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ABSTRACT Owing to refraction, absorption, and scattering of light by suspended particles in water,
raw underwater images have low contrast, blurred details, and color distortion. These characteristics
can significantly interfere with visual tasks, such as segmentation and tracking. This paper proposes an
underwater image enhancement solution through a deep residual framework. First, the cycle-consistent
adversarial networks (CycleGAN) is employed to generate synthetic underwater images as training data for
convolution neural network models. Second, the very-deep super-resolution reconstruction model (VDSR)
is introduced to underwater resolution applications; with it, the Underwater Resnet model is proposed, which
is a residual learning model for underwater image enhancement tasks. Furthermore, the loss function and
training mode are improved. A multi-term loss function is formed with mean squared error loss and a
proposed edge difference loss. An asynchronous training mode is also proposed to improve the performance
of the multi-term loss function. Finally, the impact of batch normalization is discussed. According to the
underwater image enhancement experiments and a comparative analysis, the color correction and detail
enhancement performance of the proposed methods are superior to that of previous deep learning models
and traditional methods.

INDEX TERMS Asynchronous training, edge difference loss, residual learning, underwater image
enhancement.

I. INTRODUCTION

Recently, vision-guided Autonomous Underwater Vehi-
cles (AUVs) and Remote Operated Vehicles (ROVs)
have integrally impacted the exploration of marine
resources [41]–[44]. Clear underwater images are an impor-
tant prerequisite for such vision-guided explorations. How-
ever, the raw underwater images currently obtained have low
contrast, blurred details, and color distortion. This results
from light refraction, absorption, and scattering of suspended
particles.

The absorption of light by water is selective: the absorption
rate of red light is higher, whereas the transmission rate of
blue and green light is better. Accordingly, raw underwater
images are mostly blue or green, unlike that of an in-air
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image. The scattering of light in water can be divided into
two types: forward scattering and backward scattering [1].
Forward scattering light comes from the object and thus
usually contributes to in the blurred texture features of under-
water objects. Backward scattering constitutes the light that is
reflected back before reaching the target object; this atomizes
the underwater image and causes noise. These challenges
bring difficulties on such tasks as segmentation, tracking,
and vision-based navigation system. Therefore, underwater
image restoration plays an extremely important role in under-
water vision tasks, such as underwater monitoring, deep-sea
exploration, underwater robots and so on. Underwater image
enhancement can promote the reliability of underwater vision
tasks by increasing the underwater image contrast and reduc-
ing the degradation caused by scattering and attenuation.
To address these challenges, this paper proposes an under-
water image enhancement solution through a deep residual
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FIGURE 1. Comparison of underwater images and the images enhanced by the proposed UResnet-P-A.

framework. Unlike other deep learning based underwater
enhancement approaches which focus on the cooperation
between generative adversarial networks and weakly super-
vised learning [27]–[30], we provide a residual learning based
frameworkwhich aims to build a deeper network and improve
the performance for underwater image enhancement.
Firstly, the cycle-consistent adversarial networks (Cycle-

GAN) [2] is employed to generate approximately 4000 pairs
of synthetic underwater images and label images as a train-
ing set for underwater image enhancement. This addressed
the training data insufficiency of using powerful supervised
learning method to enhance underwater image.
Secondly, the Underwater Resnet (UResnet) is proposed

for underwater image enhancement, according to the idea of
residual learning. The VDSR model [3], which is used for
super-resolution reconstruction tasks, was introduced into the
field of underwater image enhancement.
Thirdly, the loss function and training mode were

improved. Edge difference loss (EDL) is proposed to improve
the detail enhancement ability of deep learning models.
An asynchronous training mode is also proposed that propa-
gates mean square error (MSE) loss and EDL asynchronously
during training to improve the performance of the multi-term
loss function. The structure of the proposed UResnet model
with the EDL penalty term is shown in Fig. 5. The under-
water image enhancement effects of the proposed UResnet
with EDL using the asynchronous training mode are shown
in Fig. 1.

II. RELATED WORKS

Research of underwater image restoration or enhancement
is a frontier topic. Although some studies [16]–[22] on this
topic have been conducted, the achievements are not satisfied.
Because this issue is complicated, it is influenced by many
factors, such as illumination, water quality.Meanwhile under-
water image restoration or enhancement, which is usually
used as a pre-processing method, is necessary for under-
water robot navigation, underwater target detection, terrain
detection, exploration and archaeology. Traditional underwa-
ter image restoration or enhancement methods either involve

a non-physical model method or a physical model-based
method. But traditional approaches always need to set
many parameters manually (e.g. the scattering ratio of red,
green and blue channel). Recently, the development of deep
learning methods brings another solution for this research
topic.

Underwater image enhancement based on a non-physical
model refers to the method of improving visual effects by
adjusting image pixel values rather than establishing a math-
ematical and physical model to simulate the image opti-
cal imaging characteristics. Histogram equalization and its
improved algorithm [4]–[6] are commonly used non-physical
contrast enhancement methods. By stretching the pixel value
nonlinearly, the original random distribution histogram is
transformed into a uniform distribution. Thus, the contrast of
the image can be improved. Underwater images usually have
significant color deviation; when light travels in water, differ-
ent colors of light are attenuated at different rates. White bal-
ance [7], [8] is a classical image color correction algorithm.
Images taken in different illumination environments will pro-
duce different extents of color deviation. Thus, the white
balance algorithm corrects the color by adjusting the ratio
of RGB three-channel pixels. There are also image enhance-
ment methods based on human vision brightness and color
perception, such as the classical Retinex image enhancement
algorithm and its improved algorithms [9]–[12], which have
great influence in the field of image enhancement.

The physical model-based methods model the degradation
process of the image: by estimating the parameters of the
model, the degradation process can be inverted to obtain
the normal image. Because the scattering of particles in
water is similar to that of aerosols in the atmosphere, many
image dehazing algorithms have been applied to underwater
image restoration, such as the dark channel algorithm [13],
the non-local algorithm [14], the Fattal image dehazing algo-
rithm [15], and other image restoration algorithms based on
the atmospheric scattering model. However, the underwater
image has more forward scattering and selective absorption
of visible light than an in-air haze image. The underwater
image also often has color deviation, and is more blurred than
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an in-air image. Thus, applying image dehazing algorithms to
underwater image restoration is usually insufficient.
There are also many studies on image restoration

algorithms, particularly for underwater image optical charac-
teristics [16]–[21]. For example, the red channel underwater
image restoration method [22] is based on the physical fact
that light decays exponentially in water and that different
wavelengths of light have different attenuation rates. Consid-
ering that red light has the fastest attenuation, a red channel
method is proposed, as a variant of the dark channel dehazing
algorithm.
The non-physical model methods are sufficient for in-air

image processing; however, because they ignore the opti-
cal properties specific to underwater images, they can eas-
ily lead to color deviation when applied to underwater
images, wherein the enhanced image appears over-saturated
and under-saturated in disparate regions. The physical
model-based methods take into account the optical proper-
ties of underwater images, but often rely on environmen-
tal assumptions and prior knowledge. Mathematical models
have great limitations and the estimation methods of model
parameters are complex. They are difficult to generalize for
different scenarios, and their robustness is poor.
Recently, deep learning methods have been applied to

various fields [23], [24] such as computer vision and natural
language processing. These methods can likewise be applied
to underwater image restoration and enhancement [25], [26].
J. Li, et al. [27] propose WaterGAN, a generative adversarial
network (GAN) for generating realistic underwater images
from in-air image and depth pairings in an unsupervised
pipeline used for color correction of monocular underwater
images. C. Li, et al. [28] propose a weakly supervised color
transfer method to correct underwater color distortion based
on CycleGAN [2] and a multi-term loss function. C. Fabbri,
et al. [29] use CycleGAN to generate paired training data for
underwater image restoration tasks, and proposed underwater
GAN (UGAN) based on pix2pix [30] to improve underwater
image quality.
Currently, most of the deep learning methods for

underwater image restoration and enhancement are weakly
supervised learning methods based on generative adversarial
networks.Most of thesemethods solely focus on color correc-
tion. Few methods can enhance overall image details effec-
tively. Proposing a more comprehensive approach, this paper
employs powerful supervised learning methods for underwa-
ter image enhancement tasks. According to the characteristics
of an underwater image, the loss function and training mode
are improved to promote the enhancement effect.

III. METHODOLOGY

A. PREPARING THE TRAINING DATA SET BY CYCLEGAN

Powerful supervised learningmethods have achieved remark-
able results in many fields of computer vision, but they have
rarely been used in underwater image enhancement. Because
the blurred underwater images have no corresponding clear

images as the ground truth, powerful supervised learning
methods such as CNN (Convolutional Neural Networks),
which need a lot of ‘‘paired’’ training data, cannot be applied
in this field.

To address this lack of training data, CycleGAN [2] is
employed to generate training data. CycleGAN is a variant
of a GAN [31], which can learn mapping from one data dis-
tribution to another data distribution without paired training
data.

CycleGAN consists of discriminatorsDX andDY and gen-
erators F and G. The discriminator DX learns the features
of the in-air images to judge whether the output result is
the in-air image; the discriminator DY learns the features
of the underwater images to judge whether the output result
is the underwater image. The generator G learns the mapping
from the in-air images to the underwater images; the genera-
tor F learns the mapping from the underwater images to the
in-air images to complete the mutual conversion between the
in-air images and the underwater images.

Approximately 4500 in-air images were collected from
public data sets such as urban100 and bsd100 as domain X,
and approximately 5000 underwater images were collected
from Flickr as domain Y. CycleGAN is employed to learn the
mapping from X to Y. Thus, CycleGAN is used to transform
clear in-air images to underwater-style images, which gener-
ates paired training data for a powerful supervised learning
model. CycleGAN can also learn the process from Y to X,
that is, the underwater images can be restored to in-air image
quality. In Section 4.4, the underwater image enhancement
effects are experimentally compared between the proposed
methods, CycleGAN, and other methods.

The image pairs consisting of the in-air images and the
generated ‘‘synthetic underwater images’’ are used as the
training set for the powerful supervised learning models.
Approximately 4000 pairs were generated. Data set examples
are shown in Fig. 2.

B. UNDERWATER IMAGE ENHANCEMENT WITH

THE VDSR

The challenges of underwater image enhancement are similar
to that of super-resolution reconstruction. Compared to an
in-air image, a raw underwater image’s color is distorted.
Moreover, underwater images are blurred, and details, such
as the edges of underwater objects, are muted or lost. Thus,
underwater image enhancement requires color deviation cor-
rection and detail restoration. Similarly, super-resolution
reconstruction aims to restore images’ details.

After supplying training data for a powerful super-
vised learning model with CycleGAN, the very-deep
super-resolution (VDSR) model [3] was introduced to the
underwater image enhancement task.

The VDSR model has 20 convolution layers. Each con-
volution layer uses 3∗3 size filters, with a stride of 1 and
zero-padding with 1 pixel. Such parameter settings ensure
that the resolution of the input image is identical to that of
the output image. Except for the first and the last layers, each
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FIGURE 2. Samples of in-air and synthetic underwater images pairs.

convolution layer has 64 channels. The first layer receives
three-channel image data as input, generates 64-channel fea-
ture maps, and transmits them to the main body of the net-
work. The last layer is the reconstruction layer. It receives
64-channel feature maps and outputs three-channel residual
images. The residual images are added to the input images to
generate the final restored images. When the VDSR model
is used for super-resolution reconstruction, the input image
is a high-resolution image generated by bicubic interpolation
of a low-resolution image, such that the input image and the
output image are the same size.

Therefore, when the VDSR model is applied to underwa-
ter image restoration, the size of input and output images
does not need to be adjusted, and neither does the network
structure. Only appropriate training data are needed for the
network to learn the difference between underwater and in-air
images.

C. EDGE DIFFERENCE LOSS

Most image-to-image translation models use per pixel dif-
ference loss functions such as the MSE or L1 loss function.
The original VDSR model used MSE Loss, wherein it tries
to make the VDSR model learn the pixel level difference
between the two images. Using MSE Loss, the model can
achieve a higher peak signal-to-noise ratio (PSNR) [32] score,
but the generated images do not provide good visual effects;
MSE Loss averages the differences at the pixel level and
fails to take higher-level information, such as an overall
structure, into account. Thus, the MSE Loss function tends to
average the solution and make the image details too smooth,
which is not conducive to the enhancement of high-frequency
information.

Due to the significant detail loss of underwater images,
especially with regard to edge information, a penalty term is
proposed called edge difference loss (EDL). By penalizing
the models with EDL, the details of generated images are
promoted to a higher level.

To calculate the EDL, a Laplacian operator is adopted,
serving as a sensitive edge detection operator. The Laplacian
template
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(denoted as lap) is used as the convolution kernel to perform
the convolution operation on the output results of the last
layer of the model. Simultaneously, the convolution operation
is performed on the label image using the Laplacian template.
The MSE Loss of these two feature maps is then calculated
as the EDL.

The output images from the deep learning models are
denoted as Ig; these are the enhanced images from the under-
water style images; the corresponding clear images (label
images) are denoted as I c. MSE Loss and EDL are thus
calculated as follows:

MSE Loss = E
[
∥

∥I c − Ig
∥

∥

2

]

, (1)

EDL = E
[∥

∥I c ⊗ lap− Ig ⊗ lap
∥

∥

2

]

. (2)

Here, MSE Loss is the second-order norm of the difference
between the enhanced image and the real image. EDL is the
second-order norm of the feature map difference between
the output image and the label image after the Laplacian
convolution operation. Then, the loss function is composed
of two parts: the MSE loss and the EDL:

Loss = MSE Loss+ k ∗ EDL. (3)

The coefficient k is a super-parameter. It adjusts the pro-
portion of the two parts of the loss. The value of parameter k
in equation (3) is obtained by greedy search, which requires
a lot of experiments.

The k value varies for different data sets in order to make
the size of the two parts of the loss function at the same
level. This is referred to as the synchronous training mode.
The VDSR model with the EDL penalty term in synchronous
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FIGURE 3. VDSR model with the proposed EDL penalty term.

FIGURE 4. Proposed asynchronous training mode.

training mode is denoted as VDSR-P-S. This model structure
is shown in Fig. 3.

D. ASYNCHRONOUS TRAINING MODE

In practice, it is difficult to find the best k value in equation (3)
to optimize the output. Because the Laplacian operator is
sensitive to edge information, it is susceptible to noise. If the
value of k is not appropriate, it will lead to noise amplifica-
tion and thus reduce the quality of the output image. There-
fore, the asynchronous training method is proposed for the
VDSR-Pmodel. This trainingmode is also applicable to other
deep learning models which use a multi-term loss function.
The specific steps of the asynchronous training method are
as follows:
The network has to train each batch twice. In the first

round, EDL is used to calculate the gradients and execute
back propagation to update the weights of the network; in

the second round, the gradient is calculated using MSE loss,
and propagated back to update the weights of the network.
Thus, each batch is trained twice, and the weights of the
network are updated twice for each batch. The flow chart of
the asynchronous training mode is shown in Fig. 4.

The asynchronous training mode is adopted and EDL used
in the first training round. This method can take advantage of
EDL’s ability to provide edge information and thus assists the
network in restoring edge information and details. However,
EDL’s influence on the network is restricted by the second
training, which limits the network to focus on the difference
of the pixel level between the output and label images, thus
suppressing the amplification effect of the Laplacian operator
on noise.

Additionally, if the two parts of loss function are trained
with different weights by constructing a multi-term loss
function, as the traditional multi-loss training model does,
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FIGURE 5. The proposed UResnet model with the EDL penalty term.

the appropriate loss weights allocation needs to be identified
via a large number of experiments. This presents a challenge
in determining the optimal weights. However, the weights’
determination is often unalterable and can sacrifice the
robustness of the model.
Alternatively, asynchronous training is equivalent to learn-

ing the k value in equation (3) by the network, wherein the
proportion of the two parts in the loss function is automat-
ically adjusted to achieve the optimal solution. VDSR-P in
asynchronous training mode is denoted as VDSR-P-A.

E. UNDERWATER RESNET (URESNET)

The VDSR model sufficiently achieves underwater images
enhancement; however, the VDSR model is a relatively
shallow model, with 20 convolution layers and only one
skip connection. It is well known that the simplest way
to enhance the performance of the CNN model is stacking
more layers. Generally, the deeper CNNs have more parame-
ters and better potential to handle complex tasks. However,
the deep CNNs are difficult to train. ResBlocks [35] and
skip-connections [45] can ease the training of deep CNNs.
The VDSR model has one skip connection. However it does
not use ResBlocks, which limits the depth of VDSR model.
To further improve underwater image enhancement, a deeper
model is proposed, denoted Underwater Resnet (UResnet).
The proposed UResnet is a residual learning [35] model.

It is composed of ResBlocks, which add the input of one
convolution layer to the output of the next convolution layer.
Utilization of ResBlocks ensure that the information from the
previous layer can be fully transmitted to the ensuing layers.
Stacking ResBlocks allows deeper networks to be trained.
UResnet is inspired by the super-resolution reconstruction
models EDSR [33] and SRResnet [34].

The proposed UResnet model is comprised of three main
sections: a head, body, and tail. Inspired byVDSR and EDSR,
a long distance skip connection is included from the head
section outputs to the body section outputs. The long distance
skip connection adds the feature information of the input
layer to the output layer of body, which constrains Res-
Block modules to learn the difference between label images
and input images. The head contains one convolution layer.
Considering the time consuming of training, the body part
stacks 16 ResBlocks arranged in the following order: [Conv-
BN-ReLU-Conv-BN]. The tail contains one convolution layer.
In sum, there are 34 convolution layers. In the network, a 3×3
convolution is used with a stride of 1 pixel and a zero-padding
of 1 pixel to maintain the shape of feature maps, which allows
UResnet to obtain inputs with arbitrary shapes.

In UResnet, the proposed EDL could be included, and the
asynchronous training mode could be introduced. Because
of the resounding effect of the BN layers on the underwater
image enhancement task (Section 4.3), UResnet was designed
with BN layers.

The detailed configuration of the proposed UResnet model
is shown in Table 1, and the structure shown in Fig. 5.

IV. EXPERIMENTS

A. TESTING DATA SETS

The testing data sets are used to test the enhancement effect of
the proposed models. The evaluation includes both subjective
and objective evaluations. The testing data sets include two
parts: (1) Testing data set A includes 221 underwater images
for subjective and objective evaluation. Sample images from
data set A are shown in Fig. 6. (2) Testing data set B includes
60 pairs of ‘‘synthetic underwater images’’ generated by
CycleGAN and their corresponding in-air images, which
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TABLE 1. Configuration of convolution layers in URESNET.

FIGURE 6. Sample images from data set A.

were not used for powerful supervised learning models. The
images in testing data set B are similar to those in Fig. 2.
Because they are pairs, they can be used for both objective
evaluation, such as by PSNR [32] and structural similarity
(SSIM) [36] evaluation, and subjective evaluation.

B. EXPERIMENTAL COMPARISONS OF THE ORIGINAL

VDSR AND IMPROVED VDSR MODELS WITH THE

PROPOSED EDL AND ASYNCHRONOUS

TRAINING MODEL

To test the effects of the proposed EDL and asynchronous
training mode, three models were trained: the original VDSR
model, the VDSRmodel with the proposed EDL penalty term
in the synchronous training mode (VDSR-P-S), and the one
in the asynchronous training mode (VDSR-P-A).
The experiments were conducted on a workstation with

an Intel Xeon E5-1630 processor and 3 NVIDIA 1080 Ti
graphics cards. The experimental software environment is
Ubuntu 16.04 with PyTorch 0.4.1.
The training data set consists of approximately 4000 pairs

of images with a resolution of 256∗256.
In order to determine the training configuration, a lot

of experiments were conducted. Take the VDSR model for
example, the training effect under different learning rates was

FIGURE 7. Loss curves of VDSR model at different learning rate.

tested as shown in Fig. 7. According to Fig. 7, the learning
rate was determined to be 0.002. The learning rate curves of
VDSR-P-S and VDSR-P-A are similar to those of VDSR.
On all these models, 0.002 is the best choice for learning
rate. Similarly, other experiments were conducted, such as the
enhancement effects in different training epochs, and so on.

Based on the experimental results, each model uses
the same training configuration. The size of each batch
is 1 and the learning rate is 0.002. A stochastic gra-
dient descent (SGD) optimizer was used. The learning
rate decreases by 0.7 per-400 epochs. All three models
were trained for 2000 epochs. For the VDSR-P-S model,
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FIGURE 8. Curves of PSNR and SSIM scores for testing data set B during training of the VDSR, VDSR-P-S, and
VDSR-P-A models.

FIGURE 9. Comparison of the restoration effects of sample images in testing data set B by VDSR, VDSR-P-S, and VDSR-P-A.

10 different EDLweight coefficients were attempted between
0.0001 and 0.5. According to the experimental results,
the selected weight coefficient of EDL was 0.07.
The performance of the three models was compared with

regard to the PSNR and the SSIM in testing data set B under
different training epochs. As shown in Fig. 8, the VDSRmod-
els with the proposed EDL achieve higher PSNR and SSIM
scores than the original VDSRmodel under the same number
of training epochs, and the VDSR-P-A achieves the highest
scores overall. This suggests that EDL and asynchronous
training can accelerate convergence and improve the training
effect. The ‘‘synthetic underwater image’’ restoration effect
of testing data set B is shown in Fig. 9.
In addition to the image restoration effect of testing data

set B, the PSNR and SSIM scores represent the training level
of the models. As seen in the PSNR scores, SSIM scores, and
restoration effect, including EDL is beneficial to training; as
shown in Table 2 the effect of the VDSR-P-A model is the
best. As shown in Fig. 9, the color correction accuracy of
the VDSR-P-A model is higher. As seen in the Loss curve
in Fig. 10, the model converges faster and better when the
proposed EDL is added in asynchronous training mode.

FIGURE 10. Loss curves of VDSR, VDSR-P-S, and VDSR-P-A.

TABLE 2. PSNR and SSIM scores of VDSR, VDSR-P-S, and VDSR-P-A on
testing data set B (2000 EPOCHS).

The performance of the VDSR model was compared with
our improved models on testing data set A, the real underwa-
ter images (Fig. 11). Fig. 12 shows the comparison of detail
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FIGURE 11. Comparison of enhancement effects of sample images in testing data set A by VDSR, VDSR-P-S, and VDSR-P-A.

FIGURE 12. Comparison of detail enhancement effects by VDSR, VDSR-P-S, and VDSR-P-A.

TABLE 3. Visible edge scores of VDSR, VDSR-P-S, and VDSR-P-A on testing
data set A (2000 EPOCHS).

enhancement effects of the VDSR model and our improved
models. The original trained VDSR model corrects the color
deviation and enhances the details. After our improvement,
the VDSR model’s performance improves even further: the
VDSR-P-A model has the best enhancement effect and the
details are clearest.
Table 3 shows the visible edge [37] scores of the VDSR

model and our improved models on testing data set A. The
visible edge measurement does not need a true value, but can

be calculatedwith the original image and the enhanced image.
The visible edge measurement can evaluate edge details and
contrast enhancement by parameters e and r̄, respectively.
Parameter δ represents the proportion of saturated pixels in
the restored image. Higher values of e and r̄, and a lower
value of δ denotes better images quality. These parameters
are widely used in the field of image dehazing. In Table 3,
it can be seen that VDSR-P-A is superior to VDSR-P-S, and
VDSR-P-S is superior to the original VDSR; the proposed
VDSR-P-A model restores the most details. This is attributed
to the better training supplied by EDL and the asynchronous
training mode. Accordingly, with the same training data and
number of training epochs, the VDSR model with EDL in
asynchronous training mode learns more than the original
VDSR model.

C. BN LAYERS AND THE PROPOSED URESNET MODEL

Batch Normalization (BN) [38] can reduce the difficulty
of training deep neural networks. The effects of BN layers
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FIGURE 13. Loss curves of VDSR and UResnet with and without BN layers.

FIGURE 14. Comparison of the restoration effect of the proposed UResnet and UResnet-P-A, each with and without BN on testing data set B.

include accelerating convergence and regularization, which
can prevent the trained model from over-fitting. Since it was
proposed, BN has been widely applied to many CNN-based
classification tasks. BN normalizes feature maps on spatial
scales and batch dimensions in the network; when a batch
size is 1, BN can be called IN (Instance Normalization) [39].
The original VDSRmodel and some other super-resolution

reconstruction models, such as EDSR [33], do not use BN
layers. This is because the BN layer normalizes the features,
which diminishes the network’s range flexibility [33]. For the
image super-resolution reconstruction task, the output image
needs to be consistent with the input in color, contrast, and
brightness; the only adjustment should be to improve the
resolution and details.
After the image passes through the BN layer, its color dis-

tribution is normalized, which is similar to contrast stretching.
This affects the original contrast information of the image,
so the BN layers reduce the quality of the output image in the
image super-resolution reconstruction task.
Underwater image enhancement is different from the

super-resolution reconstruction task. An underwater image
has color deviation, blurring, and low contrast. Enhancing

an underwater image thus requires color deviation correction
and contrast improvement. Therefore, the addition of BN
layer does not hinder the training, but rather improves the
training effect and thus accelerate convergence. As shown
in Fig. 13, it was found that the BN layer accelerates conver-
gence. Additionally, the output has a better visual perceptual
effect (Figs. 14 and 15).

For the VDSR and UResnet models on the underwater
image enhancement task, BN layers are helpful for model
training, as it can accelerate the convergence of the model and
reduce the effect of oscillation. This informed the decision to
include BN layers in the design of UResnet.

By including BN layers, the training process is more stable,
and oscillation is reduced. Moreover, compared with the orig-
inal model, the loss is reduced to a significantly lower level.
From Table 4, it can be seen that with the inclusion of BN
layers, the performance of the UResnet model in the training
process is superior to that without BN layers. Accordingly,
BN layers are conducive to training.

From Table 5, it can be seen that the training effect with the
inclusion of BN layers is better than that without BN layers.
Fig. 14 shows the image restoration effect of the proposed
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FIGURE 15. Comparison of enhancement effects of VDSR and UResnet models with and without BN layers on sample images on testing data set A.

TABLE 4. PSNR and SSIM scores of URESNET (without BN) and URESNET (with BN) on testing data set B for different training epochs.

TABLE 5. PSNR and SSIM scores of VDSR and URESNET models with and
without BN layers on testing data set B.

UResnet models on testing data set B. The models with BN
layers are better than those without BN layers. UResnet-P-A
performs the best, with the restored images quality very close
to the label images. Comparing the visual image quality of
Fig. 14 with that of Fig. 9, the proposed UResnet models are
better than the VDSRmodels. The performance of the VDSR
models was compared with the proposed UResnet models
with and without BN layers on testing data set A, the real
underwater images (Fig. 15). From Fig. 15, through visual
observation, the proposed UResnet models are better than
VDSR models, and the BN layers are helpful for underwater
image enhancement.

TABLE 6. Visible edge scores of VDSR models and URESNET models with
and without BN layers on testing data set A.

On the testing data set A (real underwater images),
the returned visible edge evaluation scores are as expected,
that is, the proposed UResnet models achieved higher scores
than the VDSR models. The models with BN layers are
better than those without BN layers, as shown in Table 6.
It can be seen that the BN layers, the proposed EDL, and
the asynchronous training mode can enhance image details.
Subjectively, from Fig. 15, following the inclusion of the BN,
the colors of the enhanced images are more pronounced, and
the contrast is higher.

The inclusion of BN layers is beneficial to the task of
underwater image enhancement, which is embodied by the
following three aspects:
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FIGURE 16. Detailed comparison of underwater image enhancement effects between the proposed methods and the other
methods.

(1) BN layers are advantageous to training, and the models
with BN layers converge faster.
(2) Themodels with BN layers restore more details, as seen

in the higher the visible edge scores.
(3) BN layers enhance the contrast of the image and

improve the color saturation.
In summary, the proposed UResnet models outperform

the VDSR models in image enhancement, but the UResnet

models are deeper than theVDSRmodel. Training and testing
UResnets requires more time and more computing resources,
as shown in Table 7. The inclusion of BN layers also increases
time consumption.

D. COMPARATIVE EXPERIMENTS WITH OTHER METHODS

To further evaluate the enhancement effects, an underwater
image qualitymeasure (UIQM) [40] was employed to provide
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FIGURE 17. Comparison of enhancement effects of the proposed methods and other methods on sample images
in testing data set A.
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TABLE 7. Time consumption comparison of training and testing with
different models.

TABLE 8. Visible edge scores on testing data set a from the proposed
methods and other methods.

no-reference metrics. The UIQM is comprised of three prop-
erties: the underwater image colorfulness measure (UICM),
the underwater image sharpness measure (UISM), and the
underwater image contrast measure (UIConM). Higher val-
ues of the UIQMs denote better image quality.
The performance of each model on testing set A can be

seen in Table 8, Table 9, Fig. 16, and Fig. 17. The proposed
UResnet-P-A model achieves the highest scores with the
visible edge metric, showing excellent detail recovery. With
the UIQM metrics, the proposed UResnet-P-A model also
achieves the highest score.
Fig. 16 show the differences in detail restoration and con-

trast level of the enhanced image by the proposed methods
and the others. There is a group of fish on the coral reef in the
lower right corner (outlined with the red dotted line frame) of
the image. In the original image, the color of the fish and the
coral reef is similar and blurred. On the left side of the image
(outlined with the yellow dotted line frame), the coral reefs
are also blurred.

TABLE 9. UIQM scores on testing data set a with the proposed methods
and other methods.

Seen from the detail enhancement images in the red dotted
line frame, most of the deep learning methods perform better
than traditional methods with regard to reducing color devi-
ation. The best enhancement effect is the proposed UResnet-
P-A method, followed by the proposed UResnet, and then the
VDSR-P-A (BN) methods.

The enhanced image from the UResnet-P-A method has a
natural color and a moderate contrast. Although the enhanced
image from UGAN has color corrected to some extent,
the enhanced image from UGAN is blurred and its effect
is inferior to that of UResnet-P-A. With regard to detail
restoration, theUResnet-P-A, UResnet, andVDSR-P-A (BN)
images are visibly better than UGAN. The enhanced image
of CycleGAN corrects the color deviation, but the details are
blurred and even worse than the original image.

From the detailed enhancement of coral reefs in the yellow
dotted line frame in Fig. 16, the proposed VDSR-P-A (BN),
UResnet, and UResnet-P-Amodels enhanced detail the most;
among the traditional methods, Clahe has the best effect,
whereas Retinex generated visible noise; The enhancement
effect of CycleGAN is fuzzy; except for some minor color
changes, UGAN does not contain significant detail enhance-
ment.

Thus, compared with other methods, the proposed
UResnet-P-A model performs the best with regard to color
correction and detail enhancement in underwater image
enhancement. This is followed by the proposed UResnet and
VDSR-P-A (BN) methods.

V. CONCLUSION

This paper proposes an underwater image enhancement solu-
tion by a deep residual framework. Firstly, CycleGAN was
employed to generate synthetic underwater images as training
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data for the CNN models. Secondly, the super-resolution
reconstruction model VDSR was introduced into the field
of underwater image enhancement, and the residual learning
model, Underwater Resnet (UResnet) was proposed. Further-
more, the loss function and training mode were improved;
a multi-term loss function was formed with the proposed
edge difference loss (EDL) and MSE loss indices. An asyn-
chronous training mode was also proposed to improve the
performance of the multi-term loss function. The experimen-
tal results show the effectiveness of the proposed methods
for underwater image restoration. EDL and the asynchronous
training mode can improve the performances of CNNmodels
on the underwater image enhancement task. The proposed
UResnet-P-A model achieved the best performance with
regard to both color correction and detail enhancement than
the other methods we compared, followed by the proposed
UResnet and VDSR-P-A (BN) models. It has also been
shown that BN layers, though harmful to super-resolution
reconstruction, are helpful in the underwater image enhance-
ment task. BN layers can accelerate convergence in training.
Furthermore, the inclusion of BN layers can assist in further
restoring details and enhancing image contrast.
The proposedmethods can significantly improve the visual

effects of underwater images, which are helpful to the imple-
mentation of vision-based underwater tasks, such as segmen-
tation and tracking. Furthermore, we consider applying the
proposed methods to the similar domains, such as image
dehazing and super-resolution reconstruction to test the gen-
erality of the proposed methods. We leave these to our future
work.
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