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Underwater Image Restoration Based on Image

Blurriness and Light Absorption
Yan-Tsung Peng, Student Member, IEEE, and Pamela C. Cosman, Fellow, IEEE

Abstract— Underwater images often suffer from color distor-
tion and low contrast, because light is scattered and absorbed
when traveling through water. Such images with different color
tones can be shot in various lighting conditions, making restora-
tion and enhancement difficult. We propose a depth estimation
method for underwater scenes based on image blurriness and
light absorption, which can be used in the image formation
model (IFM) to restore and enhance underwater images. Previous
IFM-based image restoration methods estimate scene depth based
on the dark channel prior or the maximum intensity prior.
These are frequently invalidated by the lighting conditions in
underwater images, leading to poor restoration results. The pro-
posed method estimates underwater scene depth more accurately.
Experimental results on restoring real and synthesized underwa-
ter images demonstrate that the proposed method outperforms
other IFM-based underwater image restoration methods.

Index Terms— Underwater image, image restoration, image
enhancement, depth estimation, blurriness, light absorption.

I. INTRODUCTION

T
ECHNOLOGY advances in manned and remotely oper-

ated submersibles allow people to collect images and

videos from a wide range of the undersea world. Waterproof

cameras have become popular, allowing people to easily

record underwater creatures while snorkeling and diving.

These images or videos often suffer from color distortion

and low contrast due to the propagated light attenuation with

distance from the camera, primarily resulting from absorption

and scattering effects. Therefore, it is desirable to develop an

effective method to restore color and enhance contrast for these

images.

Even though there are many image enhancing techniques

developed, such as white balance, color correction, histogram

equalization, and fusion-based methods [1], they are not based

on a physical model underwater, and thus are not applicable

for underwater images with different physical properties. It is

challenging to restore underwater images because of the varia-

tion of physical properties. Light attenuation underwater leads

to different degrees of color change, depending on wavelength,

dissolved organic compounds, water salinity, and concentra-

tion of phytoplankton [2]. In water, red light with a longer
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Fig. 1. (a) Simplified image formation model. (b)–(f) Examples of under-
water images having different underwater color tones. The original images
(b) and (c) are from [35], (d) from www.webmastergrade.com, (e) from
scuba-diving.knoji.com/amazing-underwater-parks and (f) from [36].

wavelength is absorbed more than green and blue light. Also,

scattered background light coming from different colors of

water is blended with the scene radiance along the light of

sight [3], resulting in underwater scenes often having low

contrast and color distortions.

Fig. 1(a) depicts a simplified image formation

model (IFM) [4]–[6] to describe an underwater scene.

Here I (x), the observed intensity at pixel x , consists of

the scene radiance J (x) blended with the background

light (BL) B according to the transmission map (TM) t (x).

The TM describes the portion of the scene radiance that is

not scattered or absorbed and reaches the camera. Therefore,

a closer scene point has a larger value in the TM. Fig. 1(b)-(f)

shows five underwater images with different BL.

In order to restore color and enhance contrast for

such images, several attempts have been made using the

IFM [8]–[17], where scene depth is derived from the TM [7].

In [8], [10], [11], and [15], the TM is derived by the dark

channel prior (DCP) [7], which was first proposed to remove

haze in natural terrestrial images by calculating the amount

of spatially homogeneous haze using the darkest channel in

the scene. It was observed that because points in the scene

closer to the camera have a shorter path over which scattering

occurs, close dark scene points would remain dark as they

would experience less brightening from scattered light. Thus,

the DCP can be used to estimate the TM and scene depth.

However, red light that possesses longer wavelength and lower

frequency attenuates faster underwater. Thus the DCP based

on RGB channels (DCPrgb) in an underwater scene would

often end up considering only the red channel to measure

transmission, leading to erroneous depth estimation and poor

1057-7149 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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restoration results. In [12], [13], and [17], an underwater

DCP based on only the green and blue channels (DCPgb) was

proposed to avoid this problem. Similarly, Galdran et al. [14]

proposed the Red Channel method, whose DCP is based on

green, blue, and inverted red channels (DCPr’gb). Instead of

using the DCP, Carlevaris-Bianco et al. [9] adopted the max-

imum intensity prior (MIP) that uses the difference between

the maximum intensity of the red channel and that of the green

and blue channels to estimate the TM. However, these methods

frequently perform poorly because the light absorption and

different lighting conditions existing in underwater images

make many exceptions to those priors. Moreover, no work has

been done on restoration of underwater images with dim BL,

which frequently violate the assumptions underlying the DCPs

and the MIP. For example, the DCPs or the MIP of dark

background pixels would have small values and therefore be

mistakenly judged as being close to the camera.

To improve DCP- or MIP-based methods, our previous

work [16] uses image blurriness to estimate transmission and

scene depth, because larger scene depth causes more object

blurriness for underwater images. The method can properly

restore those underwater images that make exceptions to the

DCP- or MIP-based methods because it does not estimate

underwater scene depth via color channels. In this paper,

we improve our previous work. The specific improvements

relative to [16] are as follows: (a) Rather than estimating depth

using image blurriness alone, we use both image blurriness and

light absorption. While blurriness is an important indicator of

depth, it is not the only cue underwater, and the differential

absorption of red light can be exploited when the red content

is significant. (b) We improve on the estimation of BL, in

that we determine BL from candidate BLs estimated from

blurry regions. (c) We present the most comprehensive com-

parison to date of underwater image restoration techniques,

using no-reference quality assessment tools (BRISQUE [18],

UIQM [19], and UCIQE [20]), as well as two full-reference

approaches (PSNR and SSIM [21]) based on synthesized

underwater images with scaled and shifted known depth maps.

The rest of the paper is organized as follows. In Section II,

we review underwater image restoration methods based on

the IFM. The proposed method is described in Section III.

Qualitative and quantitative experimental results are reported

in Section IV. Section V combines the proposed method with

histogram equalization and compares against an underwater

image enhancement method. Finally, Section VI summarizes

the conclusions.

II. RELATED WORK

A. Underwater Image Restoration Based on DCP/MIP

The simplified IFM [4]–[6] is given as:

I c(x) = J c(x)tc(x) + Bc
(
1 − tc(x)

)
, c ∈ {r, g, b} (1)

where I c(x) is the observed intensity in color channel c of

the input image at pixel x , J c is the scene radiance, Bc is

the BL, and tc is the TM, where c is one of the red, green,

and blue channels. Note that I c and J c are normalized to the

range between 0 and 1 in this paper. The TM tc is commonly

written as an exponential decay term [7], [14], [15] based on

the Beer-Lambert law [22] of light attenuation:

tc(x) = e−βcd(x), (2)

where d(x) is the distance from the camera to the radiant

object and βc is the spectral volume attenuation coefficient for

channel c, where c is one of the red, green, and blue channels.

To estimate Bc and tc, the DCP finds the minimum value

among three color channels in a local patch of an image [7].

The DCP for a hazy image can be computed as:

I
rgb
dark(x) = min

y∈�(x)

{
min

c∈{r,g,b}
I c(y)

}
, (3)

where �(x) is a square local patch centered at x . For an

outdoor scene with haze, the value of the dark channel of

a farther scene point in the input image is in general larger

than for a closer scene point because of scattered light.

To determine BL Bc, the top 0.1% brightest pixels in I
rgb
dark

were picked in [7]. Let p0.1% be the set of positions of those

bright pixels in I
rgb
dark . Then, among these pixels, the one

corresponding with the highest intensity in the input image I c

is chosen to provide the estimate of BL. The estimated BL B̃c

can be described as:

B̃c = I c
(

arg max
x∈p0.1%

∑

c∈{r,g,b}

I c(x)
)
. (4)

There are several variants of BL estimation methods listed in

Table I.

For a haze-free image, tc = 1 in Eq. (1), so I c = J c. For

an outdoor terrestrial haze-free image, J
rgb

dark usually equals

zero, because for most pixels x , at least one of three color

channels will have a low-intensity pixel in the local patch �(x)

around x . This is not true for bright sky pixels, where nearby

pixels also tend to be bright. Thus, it asserts in [7, eq. (9)] that

J
rgb

dark(x) = min
y∈�(x)

{
min

c∈{r,g,b}
J c(y)

}
= 0, (5)

for about 75% of non-sky pixels in haze-free images.

To estimate tc, dividing both sides of Eq. (1) by Bc and

then applying the minimum operators to it, we obtain

min
y∈�(x)

{
min

c

I c(y)

Bc

}
= min

y∈�(x)

{
min

c

J c(y)

Bc
tc(y)

}
+ 1 − t̃(x),

(6)

where the estimated TM t̃(x) = miny∈�(x) {minc tc(y)}. Since

miny∈�(x)

{
minc

J c(y)
Bc tc(y)

}
= 0 based on Eq. (5), t̃ is

estimated by:

t̃(x) = 1 − min
y∈�(x)

{
min

c∈{r,g,b}

I c(y)

Bc

}
, (7)

where t̃(x) is clipped to zero if negative.

The TM estimation described in Eq. (7) is a gen-

eral approach to measuring scene transmission, useful to

recover the scene radiance J c using Eq. (1). It is based

on three assumptions for hazy terrestrial images: over-

cast lighting, spatially invariant attenuation coefficients, and

wavelength-independent attenuation βr = βg = βb = β,

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on November 13,2020 at 20:06:48 UTC from IEEE Xplore.  Restrictions apply. 
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TABLE I

FORMULAS FOR ESTIMATION OF DEPTH, BL, AND TM IN UNDERWATER IMAGE RESTORATION METHODS [8]–[16]

i.e., t̃r = t̃g = t̃b = t̃ [5]. Table I also lists several

TM estimation methods based on Eq. (7) which have been

modified for underwater scenes.

Since the estimated TM has block-like artifacts, it can be

refined by either soft matting [24] or guided filtering [25].

With the estimated t̃ and a given β, the estimated depth map

can be calculated according to Eq. (2).

Finally, by putting I c, t̃c and B̃c into Eq. (1), the estimated

scene radiance is calculated as J̃ c = (I c − B̃c)/t̃c + B̃c.

In order to increase the exposure of the scene radiance for

display, a lower bound t0 for t̃c, empirically set to 0.1,

is incorporated as:

J̃ c(x) =
I c(x) − B̃c

max
(
t̃c(x), t0

) + B̃c, (8)

Basically, this restoration step is adopted in [9]–[16] with

an extra smoothing step for [9], an additional color correction

method for [10], a color compensation method for [11], and

a color correction weighting factor incorporated in Eq. (8)

for [14].

The MIP, another prior to estimate the TM, was proposed

in [9]. It first calculates the difference between the maximum

intensity of the red channel and that of the green and blue

channels as:

Dmip(x) = max
y∈�(x)

I r (y) − max
y∈�(x)

{I g(y), I b(y)}. (9)

Large values of Dmip(x) represent closer scene points

whose red light attenuates less than that of farther scene

points. Then the TM is estimated by t̃(x) = Dmip(x) +(
1 − maxx Dmip(x)

)
. Table I summarizes all the priors, and

BL and TM estimation methods in [8]–[16].

Fig. 2. Examples of depth estimation via the DCPrgb, DCPgb, DCPr’gb

and MIP for underwater images. The first row of images shows a successful
case with BL (0.42, 0.68, 0.86). The second row shows a failure case with
BL (0.04, 0.07, 0.07). The original images for the first and second rows come
from [35] and [36].

These DCP- and MIP-based methods only work in limited

cases. Underwater images have different possible lighting

conditions, which may violate the assumptions underlying

these priors, leading to poor estimation and restoration results.

In the original image in the first row of Fig. 2, the lighting

conditions are appropriate for these methods. The foreground

fish and rock have dark pixels which cause the dark channel

to have a small value, so they are correctly estimated as being

close. By contrast, the background lacks very dark pixels, so

the dark channel has a larger value, and these regions are

correctly estimated to be relatively far away. For the MIP, the

value of Dmip of a closer scene point is larger than that of a

farther scene point, which can also be properly interpreted as

the scene depth.

The image in the second row of Fig. 2 is an example of

an underwater image shot with artificial lights where both the

DCP and MIP work poorly. The bright foreground pixels are

mistakenly judged to be far based on the DCPs. The dark

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on November 13,2020 at 20:06:48 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 3. An example of inaccurate TM and BL estimation causing an unsatis-
fying restoration result. (a) Original image, (b) depth map, and estimated BL

B̃c picked at the position of the red dot, (c) recovered scene radiance obtained
using [15], and (d) estimated TMs for the red, green, and blue channels.

background region is incorrectly regarded as being close. The

MIP also produces an erroneous depth map because the values

of Dmip for the whole image are very similar. Note that since

correct depth estimation requires both the BL and TM of an

underwater image to be correctly estimated in Fig. 2, we com-

pare the depth maps obtained using different priors with fixed

and properly selected BLs. Later in Section IV, we will show

other examples where the DCP and the MIP poorly estimate

depth and BL, leading to unsatisfying restoration results.

B. TM Estimation for the Red, Green, and Blue Channels

As described previously, underwater image restoration

methods that require the three assumptions often fail to recover

scene radiance underwater because imaging conditions are

quite different than in open air. The natural illumination

undergoes a strong color-dependent attenuation, which vio-

lates the assumption of wavelength-independent attenuation

βr = βg = βb.

Chiang et al. [11] first addressed this problem by propos-

ing a wavelength compensation and image dehazing method.

In this, the TMs are estimated according to residual energy

ratios of different color channels, related to the attenuation

coefficients βc. However, these ratios were chosen manually,

limiting the practical applicability of this method.

In [15], the relations among the attenuation coefficients of

different color channels based on inherent optical properties

of water were derived from the BL as:

βk

βr
=

Br (mλk + i)

Bk(mλr + i)
, k ∈ {g, b}, (10)

where λc, c ∈ {r, g, b}, represent the wavelengths of the red,

green, and blue channels, m = −0.00113, and i = 1.62517.

The TMs for the green and blue lights are then calculated by:

tk(x) = tr (x)
βk

βr , k ∈ {g, b}, (11)

where tr is estimated by Eq. (7).

As described above, correct TM estimation is contingent

on the prior and BL it uses. Both of these frequently cannot

be attained in [11] and [15] because the prior they use is the

DCPrgb. Fig. 3 shows an example of an incorrect TM and BL

obtained using DCPrgb in [15] producing a poor restoration

result. Here, the original image has some bright foreground

pixels and some dark background pixels. Thus, instead of

picking BL from the bright background pixels, the method

selects BL from foreground pixels erroneously regarded as

being far. Moreover, wrong BL causes the TMs, t̃r , t̃g , and t̃b,

to be similar to each other for this greenish input image, thus

failing to correct the distorted color.

Fig. 4. Example of restoring an underwater image with artificial lighting
using [14] and the proposed method. (a) The original image. The restoration
results and their corresponding depth maps and BL (marked with a red dot)
obtained using (b) [14] based on the DCPr’gb, (c) [14] based on the DCPr’gb

with saturation, and (d) more accurate TMs and properly selected BL. The
original image is from [36].

C. DCP/MIP Exceptions Caused by Artificial Illumination

Since water absorbs more light as the light rays travel

through longer distance in the water, artificial lighting is

sometimes used to provide sufficient light for taking pictures

and videos. Artificial lighting in an underwater image often

leads to a bright foreground. This violates the assumptions

underlying the DCP, where bright pixels are regarded as being

far. Artificially illuminated bright foreground pixels should be

less modified by a restoration method than background pixels

because the light, originating from an artificial lighting source

and reflected by foreground objects, travels less far in the water

and is less absorbed and scattered. Depth estimation based

on the MIP could fail when the foreground has bright pixels

and the background has dark pixels because the values of

Dmip for the foreground and the background would be similar,

which is unable to produce an accurate depth map. An example

of the failure of DCP and MIP to estimate scene depth is

shown in the second row of Fig. 2. We will demonstrate more

examples in Sec. IV.

Chiang et al. [11] proposed to detect and then remove

artificial lighting by comparing the mean luminances of the

foreground and the background. However, this approach clas-

sifies foreground and background pixels based on the depth

map using DCP, which is often ineffective because of incorrect

depth estimation.

Galdran et al. [14] dealt with artificial lighting by incorpo-

rating the saturation prior into DCPr’gb as:

I
r ′gb−sat
dark (x) = min

y∈�(x)

{
min

c∈{r ′,g,b}
I c(y), Sat (y)

}
, (12)

where Sat =
maxc(I c)−minc(I c)

maxc(I c)
, c ∈ {r, g, b} measures the sat-

uration of scene point y. Because it is assumed that artificially

illuminated scene points would have low saturation, these

bright points in the foreground would not be incorrectly judged

as being far. However, it does not solve the problem caused by

dark pixels in the background, which still violate the assump-

tions underlying the DCP. As shown in Fig. 4(b), restoration

based on DCPr’gb estimates the scene depth incorrectly, as the

rock in the foreground has bright pixels because of artificial

lighting, so is wrongly judged to be far. In Fig. 4(c), depth

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on November 13,2020 at 20:06:48 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 5. Flowchart of our proposed method. The original image is from [35].

estimation based on the DCPr’gb with saturation successfully

avoids this problem, but the dark pixels in the background

are still erroneously estimated to be close, also resulting in an

incorrect BL selection and poor restoration result. With more

accurate TMs and properly selected BL, Fig. 4(d) shows a

better restoration result image.

III. PROPOSED METHOD

In this section, we propose a new restoration method based

on both image blurriness and light absorption, where more

accurate BL and depth estimation are provided. First, we select

the BL from blurry regions in an underwater image. Then,

based on the BL, the depth map and the TMs are obtained to

restore scene radiance. The flowchart of the proposed method

is shown in Fig. 5.

A. Image Blurriness Estimation

Underwater image blurriness estimation was presented in

our previous work [16]. It includes three steps. Let Gk,σ be

the input image filtered by a k × k spatial Gaussian filter with

variance σ 2. The initial blurriness map Pinit is computed as:

Pinit (x) =
1

n

n∑

i=1

|Ig(x) − Gri ,ri (x)|, (13)

where Ig is the grayscale version of the input image I c, ri =

2i n + 1, and n is set to 4. Next, we apply the max filter to

calculate the rough blurriness map Pr as:

Pr (x) = max
y∈�(x)

Pinit (y), (14)

where �(x) is a z × z local patch centered at x . Here, we set

z = 7. (We found that any patch size from z = 7 up to z = 31

works well for image sizes ranging from 800x600 to 1280x720

in the proposed method. So z = 7 is used throughout this

paper.) We refine Pr by filling the holes caused by flat regions

in the objects using morphological reconstruction [23], and

then soft matting [24] or guided filtering [25] is applied for

smoothing to generate a refined blurriness map Pblr :

Pblr (x) = Fg

{
Cr

[
Pr (x)

]}
, (15)

where Cr is a hole-filling morphological reconstruction oper-

ator, and Fg is the soft matting or guided filtering function.

Fig. 6 shows an example of each step.

Fig. 6. Example of image blurriness estimation. (a) Original image, (b) Initial
blurriness map from Eq. (13), (c) Rough map from Eq. (14), (d) Refined map
from Eq. (15).

Fig. 7. Examples of changing brightness or hue of restored scene radiance via
varying BL with given TMs obtained using the proposed method. (a) Original
images. (b), (c), and (d) are the restored images using different BL. The
original images are from [35].

B. Background Light Estimation

BL determines the color tone of an underwater image as

well as its restored scene radiance. For an underwater image,

the lower and upper bounds of its possible restored scene

radiance J̃ c ∈ [0, 1] can be derived by setting B̃c = 1 and

B̃c = 0 in Eq. (8), as:

max(
I c − 1 + t̃ ′

t̃ ′
, 0) ≤ J̃ c ≤ min(

I c

t̃ ′
, 1), (16)

where t̃ ′ = max(t̃c, t0) ∈ [t0, 1]. Based on Eq. (16), restoring

an underwater image with dim BL would result in bright scene

radiance while using bright BL leads to an opposite result.

Consider an extreme BL, B̃c = 0, as an example, where

J̃ c = min( I c

t̃ ′
, 1). In this case, the restored scene radiance

J̃ c(x) of a far scene point with the value of t̃ ′(x) being small

would have a larger value than its corresponding observed

intensity I c(x) and thus be brighter. A bright BL would lead

to the opposite result. A visual example can be seen in the first

row of Fig. 7. As the BL, though unchanging, is estimated

as being brighter, the restored scene radiance gets darker.

Moreover, a small value in one of the color channels of the

estimated BL will lead to a substantial increase in that color in

the restored image. The second row of Fig. 7 gives an example

in which changing values in the red channel of B̃c produces

different hues of the restored images.

In general, the value for estimated BL of an underwater

image is chosen from far scene points with high inten-

sity. Emberton et al. [17] adopted a hierarchical rank-based

approach based on DCPgb, color variance, and gradient to find

the brightest pixel in the most likely region of BL. This method

is, however, inaccurate in many cases, as it still uses the

assumptions of DCPgb. In contrast, we estimate the BL based

on image blurriness and variance. We propose a BL candidate

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on November 13,2020 at 20:06:48 UTC from IEEE Xplore.  Restrictions apply. 
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Algorithm 1 BL–Estimate

selection method, which picks three BL candidates from the

top 0.1% blurry pixels in the input image, the lowest variance

region and the largest blurriness region. These two regions

(which may or may not be the same) are decided using

quadtree decomposition which iteratively divides the input

image into four equal-sized blocks according to the variance

or blurriness. The blurriness of a region in the input image is

obtained by averaging Pblr (x) in the corresponding region in

the blurriness map.

With three BL candidates determined, we pick BL for each

color channel separately from them according to the input

image. The detailed algorithm is described in Algo. 1, where

S is a sigmoid function given by:

S(a, v) =
[
1 + e

−s
(

a−v
)]−1

, (17)

where s is an empirical constant. Here, we set s = 32. The

fixed thresholds used in this paper are ǫs = 2−10 and ǫn =

0.2. Note that the function QUAD–SELECT–LV is a similar

function to QUAD–SELECT–LB with largest blurriness being

replaced by lowest variance and without considering Pblr .

In BL–ESTIMATE, we determine BL for each color channel

between the darkest and brightest BL candidates according

to the percentage of bright pixels (I k > 0.5). When the

percentage is high (
|I k>0.5|

Size(I k)
>> ǫn), meaning that the input

image was taken under sufficient lighting, then BL estimated

as being brighter is more suitable. When the image was taken

without sufficient lighting (
|I k>0.5|

Size(I k )
<< ǫn), BL is estimated

as being darker. In between these extremes, the BL estimate

is calculated by a weighted combination of the darkest and

brightest BL candidates. Fig. 8 demonstrates the proposed

BL estimation and compares the restoration results obtained

using each BL candidate and the selected estimated BL, where

we can see that using our background light candidate selection

method generates a more visually pleasing result.

C. Depth Estimation Based on Light Absorption

and Image Blurriness

We propose to estimate scene depth by combining three

depth estimation methods. We first define the three depth

estimation methods, and then explain how they are sigmoidally

combined based on the lighting and image conditions where

each performs best.

The red channel map R is defined as:

R(x) = max
y∈�(x)

I r (y). (18)

We obtain a first estimate of depth, denoted d̃R , directly from

the red channel map by assuming that scene points which

preserve more red light are closer to the camera:

d̃R = 1 − Fs

(
R
)
, (19)

where Fs is a stretching function:

Fs(V) =
V − min(V)

max(V) − min(V)
, (20)

where V is a vector. Some successful examples are shown in

Fig. 9(a)–(d).

Our second estimate of depth is

d̃D = 1 − Fs

(
Dmip

)
, (21)

which uses Eq. (9) and (20). This depth map assumes that,

for a scene point, a greater value of red light minus the

maximum of green and blue lights means the point is closer

to the camera. This concept was first proposed in [9], where

Dmip was used to estimate the TM, rather than the depth

directly.

Our third approach is to use the image blurriness Pr in

Eq. (14) to estimate depth:

d̃B = 1 − Fs

(
Cr (Pr )

)
. (22)

Combining Eq. (19), Eq. (21), and Eq. (22), we propose to

estimate underwater scene depth based on light absorption and

image blurriness according to the estimated BL B̃c and the

average input red value:

d̃n(x) = θb

[
θa d̃D(x) + (1 − θa)d̃R(x)

]
+ (1 − θb)d̃B(x),

(23)

where θa = S
(

avgc(B̃c), 0.5
)

and θb = S
(

avg(I r ), 0.1
)

are determined by the sigmoid function defined in Eq. (17).

Finally, the depth map is refined and smoothed by either soft

matting [24] or guided filtering [25]. The estimated depth map

d̃n ∈ [0, 1] can be regarded as a map of normalized relative

distance for the scene points of the input image.
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Fig. 8. Example of the proposed BL estimation. (a) The original image with the lowest variance and largest blurriness estimation blocks outlined in red and
in blue. The white blocks are the final quadrants. The images (b)–(e) are the restored images obtained using B c

cand1
, Bc

cand2
, Bc

cand3
, and B̃c. (f) The TMs for

the red, green and blue channels estimated by the proposed method with B̃c.

Fig. 9. Examples of depth estimation based on light absorption and image
blurriness. The original images are in the first row. The depth maps obtained
based on the red channel R, Dmip , and Pblr are in the second, third, and

fourth rows. The means of the estimated BL avgc∈{r,g,b}(B̃c) in the column

(a)–(f) are 0.06, 0.18, 0.5, 0.53, 0.62, and 0.81. The original image (b) is
from [36], and (d)–(f) are from [35].

The explanation for this combined approach is as follows.

When the image has some reasonable level of red content

overall (avg(I r ) >> 0.1) and the background light is relatively

dim (avgc(B̃c) << 0.5) then d̃R alone represents depth well.

In this case, θa ≈ 1 and θb ≈ 1, and d̃n(x) ≈ d̃R(x). As the

BL gets brighter, the possibility that d̃R(x) fails to represent

scene depth gets higher. Because the BL accounts for more

of the observed intensity for a scene point farther from the

camera, far scene points may still have large values in the red

channel and be wrongly judged as being close according to

Eq. (19), as seen in Fig. 9 (e)–(f).

When an underwater image has a brighter BL, we find that

d̃D is more reliable to represent scene depth. The red light of

a farther scene point is absorbed more compared to the green

and blue light, shown in Fig. 9 (c)–(f). So when the image has

some reasonable level of red content overall (avg(I r ) >> 0.1)

and the background light is relatively bright (avgc(B̃c) >>

0.5) then d̃D alone represents depth well. In this case, θa ≈ 0

and θb ≈ 1, and d̃n(x) ≈ d̃D(x).

Lastly if there is very little red light in the scene,

so avg(I r ) << 0.1, then both Eq. (19) and Eq. (21) which

directly use red channel values are likely to fail to estimate

scene depth properly. In this case, θb ≈ 0, and d̃n(x) ≈ d̃B(x)

mean that the depth estimation reverts to using the blurriness

map alone, as in [16]. In between these various extremes,

the depth map comes from a weighted combination of the

three approaches.

Fig. 10. An example of TM estimation with and without d̃0. (a) Original
image, and its restored images obtained using the proposed method, where
the TM estimation (b) does not consider d̃0 and (c) considers d̃0 = 0.68.

D. TM Estimation and Scene Radiance Recovery

As described in Section II-A, the TM estimation of the

DCP-based methods is based on Eq. (7). By contrast, we cal-

culate the TM according to Eq. (2), which uses the depth

from the camera to scene points. To measure the distance from

the camera to each scene point, the distance d0 between the

closest scene point and the camera must be estimated as well.

Via the maximum difference between the estimated B̃c and

the observed intensities I c in the input image, the estimated

d̃0 ∈ [0, 1] can be calculated by:

d̃0 = 1 − max
x,c∈{r,g,b}

| B̃c − I c(x) |

max(B̃k, 1 − B̃k)
, (24)

where k = arg maxc∈{r,g,b}

(
maxx | B̃c − I c(x) |

)
. If the

BL accounts for a large portion of the observed intensities

for the closest scene point, the maximum difference would

be small, and d̃0 would be large, i.e., the distance from the

camera to the closest object in the scene is long.

Combining Eq. (23) and (24), the final scene depth d̃ f is

given by:

d̃ f (x) = D∞ ×
(
d̃n(x) + d̃0

)
, (25)

where D∞ is a scaling constant for transforming the relative

distance to the actual distance.

With d̃ f , we can calculate the TM for the red channel as:

t̃r (x) = e−βr d̃ f (x), (26)

where βr ∈ [ 1
8
, 1

5
] for Ocean Type–I water [2], [11], [30].

Roughly 98% of the world’s open ocean and coastal waters fall

into this category [28]. Then, we can compute the TMs, t̃g and

t̃b, for the green and blue channels by Eq. (10) and Eq. (11).

Note that the typical ranges of the wavelength of red, green and

blue light are λr = 620 ∼ 750 nm, λg = 490 ∼ 550 nm, and

λb = 400 ∼ 490 nm. In this paper, we choose three standard
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Fig. 11. Restoration example where all methods are successful. (a) The original image. The enhanced results, and the corresponding depth map and
BL (marked with a red dot for (b)–(e)) obtained using: (b) [9], (c) [12], (d) [14], (e) [15], (f) [16], and (g) the proposed method.

Fig. 12. Example of restoring an underwater image with dim BL. (a) The original image. The restored results, and the corresponding depth map and
BL (marked with a red dot for (b)–(e)) obtained using: (b) [9], (c) [12], (d) [14], (e) [15], (f) [16], and (g) the proposed method.

Fig. 13. Example of restoring a greenish underwater image. (a) The original image. The restored results, and the corresponding depth map and BL (marked
with a red dot for (b)–(e)) obtained using: (b) [9], (c) [12], (d) [14], (e) [15], (f) [16], and (g) the proposed method.

wavelengths for red, green and blue light λr = 620 nm, λg =

540 nm, and λb = 450 nm, as used in [15]. We found that the

restoration results are not sensitive to values of βr ∈ [ 1
8
, 1

6
],

and we set βr = 1
7

throughout this paper. We also set D∞ =

8 m for our proposed method, so the range of t̃r is [0.1, 1].

Fig. 8(f) gives an example of TMs for the red, green and blue

channels of a greenish underwater image based on Eq. (11)

and Eq. (26). We can see that with properly estimated BL

and our parameters, the proposed method can well restore the

image as Fig. 8(e).

At the end, we recover the scene radiance using Eq. (8).

Fig. 10 gives an example to show the effectiveness of using

TM estimation considering d̃0 in the proposed method. The

proposed method with d̃0 produces a more satisfactory restored

result with better contrast and saturated color.

The proposed depth estimation based on light absorption

can also handle artificial lighting gracefully by considering

BL. If the BL of an underwater image with artificial lighting

is dim, the restoration using the depth map derived by the

red channel map R in Eq. (18) would regard those bright
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Fig. 14. Example of restoring an underwater image with artificial lighting. (a) The original image. The restored results, and the corresponding depth map
and BL (marked with a red dot for (b)–(e)) obtained using: (b) [9], (c) [12], (d) [14], (e) [15], (f) [16], and (g) the proposed method. The original image
comes from [36].

Fig. 15. Close comparison between (a) [16] and (b) the proposed method
for the original image shown in Fig. 14.

pixels as being close and not over-compensate their color.

When BL is bright, the red light from the background pixels

would attenuate more than that of the foreground pixels, which

could be correctly interpreted as scene depth using Eq. (21).

Sec. IV-A will demonstrate restoration examples with artificial

lighting.

IV. EXPERIMENTAL RESULTS

Previous underwater image restoration methods used the

IFM in Eq. (1) only based on the DCPs or the MIP. In this

section, we compare our previous method based on image

blurriness [16] and the proposed method based on both image

blurriness and light absorption against the DCP- and the MIP-

based methods. The performance of the proposed method is

evaluated in three ways:

1) Subjective visual comparison including examination of

the depth map and the BL,

2) Objective quantitative full-reference assessment of

restored synthesized underwater images, and

3) Objective quantitative no-reference quality assessment

of restored real-world underwater images.

A. Qualitative Assessment

In the visual comparison, we use six underwater images

with different underwater color tones and lighting conditions

for testing, where the depth maps shown all undergo a simple

individual contrast stretching step for display.

In Fig. 11, we can see that the original image looks hazy

and has bright BL. All methods work well for this case.

The blurriness-based method [16] and the proposed method

generate similar depth maps and BL to those obtained by

the DCP and MIP methods [9], [12], [14], [15]. All of the

result images look restored and enhanced although some color

differences exist.

In contrast, the original image in Fig. 12 is dimly lit, which

invalidates the DCPs and MIP. Results from the MIP-based [9]

and DCP-based methods [12], [14], [15] look insignificantly

restored because of the incorrect depth map and wrong BL

selection from the bright foreground pixels. The blurriness-

based method [16] and the proposed method estimate the scene

depth and BL more correctly.

Fig. 13 gives an example of restoring a greenish underwater

image, which has some bright pixels in the foreground and

dark pixels in the background, making the DCPs invalid. The

depth map based on DCPrgb [15] is opposite to the scene

depth, resulting in a wrong BL selection and a poor restoration.

For the method based on DCPgb [12], even though the BL

is properly selected, it presents an unsatisfactory restoration

result because most of the pixels are mistakenly regarded as

being close. The methods based on MIP [9] and DCPr’gb [14]

both erroneously consider some foreground pixels as being far

and background pixels as being close, also failing to restore

the image. The blurriness-based method [16], which estimates

depth more accurately in this case, gives an overexposed

restoration result because of selecting dimmer BL. Addition-

ally, like [9] and [12], it estimates only one single TM without

considering different attenuation levels for RGB channels.

Thus, their output images cannot be properly restored. The

proposed method correctly estimates the depth and BL, and

thus generates more accurate TMs for the red, green, and blue

channels. Using these TMs (shown in Fig. 8(f)), the proposed

method compensates more red and blue light for the original

image than green light.

Fig. 14 shows an example of restoring an underwater image

shot with artifical lighting. The method based on DCPrgb [15]

wrongly regards almost all of the pixels in the image as

being close except for the white objects, leading to a restored

image nearly identical to the original. The DCPgb method [12]

picks a bright foreground pixel as BL, which makes the

background even darker. The DCPr’gb [14] method also pro-

duces a restored image with a dimmer background because
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Fig. 16. Restoration example involving artificial lighting. (a) An underwater image of Pisces V and its out-of-water image. The restored results, and the
corresponding TM (only t̃r is shown for [15] and the proposed method) and BL obtained using: (b) [9], (c) [12], (d) [14], (e) [15], (f) [16], and (g) the
proposed method. The original image is from [36].

Fig. 17. Examples of synthesizing underwater images with four different
underwater color tones using Eq. (27). (a) The ground truth image and its
depth map. (b)–(e) Synthesized underwater images with d0 = 4 and rs = 4.

Fig. 18. All test synthesized underwater images with Tone I color. The
images from left to right are synthesized (a) using d0 = 4, 5, . . . , 8 in
“TestMode–InitD” and (b) using rs = 1, 2, . . . , 5 in “TestMode–ScaleD.”

of the incorrect depth and BL estimation. Although the

MIP-based [9] method selects dark BL to reveal the back-

ground scene in the processed image, it also produces an over-

exposed foreground. As shown in Fig. 15, the blurriness-based

method [16] compensates the brightness for the background

with dark BL but also overexposes some smooth regions in

the foreground for which depth estimated based on blurriness

is inaccurate. The proposed method estimates BL and depth

more precisely and generates a well-enhanced restored image.

We can see from the depth map that the bright pixels in the

original image are regarded as being close, which prevents

their overexposure.

Lastly, Fig. 16 demonstrates restoration of a special

case with artificial lighting. Fig. 16(a) shows an image of

Pisces V [38], a deep-submergence vehicle, with its external

Fig. 19. PSNR results (top) and SSIM results (bottom) obtained using
different restoration methods for “TestMode–InitD.”

Fig. 20. PSNR results (top) and SSIM results (bottom) obtained using
different methods for “TestMode–ScaleD.”

light on in the underwater scene, as well as its out-of-

water image for comparison. The red light in the underwater

image is attenuated more than green and blue light. Unlike

Fig. 11–Fig. 14 that present the depth maps, we show the

corresponding TM estimated by each of the compared methods

for the processed image to better explain the restoration results.

Note that the TM aims to describe the portion of the scene

radiance not scattered or absorbed but reaching the camera.

A larger TM value means the corresponding scene point
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Fig. 21. Examples of restoring synthesized underwater images with
Tone I–IV colors in “TestMode–ScaleD” (rs = 3) obtained using the proposed
method. The synthesized images are in the first row, and the corresponding
restored images and BL estimates are shown in the second and third rows.

Fig. 22. Examples of synthesized underwater images generated using
three different images with their depth maps and selected BLs.

Fig. 23. Examples of “BRISQUE score/UIQM value” pairs for synthesized
(top) and real (bottom) underwater images. (The images are from [31], [35],
and [36], and Google Images.)

Fig. 24. Test images for BRISQUE. (The images are from [1], [8], [9], [12],
[14], [35], and [36], and Google Images.)

has more scene radiance that reaches the camera, while a

smaller value means the BL accounts for more of the observed

intensity of that scene point. Hence, the TM for the underwater

image in Fig. 16(a) should have larger values for scene points

closer to the artificial light and smaller values for the points

farther from the light.

In Fig 16(c)–(f), the methods based on the DCPgb [12],

DCPr’gb [14], DCPrgb [15], and image blurriness [16] fail to

generate such TMs, and produce poor restoration results. The

MIP-based method [9] estimates TM well, yet its estimated

BL that has a larger value in the red channel is inaccurate,

leading to a dimmer restoration result. The proposed method

attains a more accurate TM and BL selection and presents a

more precise color restoration result.

TABLE II

COMPARISON OF AVERAGE PSNR/SSIM OF THE RESTORATION RESULTS

OVER ALL THE TESTED d0 ∈ [4, 8 m] AND rs ∈ [1, 5] OBTAINED USING

THE PROPOSED METHOD AND ITS MIXED METHODS USING THE

TM ESTIMATION FOR THE RED CHANNEL t̃r BASED ON DCPS,
MIP, OR IMAGE BLURRINESS

B. Quantitative Assessment

1) Restoration of Synthesized Underwater Images:

Although the simplified IFM in Eq. (1) is widely used to

describe the formation of a hazy image and can also be

invoked to explain the formation of an underwater image,

light that travels through water causes image blur because

of light scattering and refraction [3], which is ignored

by this model. To synthesize a more realistic underwater

image, image blur must be incorporated in the model. This

image blur can be modeled by a point spread function,

where the blur kernel width is proportional to the scene

depth [3], [26], [27]. Combining the IFM and the point spread

function, we describe an underwater IFM as:

I c(x) =
[
J c(x)tc(x) + Bc

(
1 − tc(x)

)]
∗ �

(
βc, d(x)

)
, (27)

where � is a point spread function of the form [26]:

�(β, z) = (e−γ z − e−βz)e−a
‖xz‖2

z , (28)

where a > 0 and |γ | ≤ β are empirical constants, and xz is

the coordinate for the point spread function.

In the quantitative analysis, we first synthesize underwater

images for evaluation. Five ground truth images, for which the

depth maps are known, were used to synthesize underwater

images using Eq. (27). We focus initially on an indoor image

“reindeer,” which was used in [31] to synthesize a hazy image.

The image and its depth map are shown in Fig 17(a). In this

image, the foreground pixels are not bright, so it will not tend

to invalidate the DCP and MIP assumptions. Thus, it is useful

for testing the capability of the compared methods to restore

underwater images with different BL. For a fair comparison,

all of the compared methods use the 7×7 local patch �(x) in

Eq. (5)–(7), (9), (12), (14) and (18), a lower bound t0 = 0.1 for

the TM in Eq. (8), and the guided filtering to smooth the TM.

To compare the color restoration results, we adopt two metrics,

PSNR and SSIM.

The ground truth image, denoted Jg , its ground truth depth

map, dg ∈ [0.6, 3.1 m], and four BLs are used to simulate

underwater images with four different underwater color tones,

shown in Fig. 17. For each color tone, we modify the depth

map in two test modes to adjust the relative amounts of

BL and scene radiance in the synthesized observed intensity.

The first test mode, “TestMode–InitD,” adds an initial distance

d0 to the ground truth depth: d0 + dg = ds , where ds is the

final depth map used in the synthesis, and d0 takes values

in the set {4, 5, 6, 7, 8 m} for testing. The second test mode,
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TABLE III

COMPARISON OF AVERAGE PSNR/SSIM OF THE RESTORATION RESULTS OVER ALL THE TESTED d0 ∈ [4, 8 m] FOR “TESTMODE–INITD.”

TABLE IV

COMPARISON OF AVERAGE PSNR/SSIM OF THE RESTORATION RESULTS OVER ALL THE TESTED rs ∈ [1, 5] FOR “TESTMODE–SCALED”

TABLE V

COMPARISON OF AVERAGE PSNR/SSIM OF THE RESTORATION RESULTS OVER ALL THE TESTED d0 FOR “TESTMODE–INITD”

TABLE VI

COMPARISON OF AVERAGE PSNR/SSIM OF THE RESTORATION RESULTS OVER ALL THE TESTED rs FOR “TESTMODE–SCALED”

“TestMode–ScaleD,” increases the scene depth by multiplying

by a scaling factor: ds = d f + dg × rs , where d f = 4 is a

fixed initial distance, and rs ∈ {1, 2, 3, 4, 5}.

The TM for the red channel is calculated by tr (x) =

e−βr
s ds(x) as Eq. (2) with βr

s = 1
5

, and the TMs for the green

and blue channels are estimated by Eq. (10) and Eq. (11) based

on the chosen BL. For the point spread function in Eq. (28),

we set γ =
β
2

, and a = 8. By putting Jg , tc and Bc into

Eq. (27), we can synthesize underwater images. Examples are

shown in Fig. 18.

For each test mode, we compute the PSNR and SSIM

results between the ground truth image Jg and the synthe-

sized underwater images restored using the five IFM-based

restoration methods [9], [12], [14]–[16], and the proposed
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TABLE VII

COMPARISON OF AVERAGE PSNR/SSIM OF THE RESTORATION RESULTS OVER ALL THE TESTED d0 AND rs OBTAINED USING THE PROPOSED METHOD

AND ITS MIXED METHODS USING THE TM ESTIMATION FOR THE RED CHANNEL t̃r BASED ON DCPS, MIP, OR IMAGE BLURRINESS

TABLE VIII

AVERAGE BRISQUE SCORES AND UIQM VALUES OF THE ORIGINAL

IMAGES IN FIG. 24 AND THEIR RESTORED VERSIONS FROM

ALL THE COMPARED METHODS

method, shown in Fig. 19 and Fig. 20. In Fig. 19, we see

that the proposed method performs better for all the four

underwater color tones. As the scene depth increases, the

PSNR and SSIM results of the compared methods become

close. In Fig. 20, the proposed method is better than the other

ones except for [12] in the PSNR results for Tone I and IV

colors. This is because we set D∞ = 8 m in Eq. (25) to

restore the color of underwater objects in the range of scene

depth [0, 16 m], and thus the proposed method does not

restore well scene points farther than this range. However, the

proposed method still outperforms all the other methods in the

SSIM results in “TestMode–ScaleD.” Note that the proposed

method excels more in restoring images with Tone II color,

which represents very dim BL. This is because dim BL violates

the assumptions underlying the DCPs and MIP. Examples

of restoring synthesized underwater images with Tone I–IV

colors obtained using the proposed method are in Fig. 21.

To measure the effectiveness of the TM estimation based

on our proposed depth estimation, we compare the restoration

results obtained using the TMs estimated based on the DCPs

and MIP, as well as ours. That is, we adopt different TM esti-

mation methods to generate the TM for the red channel t̃r .

The TMs for the green and blue channels are then estimated

by Eq. (10) and Eq. (11) based on the proposed BL. We com-

pare the restoration results obtained using these different TM

estimation methods. Table II lists average PSNR/SSIM results

over all the tested d0 and rs obtained using the proposed

method and its mixed methods using other TM estimation

methods based on DCPs, MIP, or image blurriness. Namely,

the column marked d0 contains average PSNR/SSIM of the

restoration results over all the test d0 in “TestMode–InitD,”

while the column marked rs contains the results over all the

test rs in “TestMode–ScaleD.” We can see that the proposed

TM estimation outperforms the others.

Moreover, we demonstrate the average PSNR and

SSIM results for all the compared methods in Table III

and Table IV for “TestMode-InitD” and “TestMode-ScaleD.”

We also show the results attained using the exact BL and TM

in the compared methods in order to further analyze the pre-

ciseness of the BL and TM estimation methods, individually.

In Table III, we see the superiority of the proposed method

in each compared category. In Table IV, the proposed method

is better in all the tested underwater color tones on average

except for Tone I color, which represents bright blue BL,

where it incurs small PSNR deficits compared to [9] in the

category of the exact TM and [12] in that of the exact BL.

In addition to “reindeer”, three more images with ground

truth depth maps were selected from [31] to synthesize

underwater images with six different BLs (two for each

image), as shown in Fig. 22. The ground truth depth dg for

the three images, “lawn,” “flower,” and “road,” are in the

range [0.4, 11.3 m], [0.5, 13.2 m], [0.3, 9.5 m], respectively.

To vary the initial distance d0 for each image, we set d0 ∈

{1, 2, . . . 5 m} for “flower,” d0 ∈ {2, 3 . . . 6 m} for “road,” and

d0 ∈ {3, 4, . . . 7 m} for “lawn,” while rs still takes values in the

set {1, 2, . . . , 5}. As can be seen in Tables V to VII, the results

are generally in line with those based on “reindeer,” supporting

the superiority of the proposed method. Note that Table VII is

like Table II, where the column marked d0 contains average

PSNR/SSIM results over all the test d0 in “TestMode–InitD,”

while the column marked rs contains the results over all the

test rs in “TestMode–ScaleD,” where d f is the smallest value

in their corresponding d0 set for each test image.

2) No-Reference Quality Assessment: One can also objec-

tively evaluate underwater image restoration methods on real

images [18]–[20]. Here, we adopt two non-reference image

quality metrics. One is the Blind/Referenceless Image Spa-

tial QUality Evaluator (BRISQUE) [18], a natural scene

statistics-based distortion-generic blind/no-reference image

quality assessment tool for evaluating possible losses of natu-

ralness of an image because of the presence of distortions.

The score ranges from 0 to 100, where 0 represents the

best quality and 100 the worst. We download its software

release from [32] for testing. The other is the Underwater

Image Quality Measure (UIQM) [19], a linear combination

of three underwater image attribute measures: the colorful-

ness (UICM), sharpness (UISM), and contrast (UIConM) mea-

sures, where UIQM = c1×UICM+c2×UISM+c3×UIConM.

A greater value of the UIQM represents higher image quality.

In the experiment, our implementation of UIQM uses αL =

αR = 0.1 in UICM, a 8×8 window size for the EME measure

and a constant 40 for Sobel edge detection in UISM, µ(M) =

γ (M) = k(M) = 1026 for the PLIP operations in UIConM,

and the default coefficients c1 = 0.0282, c2 = 0.2952,

and c3 = 3.5753.

To give an idea of output values for both metrics, Fig. 23

lists BRISQUE scores and UIQM values for real underwater

images as well as for synthesized underwater images with
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Fig. 25. Comparisons between the processed images obtained using [1] and the proposed method with and without contrast enhancement. The
UCIQE score/UIQM value pair is shown below each image. (a) and (e) Original images. The processed results are obtained using (b) and (f) [1],
(c) and (g) the proposed method, and (d) and (h) the proposed method+histogram equalization (The original images in column (a) are from Emberton’s
data set [17] and the ones in column (e) are from [35]–[37].)

different attenuation levels (for which BRISQUE scores

increase and UIQM values decrease monotonically with

attenuation level). In Fig. 24, we show 70 real underwater

test images with different contents and a variety of color

tones. Table VIII lists the average BRISQUE scores and

UIQM values for the original underwater images in Fig. 24

and their restored images from all the compared methods.

We can see that the proposed method outperforms the other

methods.

V. COMBINING IFM-BASED RESTORATION AND

HISTOGRAM EQUALIZATION

Methods based on the IFM, such as ours, have the goal of

restoration, rather than enhancement. This paper first aimed
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to demonstrate that our IFM-based method outperforms other

IFM-based methods both for synthesized images (for which

a ground truth is available, and full-reference fidelity metrics

such as PSNR can be used), and for real underwater images

(for which no-reference image quality metrics can be used).

It is also of interest to compare our IFM-based method

against an underwater image enhancement method. The

fusion-based enhancement method for underwater images pro-

posed by Ancuti et al. [1] first generates two images based on

the input image: one has colors adjusted by white balancing

and the other is contrast-enhanced via local adaptive histogram

equalization. Then these two images are fused based on

their contrast, saliency, and exposedness to produce the final

enhanced result with better contrast and white balance.

Histogram equalization [33] is a simple contrast enhance-

ment method that can be added as a post-processing to an

IFM-based method if some application needs the contrast of

an underwater image to be enhanced. In Fig. 25, we com-

pare our proposed method (both with and without histogram

equalization contrast enhancement [34]) with the method by

Ancuti et al. [1], using both subjective and objective compar-

isons. For objective assessment, we choose two no-reference

quality assessment tools, the UIQM [19] and Underwa-

ter Color Image Quality Evaluation Metric (UCIQE) [20].

UCIQE quantifies image quality via a linear combination of

the variation of chrominance, average saturation, and lumi-

nance contrast.

Fig. 25(a) shows the 10 original images from Emberton’s

data set [17]. In Fig. 25(b)-(d), we see that the enhanced

images via Ancuti’s method [1] (column (b)) have better con-

trast compared to those by the proposed method (column (c)).

Since UCIQE and UIQM reward high contrast, the images

obtained using [1] also have higher scores than those using

the proposed method. Using histogram equalization [34] on

our method, the contrast and UCIQE/UIQM values go up.

Fig. 25(e) shows an additional 10 original images. In the top

four rows of Fig. 25 (e)-(h), the images are very dark or have

artificial lighting. The method [1] does poorly because contrast

enhancement is often not effective for such images, and the

white balancing of [1] sometimes introduces unwanted colors

to the output images, such as the original images in the first

row of Fig. 25 (a) and (e), which makes the processed images

unnatural even though it boosts its UCIQE/UIQM scores. For

the bottom six rows of Fig. 25 (e)-(h), since the color of the

original images is more balanced, the white balancing has

little effect on these images. In comparison, the restored and

enhanced results via the proposed method with and without

histogram equalization look better for such images.

Comparing image enhancement methods using UCIQE and

UIQM or other no-reference metrics is difficult because the

metrics weight contrast and colorfulness differently. For exam-

ple the UIQM algorithm removes the 10% of pixels with

brightest and darkest values before computing the image

colorfulness, whereas the UCIQE algorithm uses all pixels.

Depending on factors like this and the weight given to different

components, a white balancing step or a histogram equaliza-

tion step can have a significant effect on the quantitative output

of the metrics.

VI. CONCLUSION

For underwater image restoration, we have proposed to

exploit image blurriness and light absorption to estimate the

background light, scene depth, and transmission maps instead

of using the DCPs or MIP. Using both synthesized and real

underwater images with different color tones and contents,

we demonstrated satisfying restored and enhanced underwater

images. The proposed depth estimation works well for a wide

variety of underwater images. Both the subjective and objec-

tive experimental results showed that the proposed method can

produce better restoration and enhancement results in different

underwater color tones and lighting conditions compared to

other IFM-based underwater image restoration methods.
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