by αr,g, αr,b;

FIGURE 3. Underwater image enhancing process.
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5) Based on Ar , adjust the green channel and blue channel

values proportionally to get A′
g,A

′
b, and as the final back-

ground light A (λ) = (Ar ,A
′
g,A

′
b);

6) Finally, the dark channel prior and the new background

light are used to enhance the underwater image.

A. UNDERWATER IMAGE PREPROCESSING

Underwater images usually has the characteristics of blur,

color deviation and low contrast. To obtain a more accurate

scene depth, underwater images need to be pre-processed.

Zhu et al. [22] experimented with a large number of haze

images and found that the haze is positively correlated with

the difference between the brightness and saturation of the

image in the HSV color space. Based on the relationship

between scene depth and haze, the relationship between scene

depth, brightness and saturation can be derived as below:

d (x) ∝ c (x) ∝ v (x) − s (x) (12)

where d (x) is the scene depth at point x in the image, c (x)

is the concentration of the haze, the brightness of the scene is

represented by v (x), and s(x) is the saturation. Also, contrast

is an important measure of image brightness and saturation.

Therefore, we should select the method that can effectively

improve the image brightness, saturation and contrast to pre-

process the underwater image, thus reducing the influence of

haze on the scene depth estimation. In this paper, we use con-

trast limited adaptive histogram equalization (CLAHE) [23],

dark channel prior [4], gray world algorithm [24],

Automatic Color Enhancement (ACE) [25], Lab Color Cor-

rection (LAB)[26], Non-Local Dehazing (NLD) [27] and

Screened Poisson equation (SP) [28] to preprocess underwa-

ter images separately.

Fig. 4 shows that the enhanced images obtained by pre-

processing with the various methods and the corresponding

scene depth map. And the enhanced image processed by the

CLAHE, ACE, and SP methods works well. Although the

enhancement of the ACE method is the best, the method

reduces some of the valid information in the original image,

so that the resulting depth information is not complete.

The CLAHE method enhances noise, but it retains richer

depth information. The ultimate goal of this step is to

obtain more accurate scene depth information. Therefore,

CLAHE is finally selected to preprocess the underwater

image. The depth prediction method used in Fig. 4 is detailed

in Section B.

B. UNDERWATER IMAGE SCENE DEPTH PREDICTION

Image depth estimation can be obtained by analyzing image

features and depth cameras [29]. For example, the distance

between the object and the camera can be predicted by

FIGURE 4. Underwater image depth prediction. (a) Original image(up) and scene depth map(down).
(b) Pretreated by CLAHE(up) and scene depth map(down). (c) Pretreated by dark channel prior(up) and scene
depth map(down). (d) Pretreated by gray world(up) and scene depth map(down). (e) Pretreated by ACE (up) and
scene depth map(down). (f) Pretreated by LAB(up) and scene depth map(down). (g) Pretreated by NLD(up) and
scene depth map(down). (h) Pretreated by SP(up) and scene depth map(down).
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evaluating the haze in the image based on the relationship

between the haze and the scene depth. The dark channel priori

theory indicates that, when the atmosphere is homogenous,

the transmission map t (x, λ) can be expressed as:

t (x, λ) = e−βd(x,λ) (13)

where β is the scattering coefficient of the atmosphere.

Equation (13) indicates that the transmission map t (x, λ) is

attenuated exponentially with the scene depth d (x). Then,

the scene depth d(x, λ) can be expressed by:

d (x, λ) =
−log t (x, λ)

β
(14)

Equation (14) indicates that, in theory, we can obtain

the scene depth through the transmission map t (x, λ) and

the atmospheric scattering coefficient β. However, the for-

mula (13) is established with the condition that the atmo-

sphere is homogenous. For the underwater environment, not

only the particulate matter but also the density of water is

not uniform. The scattering coefficient β changes with the

water environment and the specific value cannot be obtained.

Fig.5 shows the scene depth map of the same image with the

different values of β and it reflects that the value of β has a

great influence on the scene depth estimation. In the case of

β unknown, accurate scene depth cannot be obtained.

FIGURE 5. Scene depth map of the same image with different β

(a) Original underwater image. (b) Transmission map. (c) β = 0.5, Scene
depth map. (d) β = 1, Scene depth map. (e) β = 2, Scene depth map.
(f)β = 4, Scene depth map.

It is difficult to obtain accurate scene depth using depth

camera and feature analysis, which is caused by the incon-

venience of depth camera operation and the difference of β

in different waters. It is effective to restore the visual quality

of the images with statistical priors [30]. Deep learning has

the advantage of efficient and accurate feature extraction

based on statistical prior. Therefore, this paper selects the

full convolutional residual networks (FCRN) [16] trained by

Make3D dataset and NYU Depth v2 dataset to estimate the

depth of the underwater image. The error of networks in

estimating the scene depth can be as low as 0.127, which

fully meets our requirements for accuracy of scene depth.

Fig.6 shows the effect of the network on the depth estimation

FIGURE 6. Scene depth map of the underwater image.

of underwater pictures. It can be easily seen that the reddish

part of the color is the distant view area, the blue part is

the near view area, and the darkness of the color represents

the distance. The red circle point in Fig.6 represents the

maximum scene depth.

C. ADAPTIVE BACKGROUND LIGHT ESTIMATE

According to equations (7) and (13), based on the inverse

relationship between the scene depth and the transmission

map, it can be concluded that the transmission map is approx-

imately zero at the infinity of the scene depth, and the image

IT (x, λ) is equal to the background light A (λ). So we can

assume that the background light of the image is at the

maximum scene depth.

Derivation of equation (11) as follows:

J (x, λ) =
IT (x, λ) − A (λ)

t0 (x, λ)
+ A (λ)

=
IT (x, λ)

t0 (x, λ)
−

A (λ)

t0 (x, λ)
+ A (λ)

=
IT (x, λ)

t0 (x, λ)
− A (λ) [

1

t0 (x, λ)
+ 1] (15)

The larger the gray level, the brighter the image [31]. For

equation (15), in the case where IT (x, λ) , t0 (x, λ) are known

and fixed, the smaller A (λ), the larger J (x, λ). The dark

channel is obtained from the three-channel minimum, that

is, the gray level of the dark channel is smaller than the

corresponding original image. Underwater images are usually

dark due to lighting problems. In the case of enhancing

the underwater image, the image which taking the point in

the dark channel as the background light is brighter than the

image obtained by taking the point in the original image as

the background light. Therefore, in this paper, the background

light is corrected based on the point of maximum depth of

the dark channel and the three channel values of the point are

recorded as (Ar ,Ag,Ab).

Besides, we also need to define the position of the maxi-

mum scene depth (the red circle point in Fig.6.) and record

it as M (xi,j, λ), where xi,j is expressed as the maximum

scene depth, i, j are the position coordinates of the point x,
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and λ represents the color channel. It should be noted that

the resolution of the image after the FCRN will be changed.

Assuming that the resolution of the original image is m × n,

and the resolution of the depth map is p × q. The positional

coordinates corresponding to the maximum scene depth of

the original image are calculated by the following equation:

M
(

xi,j,λ
)

=min
iǫp

(min
jǫq

Depth(xi,j)), λ∈{R,G,B} (16)

i′ =
m× i

p
, i′ ∈ {Z } (17)

j′ =
n× j

q
, j′ ∈ {Z } (18)

where i
′
, j

′
are respectively represented as coordinates at

the maximum scene depth of the original image, i
′
and j

′

and rounded to integer, and Depth(xi,j) represents the scene

depth map obtained by FCRN. The ratio of the maximum

scene depth (i.e., background light) of the original underwater

image is as follows:

αr,g =
M

′
(

xi′ ,j′ , g
)

M
′
(

xi′ ,j′ , r
) (19)

αr,b =
M

′
(

x
i
′
,j

′ , b
)

M
′
(

xi′ ,j′ , r
) (20)

where αr,g, αr,b represent the ratio of the green channel and

the blue channel to the red channel at the point M
′
(xi′ ,j′ , λ).

We can easily know the degree of color deviation through the

above ratio, and then the background light can be corrected.

A′
g = αr,g × Ag (21)

A′
b = αr,b × Ab (22)

In the above equations, A′
g and A

′
b are the values of the cor-

rected G channel and B channel, so the final background light

can be expressed as A (λ) = (Ar ,A
′
g,A

′
b). Next, the under-

water image is processed by dark channel prior based on the

adaptive background light correction.

IV. EXPERIMENTAL VALIDATION

We performed image enhancement experiments on a large

number of underwater images and evaluated the effectiveness

of the method in this paper through subjective visual, ques-

tionnaire and objective data. Unfortunately, many authors do

not release the implementation of their algorithms. An imple-

mentation that relies only on what authors described in their

papers does not guarantee the accuracy of the enhancement

process and can mislead the evaluation of an algorithm.

Consequently, we selected those algorithms for which we

could find a trustworthy implementation performed by the

authors of the papers or by a reliable author, three of those

algorithms are implemented using software tool ‘‘IMAGE

ENHANCEMENT PROCESS TOOL’’ [32]–[33]. The

method proposed in this paper can be applied in 30-60m depth

and the light source is artificial light. The natural light is not

considered at the moment. The underwater images with five

different scenes used in experiments have significant blurring

of details, color distortion, low brightness, and contrast.

To ensure the fairness of the comparison results, all exper-

imental results were generated on the same computer. The

computer was configured as Intel(R) Core(TM) i7-8650U

CPU @ 2.11 GHz, 16.00 GB memory, Windows 10 system

and x64 processor. MatlabR2017a is software platform.

A. SUBJECTIVE PERFORMANCE EVALUATION

As shown in Fig.7, Fig.7 (a) shows some underwater images

of some websites and live-action shots as original images,

where (1) (3) (4) comes from web, (2) from the example

image in reference [4], and (5) was taken by the underwater

robot BlueROV2 in April 2019. Fig.7 (b) shows the results

of HE’s dark channel prior [4], Fig.7 (c) is the enhanced

image obtained by the automatic color enhancement(ACE)

of P.G [25], Fig.7 (d) shows the results of Bianco’s Lab

Color Correction(LAB) [26], Fig.7 (e) is the enhanced image

obtained by Screened Poisson equation (SP) [28], Fig.7 (f) is

the enhanced image obtained by the gray world algorithm of

D.A [23], and Fig.7 (g) shows that the result of Zhu’s algo-

rithm, which combined the dark channel prior and histogram

equalization [8], and the effect of Fig. 7 (h) obtained by the

method proposed in this paper.

As shown in Fig.7, the dark channel prior represented by

(b) is not ideal for the underwater image dehazing, and there

is still a problem common to the method: the image is too

dark. Fig.7 (c) is the effect of the ACE algorithm. It can be

seen from the Fig.7 (c) that the ACE algorithm works well

in dehazing and color correction, but the brightness is dark.

Fig.7 (d) shows the effect of LAB, which has little change

from the original image. Fig.7 (e) is the effect of the SP

algorithm, it can achieve dehazing, but the color deviation and

brightness are not significantly improved. Fig.7 (f) shows that

although the gray world can solve the problem of lack of red

light in underwater images, it cannot improve the brightness

and dehazing, and it over-adjusts the color deviation and

distorts the image. Compared with the two methods Fig.7 (b)

and Fig.7 (f), Fig. 7(g) has an improvement in brightness,

but the effect of color correction on underwater images is

not satisfactory. Fig.7 (h) shows the effect of our algorithm,

which removes haze, improves brightness and corrects under-

water image color deviation, but needs to be improved for

local brightness and contrast, and the color correction of

Fig.7 (3) and (4) is slightly worse than ACE.

B. QUESTIONNAIRE

For subjective performance evaluation, we designed a ques-

tionnaire to evaluate the underwater image enhancement

algorithms. A panel of review in the field of underwater

imagery (members of the National Key R&D Program of

China) was assembled. This panel is composed of several

professional fields, such as the field of computer vision,

underwater image processing, painting and other professional

fields with experience in underwater imagery. This panel

VOLUME 7, 2019 165323
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FIGURE 7. Underwater image enhancement. (a) Original image. (b) DCP. (c) ACE. (d) LAB. (e) SP. (f) Gray world. (g) Zhu’s method.
(h) Proposed method.

TABLE 1. Average value of each algorithm.

expressed an evaluation of the quality of the enhancement

conducted on the underwater images through some selected

algorithms [31].

The questionnaire is composed of five underwater images

and seven enhancement methods. Each of the enhanced

images is labeled with the acronym of the algorithm that pro-

duced them. Then, the evaluator was to provide an evaluation

expressed as a number from one to ten, where ‘‘one’’ rep-

resents a very poor enhancement and ‘‘ten’’ a very good one.

The score can only be accurate to two decimal place. All these

evaluations, expressed by each evaluator on each enhanced

image, provide a lot of data that needs to be interpreted.

Table 1 shows the results of the average value of each

algorithm. Except for (3) and (4), the methods proposed in

this paper all obtained the highest average value. The ACE

algorithm obtained the highest average value on (3) and (4).

By analyzing the enhanced image, it can be concluded that

the image (3) and (4) processed by the ACE algorithm is

superior to our algorithm in color correction, but not all. This

is because the method proposed in this paper relies on the

accuracy of the maximum scene depth, so the effect of color

correction has slight fluctuations. But in general, the total

average score of our algorithm is 8.12, which is superior to

other enhancement algorithms.

To further analyze the questionnaire and verify the valid-

ity of our algorithms, we performed ANOVA (ANalysis Of

VAriance) on these data. The purpose is to determine whether

the difference between the average score of the algorithms is

significant. Also, to determine which algorithms are effec-

tively better than the others, we conducted a ‘‘post hoc’’

analysis, named LSD (Least-significant Difference), which

is a test that determines specifically which groups are signifi-

cantly different [31]. Table 2 shows that there is significances

between the seven algorithms.

TABLE 2. ANOVA test results and LSD analysis.

A comprehensive analysis of Figure 7, Table 2 and the

LSD results (as shown in the appendix) leads to the following

conclusions:

Image (1): ACE and our algorithm are significantly better

than other algorithms, but ACE and our algorithm do not

show significant differences;
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Image (2): ACE and our algorithm are better than other

algorithms. The effect of SP is not ideal. There is no signifi-

cant difference between GW, DCP and LAB;

Image (3): ACE and our algorithm are better than other

algorithms. The ZHU’s algorithm is not significantly dif-

ferent with the LAB. The effect of all algorithms are better

than GW;

Image (4): The ACE algorithm is superior to our algorithm

and the SP, and these three algorithms are significantly better

than the other algorithms;

Image (5): Our algorithm is better than ACE and SP, and

the effects of GW and DCP are not ideal.

In a nutshell, our algorithm works well for the processing

effect of all underwater images. And our algorithm is not

significantly different with the ACE algorithm. So we need

another assessment method to verify the superiority of our

algorithm.

C. OBJECTIVE PERFORMANCE EVALUATION

Since the underwater image cannot obtain the waterless

image as reference, we should select the no-reference quality

assessment indicators to evaluate the image. The sharp-

ness is an important indicator to measure image quality,

which can better correspond to the subjective feelings of

humans [34]. This paper selects several popular and represen-

tative no-reference evaluation quality assessment indicators

to represent the enhancement image quality. The average

gradient [35] can reflect the details contrast and the texture

change. Generally, the larger average gradient, the richer

the image hierarchy and the clearer the image. No-reference

structural sharpness (NRSS) [36] is an improvement based

on structural similarity index (SSIM), which uses the char-

acteristics of human vision to be most sensitive to horizontal

and vertical edge information, using Sobel operator to extract

the edge information of horizontal direction and vertical

direction, then calculates the edge information variance.

So the larger the value of NRSS, the higher the image

quality. The entropy function based on statistical features is

also an important indicator to assess the richness of image

information. The larger the entropy, the more information,

the clearer the image. All three evaluation indicators can well

reflect the clarity of the enhancement image and the richness

of the details. The evaluation results are shown in Table 3.

According to Table 3, the NRSS values of the enhanced

images obtained by our algorithm are all better than the other

three algorithms, indicating that the images processed by our

algorithm have more detailed information. However, for the

average gradient and the entropy function, our algorithm are

not the best for Fig.7 (2) and (5), but the method second only

to Zhu. This is because the concentrated gray level of the

image is ‘‘stretched’’ by the histogram equalization, which

makes the picture have higher contrast, so the image has

larger gradient. However, regarding to the subjective visual

image, excessive stretching of the gray level causes the image

to appear undesired information, and the visual experience is

not ideal.

TABLE 3. Objective performance evaluation results.

Comprehensive analysis, our algorithm and the ACE algo-

rithm is superior to the other five methods. And our algorithm

is similar to the effect of the ACE algorithm, but the scores of

three assessment indicators of our algorithm are higher than

the ACE algorithm. Except that, after testing a large number

of underwater images, our algorithm gets better results more

often.

V. CONCLUSION

The adaptive background light estimation proposed in this

paper can effectively improve the color deviation caused by

red light attenuation and image blur caused by light scatter-

ing, and increase the image contrast. Also, the method in this

paper extracts data from the image itself, which makes the

enhanced image more consistent with the original image and

achieves image adaptive enhancement.

However, the accuracy of scene depth estimation has an

impact on our method. Since the salinity and the number of

suspended particles in the water vary with time, location and

season, the accuracy of the scene depth estimation are also

relatively reduced. Even accurate depth of the scene cannot be

obtained in transitional turbid waters. Therefore, the method
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TABLE 4. ‘‘Post hoc’’ analysis results.

in this paper dose not apply to ultra-turbid waters with low

visibility. The above problem may be solved by combining

with sonar imaging. Besides, the dark channel of the object in

the clear image mostly tends to zero, that is, the dark channel

value is zero when the maximum scene depth is on the object.

In this case, the background light A (λ) should take the value

of the maximum scene depth of the original image. In addi-

tion to the above two cases, the adaptive background light

estimation method proposed in this paper is satisfactory for

underwater image enhancement and provides a new method

for underwater image enhancement.

APPENDIX

See Table. 4.

REFERENCES

[1] R. A. Armstrong, O. Pizarro, and C. Roman, ‘‘Underwater robotic tech-

nology for imaging mesophotic coral ecosystems,’’ in Mesophotic Coral

Ecosystems (Coral Reefs of the World), vol. 12. Cham, Switzerland:

Springer, 2019, pp. 973–988.

[2] R. Wang, Y. Wang, J. Zhang, and X. Fu, ‘‘Review on underwater image

restoration and enhancement algorithms,’’ in Proc. 7th Int. Conf. Internet

Multimedia Comput. Service (ICIMCS), 2015, pp. 56–62.

[3] H. Lu, Y. Li, Y. Zhang, M. Chen, S. Serikawa, and H. Kim, ‘‘Underwater

optical image processing: A comprehensive review,’’ Mobile Netw. Appl.,

vol. 22, no. 6, pp. 1204–1211, 2017.

[4] K. He, J. Sun, and X. Tang, ‘‘Single image haze removal using dark

channel prior,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 12,

pp. 2341–2353, Dec. 2011.

[5] H. Y. Yang, P. Y. Chen, and C. C. Huang, ‘‘Low complexity underwater

image enhancement based on dark channel prior,’’ in Proc. 2nd Int. Conf.

Innov. Bio-Inspired Comput. Appl., Dec. 2011, pp. 17–20.

165326 VOLUME 7, 2019



S. Yang et al.: Underwater Image Enhancement Using Scene Depth-Based Adaptive Background Light Estimation

[6] A. Galdran, D. Pardo, A. Picón, and A. Alvarez-Gila, ‘‘Automatic red-

channel underwater image restoration,’’ J. Vis. Commun. Image Represent.,

vol. 26, pp. 132–145, Jan. 2015.

[7] X. Ding, Y. Wang, J. Zhang, and X. Fu, ‘‘Underwater image dehaze using

scene depth estimation with adaptive color correction,’’ in Proc. OCEANS,

Aberdeen, U.K., Jun. 2017, pp. 1–5.

[8] W. Q. Zhu, J. Yu, and S. Y. Xi, ‘‘Underwater image restore based on dark

channel prior and contrast enhancement,’’ Inf. Technol., vol. 8, no. 13,

pp. 54–57, Aug. 2017.

[9] C. O. Ancuti, C. Ancuti, C. De Vleeschouwer, and P. Bekaert, ‘‘Color

balance and fusion for underwater image enhancement,’’ IEEE Trans.

Image Process., vol. 27, no. 1, pp. 379–393, Jan. 2018.

[10] H. L. Xie, G. H. Peng, and F. Wang, ‘‘Underwater image restoration based

on background light estimation and dark channel prior,’’ Acta Opt. Sinica,

vol. 38, no. 1, pp. 18–27, 2018.

[11] Y. J. Li, J. R. Li, Y. Li, and H. Kim, ‘‘Low-light underwater image

enhancement for deep-sea tripod,’’ IEEE Access, vol. 7, pp. 44080–44086,

Apr. 2019.

[12] D. Akkaynak and T. Treibitz, ‘‘Sea-thru: A method for removing water

from underwater images,’’ in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit., Jun. 2019, pp. 1682–1691.

[13] B. L. McGlamery, ‘‘A computer model for underwater camera systems,’’

Proc. SPIE, vol. 208, pp. 221–231, Mar. 1980.

[14] J. Y. Chiang and Y.-C. Chen, ‘‘Underwater image enhancement by wave-

length compensation and dehazing,’’ IEEE Trans. Image Process., vol. 21,

no. 4, pp. 1756–1769, Apr. 2012.

[15] L. A. Torres-Méndez and G. Dudek, ‘‘Color correction of underwater

images for aquatic robot inspection,’’ in Proc. EMMCVPR, in Lecture

Notes in Computer Science, vol. 3757, 2005, pp. 60–73.

[16] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab, ‘‘Deeper

depth prediction with fully convolutional residual networks,’’ in Proc.

IEEE Int. Conf. 3D Vis. (3DV), Oct. 2016, pp. 239–248.

[17] A. B. Owen, ‘‘A robust hybrid of lasso and ridge regression,’’ Contemp.

Math., vol. 443, no. 7, pp. 59–72, 2007.

[18] L. Zwald and S. L. Lacroix, ‘‘The berhu penalty and the grouped effect,’’

Jul. 2012, arXiv:1207.6868. [Online]. Available: https://arxiv.org/abs/

1207.6868

[19] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for

image recognition,’’ 2015, arXiv:1512.03385. [Online]. Available: https://

arxiv.org/abs/1512.03385

[20] P. K. Nathan Silberman, D. Hoiem, and R. Fergus, ‘‘Indoor segmenta-

tion and support inference from RGBD images,’’ in Proc. ECCV, 2012,

pp. 746–760.

[21] A. Saxena, M. Sun, and A. Y. Ng, ‘‘Make3D: Learning 3D scene structure

from a single still image,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 31,

no. 5, pp. 824–840, May 2009.

[22] Q. Zhu, J. Mai, and L. Shao, ‘‘A fast single image haze removal algorithm

using color attenuation prior,’’ IEEE Trans. Image Process., vol. 24, no. 11,

pp. 3522–3533, Nov. 2015.

[23] K. Zuiderveld, ‘‘Contrast limited adaptive histogram equalization,’’ in

Graphics Gems IV, P. Heckbert, Ed. NewYork, NY,USA:Academic, 1994.

[24] D. A. Forsyth, ‘‘A novel algorithm for color constancy,’’ Int. J. Comput.

Vis., vol. 5, no. 1, pp. 5–35, 1990.

[25] P. Getreuer, ‘‘Automatic color enhancement (ACE) and its fast implemen-

tation,’’ Imag. Process. Line, vol. 2, pp. 266–277, Nov. 2012.

[26] G. Bianco, M.Muzzupappa, F. Bruno, R. Garcia, and L. Neumann, ‘‘A new

color correction method for underwater imaging,’’ Int. Arch. Photogramm.,

Remote Sens. Spatial Inf. Sci., vol. 40, no. 5, pp. 25–32, 2015.

[27] D. Berman and S. Avidan, ‘‘Non-local image dehazing,’’ in Proc. IEEE

Conf. Comput. Vis. Pattern Recognit., Jun. 2016, pp. 1674–1682.

[28] J.-M. Morel, A.-B. Petro, and C. Sbert., ‘‘Screened Poisson equation for

image contrast enhancement,’’ Image Process. On Line, vol. 4, pp. 16–29,

Mar. 2014.

[29] S. Suwajanakorn and C. Hernandez, ‘‘Depth from focus with your mobile

phone,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015,

pp. 3497–3506.

[30] P. Drews-Jr, E. R. Nascimento, S. S. C. Botelho, and M. F. M. Campos,

‘‘Underwater depth estimation and image restoration based on sin-

gle images,’’ IEEE Comput. Graph. Appl., vol. 36, no. 2, pp. 24–35,

Mar./Apr. 2016.

[31] W. Zhu, R. Hu, and L. G. Liu, ‘‘Grey conversion via perceived-contrast,’’

Vis. Comput., vol. 30, no. 3, pp. 299–309, 2014.

[32] M. Mangeruga, F. Bruno, M. Cozza, P. Agrafiotis, and D. Skarlatos,

‘‘Guidelines for underwater image enhancement based on benchmarking

of different methods,’’ Remote Sens., vol. 10, no. 10, pp. 1652–1679, 2018.

[33] M. Mangeruga, M. Cozza, and F. Bruno, ‘‘Evaluation of underwater

image enhancement algorithms under different environmental conditions,’’

J. Mar. Sci. Eng., vol. 6, no. 1, pp. 10–23, 2018.

[34] A. K. Moorthy and A. C. Bovik, ‘‘Blind image quality assessment: From

natural scene statistics to perceptual quality,’’ IEEE Trans. Image Process.,

vol. 20, no. 12, pp. 3350–3364, Dec. 2011.

[35] J.-B. Wang, N. He, L.-L. Zhang, and K. Lu, ‘‘Single image dehazing

with a physical model and dark channel prior,’’ Neuro Comput., vol. 149,

pp. 718–728, Feb. 2015.

[36] X. Xie, J. Zhou, and Q. Wu, ‘‘No-reference quality index for image blur,’’

J. Comput. Appl., vol. 30, no. 4, pp. 921–924, 2010.

SHUDI YANG received the B.S. degree in

mechanical engineering and the M.S. degree in

safety engineering from the North China Institute

of Science and Technology, in 2014 and 2017,

respectively. She is currently pursuing the Ph.D.

degree in vehicle engineering with the University

of Science and Technology Beijing. Her research

interests include computer vision, image process-

ing, and deep learning.

ZHEHAN CHEN received the Ph.D. degree in

industrial engineering from the Beijing University

of Aeronautics and Astronautics, Beijing, China,

in 2013. He is currently an Associate Professor

with the School of Mechanical Engineering, Uni-

versity of Science and Technology Beijing. His

research interests mainly focus on the technolo-

gies of intelligent manufacturing in the industrial

4.0 era, which include human–machine collabo-

ration based on AI, industrial data mining and

applications, and implementations of industrial information systems.

ZHIPENG FENG received the Ph.D. degree in

power machinery and engineering from the Dalian

University of Technology, Dalian, China, in 2003.

He is currently a Professor with the School of

Mechanical Engineering, University of Science

and Technology Beijing. His research interests

mainly focus on machinery fault diagnosis, signal

processing, artificial intelligence, and mechanical

dynamics.

XIAOMING MA received the bachelor’s degree

in mechanical and electrical engineering from

the School of Mechanical Engineering, Yanshan

University. He is currently pursuing the master’s

degree with the School of Mechanical Engi-

neering, University of Science and Technology

Beijing. His research interests mainly focus on

computer vision and image processing.

VOLUME 7, 2019 165327


