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Abstract— This paper describes a navigation system for
autonomous underwater vehicles (AUVs) in partially structured
environments, such as dams, harbors, marinas or marine
platforms. A mechanical scanning imaging sonar is used to
obtain information about the location of planar structures
present in such environments. A modified version of the Hough
transform has been developed to extract line features, together
with their uncertainty, from the continuous sonar dataflow.
The information obtained is incorporated into a feature-based
SLAM algorithm running an Extended Kalman Filter (EKF).
Simultaneously, the AUV’s position estimate is provided to the
feature extraction algorithm to correct the distortions that the
vehicle motion produces in the acoustic images. Experiments
carried out in a marina located in the Costa Brava (Spain) with
the Ictineu AUV show the viability of the proposed approach.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is one
of the fundamental problems that need to be solved before
achieving truly autonomous vehicles. For this reason, in
recent years it has been the focus of a great deal of attention
[1], [2]. Multiple techniques have shown promising results
in a variety of different applications and scenarios: indoor,
outdoor, on land and even airborne. However, the underwater
environment is still one of the most challenging scenarios
for SLAM because of the reduced sensorial possibilities.
Acoustic devices are the most common choice, while the
use of cameras and laser sensors is limited to applications
where the vehicle navigates very near to the seafloor. Another
important issue is the difficulty to find reliable features.
There are approaches using clusters of acoustic data as
features [3], [4], or merging visual and acoustic information
in order to improve the reliability [5], while other strategies
simply introduce artificial beacons to deal with complex
environments [6]. Most of the prior work using mechanically
scanned imaging sonars (MSIS) has focused on the use
of point features and makes the assumption that the robot
remains static or moves slowly enough to neglect the induced
image distortion.

In this paper we describe an underwater SLAM system
for AUVs using a MSIS that builds a feature-based map of
the environment, consisting of line features corresponding
to planar structures in the environment. These types of
structures are present in many scenarios of interest for
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AUVs such as dams, ports, marinas or marine platforms.
The method also removes the static assumption. This work
represents a step forward in the techniques presented in [7].
First, the imaging sonar feature extraction algorithm has been
completely remodelled to reduce its computational cost, to
make it capable of working with the continuous flux of
data from the sensor, and to improve the feature uncertainty
estimation (Sections II and III). As a result, the overall
SLAM algorithm have been simplified (Section IV). Finally,
experimental results presenting a 600 m trajectory performed
in a marina environment demonstrate the viability of the
approach (Section V). Conclusions are presented in Section
VI.

II. WORKING WITH ACOUSTIC IMAGES
MSISs perform scans in a 2D plane by rotating a fan-

shaped sonar beam through a series of small angle steps. For
each emitted beam, a set of bins (distance vs. echo-amplitude
values) are obtained (Fig. 1b). Accumulating this information
along a complete 360◦ sector produces an acoustic image of
the surroundings (Fig. 1c). The beam typically has a large
vertical beamwidth which makes possible the detection of
obstacles at different heights. On the other hand, a narrow
horizontal beamwidth increments the resolution of the device
and improves the sharpness of the acoustic images.

A. Beam segmentation
Objects present in the environment appear as high echo-

amplitude returns in acoustic images. Thus, only part of
the information stored in each beam is useful for feature
extraction. Therefore, a segmentation process can be done
in order to obtain the more significant information. This
process consists in two steps. First, only those bins with an
intensity value over a threshold are selected and stored. This
procedure separates the acoustic imprint left by an object
in the image, from the noisy background data (Fig. 2b).
The resulting imprint is used to estimate the feature uncer-
tainty as explained in Section III-D. Secondly, select among
the thresholded data those bins which are local maxima
and satisfy a “minimum distance between them” criterion
(Fig. 2c). These local high intensity bins are the ones that
most likely correspond to objects present in the scene.
Thus, they are specially well suited as input to the feature
extraction algorithm (Section III) while, at the same time, the
computational efficiency is improved since a small number
of bins are involved.

B. Undistorting the acoustic images
Commonly, MSISs have a slow scanning rate (e.g. a

Tritech Miniking sonar head needs about 6 seconds to



Fig. 1. (a) Schematic representation of the environment where the sonar data were gathered. (b) Raw data represented in polar coordinates. Each row
corresponds to a single beam at a given orientation and each column to a bin in a particular position along the beam. (c) The same data represented in
cartesian coordinates. Notice the distortion produced by the movement of the vehicle. (d) Undistorted image after integration with vehicle displacement.

Fig. 2. (a) Raw sensor data. (b) Segmented data. (c) Local maxima bins.

complete a 360◦ scan). For this reason, the vehicle movement
along a complete scan usually induces important distortions
in the acoustic image (Fig. 1c). Extracting features from
this kind of images produces inaccuracies and yields poor
results. Therefore, the first step of the procedure consists
in merging the raw sensor data together with informa-
tion regarding the vehicle movement. This information is
provided by the SLAM algorithm (see Section IV) which
runs simultaneously with the feature extraction algorithm.
Incorporating the displacements and rotations of the sensor
into the positional information of each sonar measurement
results in an undistorted acoustic image (Fig. 1d).

C. Dealing with a stream of beams

In order to deal with the stream of measurements produced
by the continuous arrival of beams, we set a data buffer to
store the beams contained within the most recent 180◦ scan
sector. Whenever new beams corresponding to an unexplored
zone arrive, old beams that fall outside the scan sector
are discarded. The choice of a 180◦ sector is not arbitrary
since this is the maximum zone that a single line can cover
within a sonar scan. Since calculations searching features
are performed with every new beam (Section III), the buffer
should contain the bins which are local maxima (Fig. 2c) for
the line detection process, the segmented beams (Fig. 2b) for
uncertainty estimation and all its associated positions in the
world coordinate system to deal with the motion-induced
distortions.

III. DETECTION OF LINE FEATURES

As said before, walls and other planar structures produce
line-shaped features in acoustic images. The Hough trans-
form [8] is a feature extraction technique which is spe-
cially well suited for this kind of situations. This algorithm
accumulates the information from the sensor data into a
voting table which is a parameterized representation of all
the possible feature locations. Those features that receive
a great number of votes are the ones with a relevant set of
compatible sensor measurements and thus the ones that most
likely correspond to a real object in the environment. In our
application, line features are described by two parameters,
ρB and θB (distance and orientation with respect to a base
frame B). Hence, the resulting Hough space (HS) is a two-
dimensional space where the voting process and the search
for maxima can be done efficiently. The base reference frame
B can be set arbitrarily. However, our choice for B is the
position of the sensor head when the last beam arrives. So,
any detected line feature will be represented directly in the
sensor coordinate frame. It is worth noting that B is not a
fix coordinate frame. As the parametrization in the HS is
performed in polar coordinates, setting the reference in a fix
position would produce loss of resolution with the increase
of range. Hence, we need to resituate B near to the sensor as
the vehicle moves. Unfortunately, this requires to recompute
the HS with each change in the position of B. Another key
issue is the quantization of the HS. In our case, we have
observed that selecting the quantization equal to the angular
and linear resolutions of our sensor (typically, 1.8◦ and 0.1
m) works fine.

The feature extraction procedure works as follows: First,
with each beam arrival the Hough space is initialized, and
the buffered bins are referenced to B so they can be used to
vote in such space. Then, the votes corresponding to each
bin are assigned to the candidate lines by means of a sonar
model. Finally, a search for winning candidates is performed.

A. Sonar Modeling

Each bin represents the strength of the echo intensity
return in a particular place within the insonified area. Due
to the uncertainty produced by the horizontal beamwidth,
a measurement cannot be assigned to a single point in the
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Fig. 3. Model of the sonar sensor for line features. B is the base reference
frame and S is a reference frame attached to a beam.

space. A common approach [9],[10], is to represent a bin as
an arc whose aperture represents the beamwidth uncertainty.
Moreover, as a high intensity return is typically produced
when the acoustic wave hits perpendicularly a surface, we
can infer that all the surfaces tangent to the arc can explain
the high intensity return. While this simple model is well
suited for air sonar ranging systems, it is not able to explain
the acoustic images gathered with a MSIS. A careful analysis
of such images reveals that their object detection capability
is not limited to the arc-tangent surfaces. Even those beams
which meet a surface with a considerable incidence angle (for
the Miniking, β = 60◦) produce a discernible high intensity
profile. For this reason, we have adopted an extended model
to describe the imaging sonar. Each bin represents a zone
described by an arc which corresponds to the horizontal
beamwidth α (in our sensor, α = 3◦). Given a resolution
and the incidence angle β, for each point belonging the arc,
its tangent surface as well as the intersecting planes with an
incidence angle smaller than ±β/2 are visible for the beam’s
bin (Fig. 3). Hence, the acoustic intensity represented by the
bin should correspond to one of those candidate planes.

B. Voting

The next step is to determine the candidate lines that
will receive the votes for each buffered bin. As previously
introduced in Section III-A, the measurement is modeled as
an arc in order to represent the uncertainty that appears due
to the horizontal beamwith α (Fig. 3). Hence, θSj will take
values within an aperture of ±α/2 around the real angle of
the transducer head. Then, for each θSj value, a set of k
candidate lines will be determined. As said before, not only
the lines tangent to the arc are candidates, but also the ones
inside the maximum incidence angle limits of ±β/2. So, for
each θSj value we can define θB

k as:

θSj −
β

2
≤ θB

k ≤ θSj +
β

2
. (1)

Finally, the ρB
k value that corresponds to each value of θB

k

is calculated as:

ρB
k = xSj

cos(θB
k ) + ySj

sin(θB
k ) + ρSj cos(θSj

k ) . (2)

In Fig. 4 it is shown how the set of voters appear in the
Hough space. Note that each selected cell of the Hough space
only receives one single vote.

C. Line extraction

Every time a new beam arrives, a new voting space is
generated to look for winning line candidates. A winning
line must only be detected once it has been completely
observed (i.e., further beams cannot provide more votes to
the candidate). In the voting space, the zone where those
winning lines can exist is completely determined by the
subset of all the candidate lines contained in the most recent
180◦ scan sector, that do not intersect with the last beam (red-
shaded zone in Fig. 4). Any line candidate with a sufficient
number of votes that is found within this zone is declared
a winner. Performing the detection in this way, we can
ensure that our algorithm detects the lines as soon as they
are completely visible. After a line detection, all the bins
involved in the election of the winning candidate are removed
from the buffer so they do not interfere with the detection
of further features.

D. Uncertainty estimation

When a line has been detected among the candidates
in the HS, the next step is to estimate its uncertainty. As
the winning line has obtained a considerable number of
votes, it must correspond to a high intensity zone of the
buffered beams (see Fig. 2b). This zone (an arc) represents
the imprint of the object (a line) in the polar representation
of the acoustic image and its thickness is related to the line
uncertainty. The points belonging to the arc are the polar
representation of the sonar measurements corresponding to
the uncertain line in Cartesian coordinates. If both, the
scanner and the HS are represented in the same frame, the
point with the minimum ρ (the maximum of the arc) would
have the same rho-theta used to represent the line in the HS.
If not, a coordinate system transformation can be used to
relate both of them. It is worth noting that although HS is
used to represent lines, it is actually a polar representation of
the space and hence points can also be represented. Lines are
in fact represented using their point with smallest distance
to the origin. Hence, it is possible to represent the buffered
beams, for which we know its world coordinates, into the
HS (referenced to B) were the detected line is represented
(Fig. 5). The points belonging to the detected line describe
an arc in the HS, and it is possible to compute their number
of compatible measurements. Moreover, each realization of
an stochastic line in Cartesian coordinates, accomplishes the
following properties: (1) there exists a corresponding arc in
the HS falling within the uncertain (thick) arc, (2) it has a
number of compatible measurements similar to the already
detected line, and (3) it is represented by a rho-theta point
belonging to the neighbourhood of the already detected line.



Fig. 4. Two examples of the voting process. The scan sector stored in the buffer is represented together with its corresponding generated voting space.
The red triangular shapes mark the newest beam. The shaded zone represents where the candidates have received all the possible votes (a) Part of the
target line is still outside the sector scan. Hence, it can receive more votes in the future. (b) The new beams can not add new votes to the target line. The
line inside the shaded zone of the voting space have been fully observed and hence, it can be detected.

Fig. 5. Uncertainty estimation. The parameters of the winning line are
shown as a small red dot in the segmented data. The line trace is in cyan.
In the detail, all the neighboring compatible lines are in black. The red
ellipse groups those lines and represents the feature uncertainty. The output
line feature is represented in the scan sector.

Therefore, it is possible to look for the points (representing
line realizations) in the neighbourhood of the detected line
satisfying the 3 properties. The region described by those
points has an elliptical shape in HS and it is possible to
estimate its parameters (red ellipse in Fig. 5). This ellipse
can then be compared with the ellipse described by a 2-
dimensional multivariate normal distribution for a given con-
fidence level. The mean of this normal distribution is taken
as the output line feature, while the probability distribution
itself is a representation of the feature uncertainty.

IV. SLAM ALGORITHM

Our feature-based SLAM algorithm uses an EKF for state
estimation. In this typical implementation of the stochastic
map [11], the estimate of the position of both the vehicle
xV and the set of map features {x1 . . .xn} are stored in the
state vector x̂.

x̂(k) = [x̂V (k) x̂1(k) . . . x̂n(k)]T . (3)

The covariance matrix for this state is defined as:

P(k) = E([x(k)− x̂(k)][x(k)− x̂(k)]T |Z(k)). (4)

All the elements on the state vector are represented in the
map reference frame. Although this reference frame can be
defined arbitrarily, we have chosen to place its origin on the
initial position of the vehicle and to orient it to the north.
Hence, the compass measurements can be straight forward
integrated for vehicle’s heading estimation.

A. Prediction

The vehicle state xV is represented as:

xV =[η ν]T , η=[x y z φ θ ψ]T, ν =[u v w p q r]T (5)

where, as defined in [12], η is the position and attitude vector
of the vehicle while ν is its linear and angular velocity vector.
Note that although the vehicle’s position is represented in the
defined reference frame, the velocities in ν are represented
in the vehicle coordinate frame. A simple 6 DOF constant
velocity kinematics model is used to predict the state of
the vehicle. Since AUVs are commonly operated describing
rectilinear transects at constant speed during survey missions,
we believe that such model is a simple but realistic way to
describe the motion.

xV (k) = f(xV (k − 1), sV ) (6)

where sV is an acceleration white noise additive in the
velocity with zero mean and covariance QV . For a more
detailed description of the vehicle model please refer to [7].
Features correspond to fixed objects from the environment;
we assume them as stationary. Hence, the whole state can
be predicted as:

x̂(k) = [f(x̂V (k−1)) x̂1(k−1) . . . x̂n(k−1)]T (7)

and its covariance matrix updated as:

P(k)=
[
FV 0
0 I

]
P(k−1)

[
FV 0
0 I

]T

+
[
GV

0

]
QV

[
GV

0

]T

(8)

where FV and GV are the Jacobian matrices of partial
derivatives of the non-linear model function f with respect
to the state xV and the noise sV respectively.



B. DVL update

A SonTek Argonaut DVL unit provides bottom tracking
and water velocity measurements at a frequency of 1.5 Hz.
The unit also includes a pressure sensor allowing depth
estimation. The model prediction is updated by the standard
Kalman filter equations with each new DVL measurement:

zD = [u
b

v
b

w
b

uw vw ww z
depth

]T (9)

where subindex b stands for bottom tracking velocity and
w for through water velocity. As few or no currents are
present in the application at hand, water velocity can be
assumed as an approximation of the actual vehicle velocity.
The measurement model is:

zD = HDx̂(k) + sD (10)

HD =




03×3 03×3 I3×3 03×3 03×2n

03×3 03×3 I3×3 03×3 03×2n

0 0 1 01×3 01×3 01×3 01×2n


 (11)

where sD (measurement noise) is a zero-mean white noise
with covariance RD. Since the DVL sensor provides a status
for the bottom tracking and water velocity, depending on the
quality of the measurements, different versions of the HD

matrix are used to fuse one (removing row 2), the other
(removing row 1), or both readings (using the full matrix).

C. Compass and inclinometers update

The MTi sensor is a low cost motion reference unit (MRU)
which provides attitude data at a 0.1 Hz rate. The current
estimate can be updated with the following measurement
model and the standard Kalman filter equations:

zM = [φ θ ψ]T , zM = HM x̂(k) + sM (12)

HM =
[
03×3 I3×3 03×(6+n)

]
(13)

where sM (measurement noise) is a zero-mean white noise
with covariance RM .

Compass and inclinometers are specially useful sensors for
SLAM because they provide absolute measurements, unlike
dead reckoning sensors normally used in SLAM such as
wheel encoders, gyros or in our case the DVL. The effect of
using a compass and inclinometers is threefold:

1) The error in vehicle orientation will not increase during
the SLAM process.

2) Vehicle orientation introduces nonlinearity in the
SLAM problem, so loss of precision because of lin-
earization effects will also be limited.

3) Vehicle orientation errors in a certain step become
position errors in future steps. Bounding the errors in
orientation will also result in a reduction in the rate of
increase of vehicle position errors.

Fig. 6 shows the evolution of vehicle position and ori-
entation using the DVL velocity data together with rate of
turn measurements from gyros (blue) and using absolute
attitude information from the MTi (red). We can see that
the error in orientation remains constant, and that there is
also a reduction in the rate of increase of the error in the
direction of vehicle motion.

0 50 100 150-10

0

10

X 
(m

)

0 50 100 150-20

0

20

Y 
(m

)

0 50 100 150-2

0

2

Time (s)

He
ad
ing

 (ra
d)

Fig. 6. Estimated position error (2σ bounds).The results with a gyro sensor
are represented in blue, while the ones using absolute data are in red.

D. Imaging sonar beam arrival

The Tritech Miniking imaging sonar produces beams at a
30Hz rate. Each new beam is stored in a data buffer and fed
to the feature extraction algorithm as shown in Sections II
and III. Eventually, the information added by a new beam
arrival is sufficient to produce a line feature detection. The
rho-theta pair obtained is represented in a B frame which is
placed in the sensor head. For the sake of simplicity, let us
assume that the transformation between B and the vehicle
coordinate system is known. Hence, we could represent a
new feature m with respect the vehicle frame V as xV

m =
[ρV

m θV
m]T . However, in order to augment the state vector

with the new line feature, it has to be represented in the
map reference frame. This is done by compounding [11] the
line feature with the current vehicle position as follows:

x̂(k) =




x̂V (k)
...

x̂n(k)
x̂m(k)


 =




x̂V (k)
...

x̂n(k)
x̂V (k)⊕ x̂V

m(k)


 (14)

With the new feature’s uncertainty represented as PV
m, the

whole state uncertainty is updated as:

P(k) = FP(k)FT + GPV
m(k)GT (15)

F =




I 0 . . . 0
...

... . . .
...

0 0 . . . I
J1⊕ 0 . . . 0


 G =




0
...
0

J2⊕




where J1⊕ and J2⊕ are the Jacobian matrices of the com-
pounding transformation. At this point, a new line feature has
been introduced into the stochastic map. The next step is to
determine whether this line is a re-observation of a feature
already in the map or corresponds to an object never seen
before. For this purpose, every time a new line feature is
detected, an individual compatibility test is performed with
the other features in the map. Let us suppose that H is
the hypothesis relating each feature in the map (x̂1 . . . x̂n)
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with the recently observed one (x̂m). As the hypothesis
relates elements belonging to the state, we can represent the
condition that one line feature corresponds to another by an
implicit measurement equation without noise [13]:

zH = hH(x̂(k)) = 0 (16)

Taking into account that the Jacobian of the nonlinear
function hH is HH, a compatibility test can be written as:

D2
H = hH(x̂(k))T

(
HHP(k)HT

H
)−1

hH(x̂(k))<χ2
d,α (17)

where distance D2
H is the Mahalanobis distance. The cor-

respondence is accepted if the distance is less than χ2
d,α,

with α defined as the confidence level and d = dim(hH).
The Nearest Neighbor (NN) selection criterion determines
that among the features that satisfy (17), the one with the
smallest Mahalanobis distance is chosen and hypothesis H
is accepted. Having a hypothesis H relating compatible lines,
an update of the stochastic map can be performed:

KH = P(k)HT
H(HHP(k)HT

H)−1 (18)
x̂(k + 1) = x̂(k)−KHhH(x̂(k)) (19)
P(k + 1) = (I−KHHH)P(k) (20)

The newly added line feature which matched with a feature
already in the map can now be eliminated from the state.

V. EXPERIMENTAL RESULTS

In order to test the reliability of the proposed algorithm we
carried out an extensive experiment on a abandoned marina
in the Costa Brava (Spain). The Ictineu AUV gathered a
data set along a 600 m operated trajectory which included
a small loop around the principal water tank and a 200 m
straight path through an outgoing canal. The data set included
measurements from the Imaging sonar, DVL and MRU
sensors. For validation purposes, the vehicle was operated
close to the surface attached to a GPS equipped buoy used
for registering the trajectory. Fig. 7 shows the resulting map
and trajectories for the experiment represented layered with

a satellite image for a better interpretation of the scene. As
it can be seen, the deadreckoning trajectory obtained by
merging DVL and MRU data suffers from an appreciable
drift (even causing it to go outside the canal). On the other
hand, the SLAM-estimated trajectory is much better and
corrects this defect. The set of line features from the obtained
map matches almost perfectly with the real position of the
marina boundaries. Comparing the result with the GPS track
the similarity of the two trajectories is evident. It is worth
noting that no differential signal was available to enhance
the GPS during the experiment. Hence, the expected GPS
accuracy was of about 15 m.

VI. CONCLUSIONS

An algorithm to perform SLAM in partially structured
underwater environments has been presented. It takes ad-
vantage of walls and other objects typically present in some
scenarios of interest to extract reliable line features from
acoustic images. The main contributions of this work include
a feature extraction method capable of working with the con-
tinuous stream of data from the MSIS while dealing with the
distortions induced by the vehicle movement in the acoustic
images, a new method for estimating their uncertainty, and
the application domain. Finally, experimental results support
the viability of the proposal.
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