
����������
�������

Citation: Liu, K.-W.; Huang, C.-J.;

Too, G.-P.; Shen, Z.-Y.; Sun, Y.-D.

Underwater Sound Source

Localization Based on Passive

Time-Reversal Mirror and Ray

Theory. Sensors 2022, 22, 2420.

https://doi.org/10.3390/s22062420

Academic Editor: Andrzej Stateczny

Received: 14 February 2022

Accepted: 18 March 2022

Published: 21 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Underwater Sound Source Localization Based on Passive
Time-Reversal Mirror and Ray Theory
Kuan-Wen Liu 1,*, Ching-Jer Huang 1,2,*, Gee-Pinn Too 3, Zong-You Shen 1 and Yung-Da Sun 4

1 Department of Hydraulic and Ocean Engineering, National Cheng Kung University, Tainan 70101, Taiwan;
n88071045@gs.ncku.edu.tw

2 Coastal Ocean Monitoring Center, National Cheng Kung University, Tainan 70101, Taiwan
3 Department of Systems and Naval Mechatronic Engineering, National Cheng Kung University,

Tainan 70101, Taiwan; z8008070@email.ncku.edu.tw
4 Naval Meteorological and Oceanographic Office, Kaohsiung 81300, Taiwan;

g9114072005@mail.cnmoo.mnd.gov.tw
* Correspondence: n88051079@gs.ncku.edu.tw (K.-W.L.); cjhuang@mail.ncku.edu.tw (C.-J.H.)

Abstract: This study investigates the performance of a passive time-reversal mirror (TRM) combined
with acoustic ray theory in localizing underwater sound sources with high frequencies (3–7 kHz).
The TRM was installed on a floating buoy and comprised four hydrophones. The ray-tracing code
BELLHOP was used to determine the transfer function between a sound source and a field point. The
transfer function in the frequency domain obtained from BELLHOP was transformed into the time
domain. The pressure field was then obtained by taking the convolution of the transfer function in
the time domain with the time-reversed signals that were received by the hydrophones in the TRM.
The location with the maximum pressure value was designated as the location of the source. The
performance of the proposed methodology for source localization was tested in a towing tank and in
the ocean. The aforementioned tests revealed that even when the distances between a source and the
TRM were up to 1600 m, the distance deviations between estimated and actual source locations were
mostly less than 2 m. Errors originated mainly from inaccurate depth estimation, and the literature
indicates that they can be reduced by increasing the number of TRM elements and their apertures.

Keywords: localization; underwater sound source; passive time-reversal mirror; ray theory;
BELLHOP; anchored floating buoy

1. Introduction

The localization of underwater acoustic sources is a key research topic because of its
application in detecting a range of underwater targets (e.g., fish and submarines). Several
methods are used to localize sound sources, including triangulation, beamforming, wave-
fingerprint-based techniques (WFPs), and the time-reversal mirror (TRM).

Triangulation is used to estimate the range and bearing of the sound source based on
the concept of the time difference of arrival (TDOA) [1–3]. In a complex ocean environment,
the TDOA has an insufficient resolution for position sensing because of the multipath
effects. Beamforming is a signal processing technique used in sensor arrays for directional
signal transmission or reception [4]. However, in underwater applications, this method
is affected by the problems of inhomogeneous fields and multipath interference, which
may distort recorded signals and increase the degradation of beamforming results with
increasing signal frequency [5]. Robust adaptive beamforming was developed to enhance
the directivity gain, spatial resolution, and suppression of interference and noise [6–8].
However, adaptive beamforming is not implemented in shallow water acoustics because of
the signal self-cancellation caused by the mismatched signal steering vector and highly-
complex calculations used in this method.
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WFPs were developed to overcome the multipath effects for object localization using
ray-tracing approaches. The basic principle underlying WFPs is that the uniqueness
of Green’s functions for different object positions inside a cavity can be exploited for
object localization [9–12]. When a dictionary characterizing the scattering environment
is established, the source location can be identified by comparing the measured Green’s
function to the established dictionary. Similarly, for objects that do not emit a signal, the
object’s scattering contribution is sufficient for object localization. Using the multiple
scattered waves to improve localization precision is another prominent feature of WFPs.
Eventually, a subwavelength object can be localized by constructing reverberation-coded
apertures [12]. WFPs were demonstrated to be promising for indoor localization in complex,
dynamic environments [11], but they have not yet been applied to underwater localization.

Acoustic waves that travel through the ocean have low energy dissipation; thus, ocean
sound waves can often be time reversed: if P(r, t) is a solution to the lossless linear wave
equation for acoustic pressure, then P(r,−t) is also a solution. Hence, TRM is also applied
to localize underwater acoustic sources. Acoustic time reversal is usually demonstrated
with a sound source and a special array of transducers that combine receiver and transmitter
functions. This special transducer array is commonly referred to as a time-reversing array
(TRA) or TRM [13]. The location that the time-reversed signals emitted from the transducer
array focus on is called the retro-focus. Furthermore, the time reversal and the complex
conjugate of the pressure field are equivalent to each other. That is, the time reversal
of the pressure field in the time domain is equivalent to its phase conjugation in the
frequency domain.

The basic principles of acoustic TRMs are similar to those of optical phase-conjugate
mirrors [14], which reflect light back towards its source. Jackson and Dowling introduced
the concept of phase conjugation to underwater acoustics as a means of determining the
route of the sound [15]. Their study established a formal basis for the implementation
of acoustic time reversal in underwater applications, which corresponds to the ultra-
sound research conducted by Fink et al. [16] and Prada et al. [17], and demonstrated the
reciprocal phenomena.

The first acoustic time-reversal experiments in the ocean were conducted in Long
Island Sound and reported by Parvulescu and Clay [18] and Parvulescu [19]. In the
experiments, signals were recorded with a single transducer located 20 nautical miles from
a sound source in water that was approximately 1 nautical mile deep. Fink et al., Prada et al.,
and Fink and Prada [16,17,20] conducted time-reversal experiments for airborne sounds by
utilizing a transducer array in the laboratory at ultrasonic frequencies.

Kuperman et al. [21] revised the concept of phase conjugation into the time domain
and conducted several experiments in the Mediterranean Sea to demonstrate that the
TRM method provides stable retrofocusing for source-array ranges of several kilometers
in coastal waters. In the experiments conducted by Kuperman et al. [21], a TRM was
implemented by installing a 77 m source-receiver array (SRA) at a water depth of 125 m.
The SRA consisted of 20 hydrophones of a cylinder-type sound source with a nominal
resonance frequency of 445 Hz. It could receive incident signals from a probe source
(PS) and retransmit time-reversed signals to a vertical receiver array (VRA), which was
collocated with the PS. The hydrophone of the PS was of the same type used in the SRA.
The TRM reduced the signal interference caused by the multipath effect and counteracted
the sound reduction in the propagation caused by inhomogeneous flow fields. Based on the
experiments of Kuperman et al. [21], Song et al. [22] extended the TRM technique to refocus
at ranges that differ from that of the probe source because of a frequency shift at the SRA.
The experiments of Kuperman et al. [21] were also emulated by Kim et al. [23] to study the
spatial resolution of time-reversal arrays in shallow water. Resolution expressions were
derived using an imaging method to describe the achievable focal sizes in various ocean
environments. Walker et al. [24] demonstrated that a virtual source array (VSA) could be
created by using propagation models or the transfer functions between a TRM and a probe
source. A VSA can serve as a remote platform and redirect a focused field to a remote
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location beyond the VSA that a probe source cannot access. This method is referred to as
the TRM–VSA method.

Most TRM experiments were performed using a vertical line array (VLA). Zhang et al. [25]
investigated the focus performance of a horizontal time-reversal array, and they reported
that a bottom-mounted array provided better performance than those mounted at other
depths in shallow water. Normal model modeling was used to explain the aforementioned
finding. Zhang et al. [26] introduced virtual time-reversing processing (VTRP) for source
localization in shallow water. For VTRP, they used a passive array instead of a source-
receiver array. Accordingly, the retransmission of signals in a time-reversed manner was
performed by a computer. The parabolic equation method [27–29] was used to compute
the acoustic field from the source to the VLA. The point source is narrow-banded at a
frequency of 170 Hz, and the VLA consisted of 60 elements spanning the water column
from 20 to 138 m at a local water depth of 140 m. Their simulation results revealed that
relative to matched field processing, VTRP achieved the same localization performance
with considerably less CPU time in a range-dependent waveguide. The accuracy of VTRP
for source localization was also verified by comparing its results with the experimental
data reported by Ginras and Gerstoft [30] and Gerstoft and Ginras [31].

Yu et al. [32] modified the TRM–VSA method proposed by Walker et al. [24] to obtain
acoustic images of unburied (proud) and fully buried targets located outside the region
between the TRM and the VSA. Their TRM consisted of 32 hydrophones, and their VSA
was divided into an upper section and a lower section. The upper section comprised
19 hydrophones, and the lower section comprised 11 hydrophones. The KRAKEN normal
mode program [33] was used to calculate the acoustic fields in their simulation examples.
On the basis of the VSA-based single time-reversal focusing, Byun et al. [34] developed
simultaneous multiple focusing for arbitrarily selected locations. Through numerical sim-
ulations, they demonstrated that simultaneous multiple focusing could be achieved and
reported that its performance degraded when sound speed mismatches occurred at the
boundary between the water column and the sediment layer. Jing et al. [35] proposed
a method based on the active detection on virtual time reversal (ADVTR) method for
estimating the direction of arrival (DOA) of an underwater target. In contrast to the con-
ventional passive target detection method, which ignores multipath effects, the proposed
method incorporates the multipath propagation model. In their study, a sound-propagating
algorithm based on the acoustic ray method, namely BELLHOP [36], was used to verify the
proposed model.

Conventional underwater acoustic surveillance is performed by deploying connected
cables and hydrophones on the sea bed. This method is costly, and the recordings collected
through this method are easily distorted. Furthermore, a bottom-deployed system can
be easily damaged or destroyed by a bottom trawl during fishing operations. To reduce
the fragility of such systems, McDonald et al. [37] developed an autonomous submerged
target trip-wire system for detecting and tracking submerged sources. In their study, a
650 m horizontal line array (HLA) with six non-uniformly spaced hydrophones and a 70 m
VLA with six uniformly spaced hydrophones were deployed on the seabed. These two
array systems ran a matched-field algorithm developed by Bucker [38] and Bucker and
Baxley [39]. Their results revealed that the HLA and VLA performed better in terms of
horizontal target estimation and depth discrimination, respectively. For real-time detection
and tracking, surveillance results were reported through an underwater acoustic modem
to a floating Racom buoy, which then transmitted the information to the desired locations.

Instead of a bottom-deployed TRM, an alternative option is to install the TRM on
an anchored floating buoy. In addition to being the emplacement of the TRM, the buoy
provides a platform for raw data collection and analysis and allows for data transmission
through a GPRS (general packet radio service) when the buoy is located close to shore
and remote data transmission through a satellite. An anchored floating buoy has been
widely used to provide real-time meteorological and oceanographic data [40,41]. Similar
to oceanographic data buoys, a buoy with a vertical hydrophone array (which acts as a
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TRM) may provide information on real-time underwater sound source locations. For this
purpose, the present study tested the localization performance of a passive TRM when it
was installed on an anchored floating buoy, and the tests were performed in a towing tank
and in the ocean.

Four types of models are used to describe sound propagation in the ocean, namely
ray theory, spectral method, normal mode, and parabolic equation models [42]. For high
frequencies of a few kilohertz or higher, ray theory is the most practical model, whereas the
other three are more practical for lower frequencies of less than a kilohertz. In the present
study, the sound transmitter (NEPTUNE-TX335, Neptune Sonar Limited, East Yorkshire,
United Kingdom) emitted sounds at frequencies ranging from 3 to 7 kHz. Hence, ray theory
was applied to describe sound propagation in the ocean. The BELLHOP code [36], which
determines the acoustic pressure field based on the ray and beam tracing in the AcTUP
(Acoustic Toolbox Use interface and Post processor), was used to determine the pressure
field along a ray.

According to the aforementioned literature review, for underwater sound source-
localization, most studies used the normal mode model [25,32] and parabolic equation
model [26] to describe sound propagation in the ocean. Few studies have examined the
performance of a passive TRM based on ray theory in a real ocean environment. This study
also tested the localization performance of a passive TRM installed on an anchored buoy.
This system can eventually be extended to form an underwater sound monitoring system
for reporting real-time 2D source locations. In addition, the procedures for underwater
localization based on passive TRM and ray-theory-based model (BELLHOP) are depicted
in detail, which is absent in the literature.

This paper is structured as follows. Section 1 provides an introduction explaining how
TRM has been applied so far for underwater sound source localization. In Section 2, the
TRM method in both the frequency and time domains are described. Section 3 introduces
the ray method. Procedures used in this study for underwater sound source localization
based on passive TRM and BELLHOP in the AcTUP are also explained. In Section 4, the
instrumentation used for localizing the sound source and the laboratory experiments for
implementing the developed instrumentation were explained. Section 5 discusses the
results of field tests carried out in the offshore region off Small Liuqiu Island. Finally,
Section 6 provides the conclusions of this study.

2. Time-Reversal Mirror
2.1. Time Reversal and Phase Conjugation

The wave equation for the acoustic pressure field with a point sound-source located at
ro is as follows:

∇2P(r, t)− 1
c2

∂2P(r, t)
∂t2 = −S(t)δ(r− ro) (1)

where c is the sound speed, r is the location of any field point, S(t) is the strength of the
source and has the dimension of N/m, and δ(r− ro) is the Dirac delta function with its
singularity at r = ro. The Fourier transform of Equation (1) is as follows:

∇2 p(r, ω) +
ω2

c2 p(r, ω) = −s(ω) · δ(r− ro) (2)

where ω is the angular frequency and

p(r, ω) =
∫ ∞

−∞
P(r, t) e−iωtdt (3)

and the inverse transform of Equation (3) is as follows:

P(r, t) =
1

2π

∫ ∞

−∞
p(r, ω) eiωtdω =

∫ ∞

−∞
p(r, ω) eiωtd f (4)
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Similarly,

s(ω) =
∫ ∞

−∞
S(t) e−iωtdt (5)

From Equation (2), it is known that a time-harmonic, or monochromatic, point sound-
source generates spherical waves with an acoustic pressure field that can be expressed
as follows:

P(r, t) = p(r, ω) ei ω t = s(ω) · G(r, ro, ω)ei ω t = s · ei(−k r+ϕ)

4πr
ei ω t = s · ei(ωt−k r+ϕ)

4πr
(6)

where k is the wavenumber (k = ω/c), r is the distance between r and ro, ϕ is the phase an-
gle of the source, and G(r, ro, ω) is Green’s function for the Helmholtz equation Equation (2).
The waves expressed in Equation (6) denote the waves that propagate away from the
sound source.

When time is reversed (i.e., t is replaced by −t), the pressure field becomes

P(r,−t) = p(r, ω) e−i ω t = s · e−i(ωt+k r−ϕ)

4πr
(7)

The pressure field expressed in Equation (7) denotes the waves that converge toward
the sound source.

Time-reversed waves can also be constructed by simultaneously changing the signs
of kr and ϕ in Equation (6) while leaving the sign of t unchanged. Accordingly, it yields a
pressure field that can be expressed as follows:

s · ei(k r−ϕ)

4πr
· eiωt = p∗(r, ω) · ei ωt = s · ei(ω t+k r−ϕ)

4πr
(8)

The pressure expressed in Equation (8) also denotes the waves that converge toward
the sound source. From Equations (7) and (8),

Re[P(r,−t)] = Re
[

p(r, ω)e−iωt
]
=

s
4πr

cos(ωt + kr− ϕ) = Re
[

p∗(r, ω)eiωt
]

(9)

The aforementioned derivation was proposed by Dowling and Song [13] to illustrate
that for pure time-harmonic signals, the time reversal and complex conjugation (denoted
by a superscripted *) of p(r) have the same meaning. Because broadband signals can be
constructed through a Fourier superposition of single-frequency signals, time reversal is
equivalent to complex conjugation in the frequency domain not only for single-frequency
signals but also for broadband signals.

2.2. Implementation of TRM

The present study involved the localization of an underwater acoustic source through
the use of a vertical hydrophone array, which acted as a TRM. The acoustical signals emitted
from a probe source (PS) were recorded by the hydrophone array, after which the recorded
sounds were subjected to time reversal and then back-propagated.

As highlighted in the previous section, time reversal is equivalent to phase conjugation
in the frequency domain. Accordingly, the pressure field ppc due to M discrete sources in a
TRM can be derived from Equation (6) and expressed as follows [15,43]:

ppc(r, z, ω) =
M

∑
j=1

Gω(r, z; R, zj) · p∗ω(R, zj; 0, zPS) (10)

where M denotes the number of hydrophones in the receiver array (TRM), p∗ω(R, zj; 0, zPS)
are the phase conjugated frequency-dependent pressure values recorded at each element of
the array at a range of R and depth of zj when the probe source is at a depth of zPS, and
Gω(r, z; R, zj) denotes the Green’s function for each array element at the field point with
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a range of r and depth of z around the probe source location. Gω(r, z; R, zj) can also be
interpreted as the transfer function between the discrete sources in the TRM and a field
point. This transfer function incorporates scattering, multipath, and waveguiding effects.
In the present study, the sound transmitter (NEPTUNE-TX335) emitted high-frequency
sounds of 3–7 kHz. Therefore, ray theory was applied to describe sound propagation in the
ocean and Gω(r, z; R, zj) was determined using the BELLHOP code in the AcTUP, which is
described in Section 3.2.

2.3. TRM in the Time Domain

In the previous section, the TRM is depicted in the frequency domain. This section
provides a similar depiction but in the time domain. Assume that there is a probe sound
source that emits time-series signal s(t), refer to Figure 1a, and the sound signal received
by a single hydrophone in the TRM is r (t), refer to Figure 1b, then based on Equation (6)
and the convolution theorem, which states that multiplication in the frequency domain is
equivalent to convolution in the time domain, it yields

r(t) = g(t)⊗ s(t) (11)

where g(t) can be interpreted as the transfer function between the source signal and the
received signal or the impulse response function (IRF), and ⊗ denotes the convolution.
Based on the definition of convolution, Equation (11) can be expressed as follows:

r (t) = g(t)⊗ s(t) =
∫ ∞

−∞
g(τ)s(t− τ)dτ (12)
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Figure 1. A time-reversal mirror (TRM) in the time domain. (a) Sound source signal s(t), (b) received
sound signal r(t), (c) time-reversed signal of r(t), and (d) signal received at the location of the
probe source.
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When the received signal r(t) is time reversed, Equation (11) becomes:

r(−t) = g(−t)⊗ s(−t) (13)

Let the reversed signal r (−t) is emitted from the receiver, ref to Figure 1c, then the
signal received at the location of the probe source, z (t), refer to Figure 1d, is

z(t) = g(t)⊗ r(−t) = g(t)⊗ g(−t)⊗ s(−t) (14)

If the received signal z (t) is time reversed, Equation (14) becomes

z (−t) = g(−t)⊗ g(t)⊗ s(t) = const · s(t) (15)

Equation (15) indicates that the time series of z(−t) are similar to the original sound
source signal s(t), except a multiplication of a constant. This demonstrates that time
reversal mirror can reconstruct the wave forms and time series of the original signal, except
the energy value. The accuracy of the reconstructed source signals mainly depends on the
value of impulse response function g(t). Notably, the reconstruction of the wave forms in
Equation (15) was obtained based on the assumption that the transfer function for the sound
propagating from the source to the receiver is identical to that for the back propagation. In
actual ocean environments, this may not be true and will affect the reconstruction accuracy.

In the case when there are several hydrophones in the TRM, the corresponding forms
for Equations (11), (13)–(15) are:

rm(t) = gm(t)⊗ s(t) (16)

rm(−t) = gm(−t)⊗ s(−t) (17)

zm(t) = gm(t)⊗ rm(−t) (18)

zm(−t) = gm(−t)⊗ gm(t)⊗ s(t) = const · s(t) (19)

where the subscript m = 1, 2, 3, . . . , M. The time-reversed signals at the original source
location from the multiple hydrophones can be obtained by adding the individual signals
zm(−t) together:

zsum(t) = ∑M
m=1 zm(t) = ∑M

m=1 gm(t)⊗ rm(−t) (20)

Or
zsum(−t) = ∑M

m=1 zm(−t) = ∑M
m=1 gm(−t)⊗ gm(t)⊗ s(t) (21)

Equation (20) is equivalent to Equation (10), except that in Equation (10), the pressure
is determined at any field point rather than at the source location.

2.4. Practical Implementation of TRM

In actual practice, a TRM can be implemented actively or passively. For the active
method, the sound signals received by the hydrophones in a receiver array (i.e., a TRM) are
reversed and emitted for localization; for the passive method, reversed sound signals are
used as sound sources, algorithms based on Equation (10) or Equation (20) are developed
to determine the sound pressure field in a selected area, and the location with the highest
sound pressure is designated as the position of the targeted source. In the present study, a
passive TRM was used for the localization of underwater sound targets.

3. Ray Methods

In order to describe the propagation of high-frequency sounds in the ocean, ray theory
is the most practical model. This section briefly describes how the equations used in ray
theory were derived from the Helmholtz equation. Refer to Jensen et al. [27] for a detailed
discussion of this topic.
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3.1. Ray Equations

The Helmholtz equation for the acoustic pressure field with a sound source of unit
strength located at ro is

∇2 p +
ω2

c2(r)
p = −δ(r− ro) (22)

where c(r) is the sound speed in Cartesian coordinates r = (x, y, z). In order to obtain the
ray equations, the solution to the Helmholtz equation is assumed to have the following
form [44]:

p(r) = eiωτ(r)
∞

∑
j=0

Aj(r)

(iω)j (23)

where τ(r) denotes the level curves of wavefront and is also referred to as eikonal. Based on
this solution, it is obvious that in order t to obtain the pressure field for high wavenumber
cases, the terms in Equation (23) with j ≥ 1 can be ignored. Accordingly,

p(r) = Ao(r) · eiωτ(r) (24)

The pressure field given in Equation (24) is valid for a sound source of unit strength.
Hence, p(r) can be interpreted as the transfer function between the source and a field point.
It differs from Green’s function (given in Equation (6)) in that the latter is valid only when
the sound velocity c(r) in Equation (22) is a constant.

Substituting Equation (23) into Equation (22) and equating terms of the same order in
ω, the following equations for the functions τ(r) and Aj(r) can be obtained:

O(ω2): |∇τ|2 =
1

c(r)2 (25)

O(ω): 2∇τ · ∇A0 + (∇2τ)A0 = 0 (26)

O(ω1−j): 2∇τ · ∇Aj + (∇2τ)Aj = −∇2 Aj−1, j = 1, 2, . . . (27)

The O(ω2) equation for τ(r) is known as the eikonal equation. The remaining equa-
tions for Aj(r) are known as the transport equations. Equations (25) and (26) can be solved
to obtain τ(r) and Ao(r) in Equation (24), respectively.

In the solution of the eikonal equation, a family of curves (rays) perpendicular to the
level curves (wavefronts) of τ(r) is introduced. This family of rays defines a new coordinate
system called ray coordinates. Since ∇τ is a vector perpendicular to the wavefronts, one
can define the ray trajectory r(s) by the following ray equation:

dr
ds

= c∇τ (28)

Here s denotes the distance along the ray. In the coordinate system of the rays, the
eikonal equation can be rewritten as

dτ

ds
=

1
c

(29)

Equation (29) can be solved to yield

τ(s) = τ(0) +
∫ s

0

1
c(s′) ds′ (30)

The introduction of the ray coordinates provides an easy way to determine the travel
times and amplitudes along each ray, which then yields the pressure field along each ray.
In practice, one needs to interpolate the values from the ray grids to the rectangular grids.
This transformation can be made by constructing a hat-shaped beam around each ray [45].
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The hat-shaped function decreases linearly from Ao(s) on the central ray of the beam to
zero on either side. Thus, the pressure field for the beam is given by

p(s, n) = Ao(s) · φ(s, n) · eiωτ(s) (31)

where Ao(s) is the amplitude with each ray, φ(s, n) is the hat-shaped function, and n is the
normal distance from the ray.

3.2. AcTUP

The AcTUP is an acoustic toolbox for underwater acoustics, and its original code
was written by Michael Porter from Heat, Light, and Sound Research [33,36,45]. The
AcTUP V2.2` toolbox was released [46,47]. This is an open graphical user interface (GUI)
written using MATLAB, and it provides access to programs that can perform acoustic
field calculations by utilizing normal mode (KRAKEN), wavenumber integration (FIELD),
ray and beam tracing (BELLHOP), and parabolic equation (RAMGEO) methods. In the
BELLHOP model, the free surface is treated as a pressure-released boundary. Furthermore,
the BOUNCE program can be used to determine the plane wave reflection coefficient for
a layered seabed. In the present study, the BELLHOP code was used to determine the
pressure field along the ray using Equation (31), and BOUNCE was used to determine the
wave reflection from the seabed. BELLHOP is a finite-element ray-tracing algorithm [45].
Ray tracing is applicable to range-dependent problems, and it tends to be more accurate
for high-frequency sound sources. Therefore, ray tracing is suitable for high-frequency,
broadband sound source problems in a range-dependent environment [36].

3.3. Procedures for Underwater Localization Based on Passive TRM and BELLHOP

1. The sound transmitter (NEPTUNE-TX335) emits a series of sound pulses s(t) at the
frequencies of 3, 4, 5, 6, and 7 kHz;

2. The emitted sounds are received by the four hydrophones in the TRM. The received
sound signals are denoted as rm(t) (m = 1, 2, 3, 4);

3. The time series of rm(t) is reversed to obtain rm(−t);
4. The pressure field for the sound beam (i.e., p(s, n) in Equation (31)) is calculated using

the BELLHOP and BOUNCE algorithms in the AcTUP. p(s, n) is used as the transfer
function or the impulse response function (IRF; i.e., Gω(r, z; R, zj) in Equation (10));

5. The transfer function in the frequency domain Gω(r, z; R, zj) with j = 1, 2, 3, 4 is
transformed into the transfer function in the time domain, gm(t), by using MATLAB;

6. Two-dimensional grids are generated in the domain of interest by using MATLAB.
In the present study, the grid sizes for both the depth and range axes were 0.01 m,
expressed as ∆r = ∆z = 0.01 m;

7. Through MATLAB, rm (−t) and gm(t) are convoluted on the 2D grids to obtain zm(t)
in Equation (18);

8. The zm(t) of the hydrophones on the TRM are summarized to obtain zsum(t) in
Equation (20), and the time-series data of zsum(t) within a 1 s period are cumulated to
obtain a corresponding time-integrated value for zsum(t), and denoted as zSUM;

9. The location with the maximum value of zSUM is assumed to be the location of the
underwater acoustic source.

4. Instrumentation and Laboratory Experiments

As was highlighted in the Introduction section, this study proposed the installation of
a TRM on an anchored floating buoy for the purpose of conducting underwater acoustic
surveillance. The buoy provides a platform for data collection and analysis and for data
transmission through a GPRS or satellite. Theoretically, similar to the ocean monitoring
data buoy [40,41], the proposed underwater sound monitoring system (USMS) can provide
real-time source locations. In the present study, tests were conducted in a towing tank and
in the ocean to assess the performance of a passive TRM installed on an anchored floating
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buoy for underwater source localization. Because the data analysis was performed after
the experiments were complete, real-time source locations could not be reported through
a GPRS or satellite. The NEPTUNE-TX335 was used to emit high-frequency sounds (3 to
7 kHz). The NEPTUNE-TX335 used to emit high-frequency sounds (3–7 kHz) is of cylinder
type, and the emitted sounds are in the plane wave form. Consequently, ray theory was
used to obtain the acoustic pressure field.

The proposed USMS design comprises an anchored floating data buoy; a power
supply; a vertical hydrophone array that acts as a TRM; and a computer that contains a data
acquisition module, a fourth-generation (4G) network module, and a Global Positioning
System (GPS) module. This design allows for components to be upgraded. In areas with
poor 4G network performance, a satellite can be used to transmit collected data to a desired
remote location.

4.1. Main Component Features of the USMS

The buoy used in the present study was developed through a collaboration with the
R&D and System-Integration teams of the Coastal Ocean Monitoring Center, National
Cheng Kung University (NCKU). The buoy hull was designed to carry a USMS and
two battery packs to provide power for the equipment. For long-term monitoring, addi-
tional solar panels can be installed to charge the batteries. The hydrophone array with
the preamplifier was attached to the buoy and straightened using a weighted pack when
the tests were carried out in the towing tank. In the field tests, the hydrophone array was
attached to the mooring line of the buoy. The cargo space in the buoy hull had a depth of
40 cm and a diameter of 12 cm to accommodate the computer, data acquisition module,
and batteries. In order to minimize the clicking noise caused by the shifting of equipment,
each piece of equipment was secured to a steel shelf in the hull. The hatch on the top of
the buoy hull was sealed to waterproof the cargo space. In order to stabilize the floating
motion of the buoy, a foam cylinder with a diameter of 60 cm and a height of 20 cm was
wrapped around the hull. A rod measuring 45 cm in length was mounted on the top of the
hull; a flag was hung on the rod to indicate the position of the buoy, and an antenna was
attached to the rod to enable the operation of the GPS system.

A single-board computer (called UP-board) manufactured by AAEON Technology
Inc. (New Taipei City, Taiwan) was used to meet the specific signal acquisition needs of
the present study. The computer had a sufficiently fast processor (2.5 GHz) with 256 GB
memory, one Universal Serial Bus (USB) 3.0 port for the data acquisition module, and small
dimensions that allowed for installation in the hull of the buoy. Additionally, the computer
had to operate reliably on the sea surface and in high-temperature environments. It also
had to store large amounts of data.

A USB-2405 data acquisition module manufactured by ADLINK Technology Inc.
(Taipei, Taiwan) was used. This 24-bit high-performance dynamic signal acquisition mod-
ule is USB bus-powered and equipped with the following features: BNC connectors and
removable spring terminals for device connectivity, four analog input channels for simul-
taneous sampling at 128 kS/s per channel, a software-selectable alternating-current or
direct-current coupling input configuration, and a built-in high-precision 2 mA excitation
current that enables measurements using integrated electronic piezoelectric sensors. Each
input channel was connected to the hydrophones in this manner. The onboard 24-bit Sigma-
Delta ADC supports anti-aliasing filtering, which suppresses modulator and out-of-band
signal noise. It provides a usable signal bandwidth at the Nyquist rate, which makes it
ideal for performing high-dynamic-range signal measurements in acoustic applications.
The data acquisition module is attached to the computer via a USB plug, and it starts to
operate upon being connected. During the experiment, the computer was connected to a
technician’s cellphone or notebook to enable the remote control of data acquisition.

The TRM consists of four HTI-94-SSQ hydrophones (High Tech Inc., Long Beach, MS,
USA). Because the measured sound signals were usually too weak to be directly read, a
charge amplifier had to be connected between each hydrophone and the data acquisition
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module. The HTI-94-SSQ hydrophones used in the tests were each equipped with a
preamplifier. The hydrophones were calibrated to ensure that the measurement results
matched the results generated by a reference device, namely a B&K 8104 hydrophone (Brüel
and Kjær, Virum, Denmark), which was previously calibrated using the B&K hydrophone
calibrator (Type 4229).

4.2. Laboratory Experiments

After the completion of system integration, laboratory experiments were performed
to test the stability of the system, the correctness of the signals, and the accuracy of the
algorithm used for sound source localization. The laboratory experiments were conducted
on 21 July 2018, in the towing tank of the Department of Systems and Naval Mechatronic
Engineering, NCKU. The towing tank has a length of 165 m, a width of 8 m, and a depth of
4 m. The experiments were conducted at a water depth of 3.5 m. The NEPTUNE-TX335
transducer was used as the sound transmitter, and it was supported by a fixed steel frame
and placed at a distance of 20 m from the leading edge of the tank at a water depth of
2.75 m. Figure 2 illustrates the layout of the laboratory tests conducted in the towing tank.
The floating buoy with the hydrophone array was positioned at distances of 4, 10, 20, 40, 60,
and 80 m from the transmitter. At each distance, the array recorded the sound emitted from
the transmitter, and the sampling rate for measurements was 40 kHz. The sounds were
emitted for 1 min (with a period of 0.5 s and a signal duration of 0.2 s) at the frequencies of
3, 4, 5, 6, and 7 kHz.
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During the experiments, the water temperature was 26 oC, the corresponding density
ρw was 997.2 kg/m3, and the sound speed was 1485.3 m/s, which is determined using the
following formula:

c =

√
Ev

ρw
(32)

where Ev denotes the bulk modulus of water and is 2.2 × 109 N/m2 when the water
temperature is 26 oC. The speed of sound was assumed to be homogeneous throughout the
towing tank. The attenuation of sound in water was ignored in the BELLHOP algorithm
used in the present study.

4.3. Results and Discussion

As highlighted in Section 2, in the present study, the TRM provided only 2D sound
source localization; hence, range (r) and depth (z) are provided, but not bearing. Ac-
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cordingly, the domain where the sound pressure was determined was identical to that
presented in Figure 2; it had a horizontal range of 65 m and vertical range of 3.5 m, and the
computational resolution was 0.01 m for both the horizontal and vertical directions (e.g.,
∆r = ∆z = 0.01 m).

Figure 3 presents the typical sound signals received by the second hydrophone
(h2 = 1.5 m) in the TRM. In Figure 3, the distance between the TRM and the transducer is
80 m, and the frequency of the sound source is 3 kHz. Figure 3 indicates that in addition to
the sound source signals, the reflected sound signals from the water surface and the side
walls of the tank were also detected. Figure 4 presents the typical sound signals received
by all hydrophones in the TRM. Because the difference in the distance between the sound
source and each hydrophone was negligibly small, the received signals were superimposed
over each other and difficult to distinguish. Figure 5 shows the sound pressure at the
retrofocused location in the region close to the original sound source location when the
sound source was located 80 m from the TRM at a water depth of 2.75 m, namely ro = 80 m
and zo = 2.75 m. The pressure shown in Figure 5 was determined from Equation (20). The
transfer function in Equation (20) has a unit of m−1 and rm(−t) was obtained from the
time reversal of rm(t), which was measured by the hydrophone on TRM and had a unit
of Volt (V). Hence, the pressure in Figure 5 has a unit of V/m. Figure 5 indicates that the
estimated sound source locates at roe = 80.89 m and zoe = 2.54 m. The distance between

the estimated and actual source locations, do1 =
√
(roe − ro)

2 + (zoe − zo)
2, was 0.91 m

(Table 1).
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Table 1. Estimated sound source locations at various source locations and sound frequencies obtained
from the TRM experiments conducted in the towing tank.

Actual Source
Location

Estimated Sound Source Location (roe, zoe)
Average Errors

3 kHz 4 kHz 5 kHz 6 kHz 7 kHz

ro = 4 m 3.11 3.00 3.00 3.00 3.00 0.978 m (24.45%)
zo = 2.75 m 3.22 2.84 2.85 2.22 1.47 0.494 m (17.96%)

d01 (m) 1.01 1.00 1.00 1.14 1.62 1.154 m

ro = 10 m 9.25 9.08 9.18 9.06 9.20 0.846 m (8.46%)
zo = 2.75 m 2.47 1.10 1.46 0.74 1.05 1.386 m (50.4%)

d01 (m) 0.80 1.89 1.53 2.22 1.88 1.664 m

ro = 20 m 19.00 19.39 19.02 19.41 19.50 0.736 m (3.68%)
zo = 2.75 m 2.55 1.94 3.00 1.82 0.58 0.872 m (31.71%)

d01 (m) 1.02 1.01 1.01 1.10 2.23 1.274 m

ro = 40 m 39.33 39.00 40.22 39.01 39.78 0.732 m (1.83%)
zo = 2.75 m 2.53 2.48 2.95 1.05 0.83 0.862 m (31.35%)

d01 (m) 0.71 1.04 0.30 1.97 1.93 1.190 m

ro = 60 m 59.26 59.00 60.27 59.05 59.81 0.630 m (1.05%)
zo = 2.75 m 0.48 2.52 2.06 1.75 0.83 1.222 m (44.44%)

d01 (m) 2.39 1.03 0.74 1.38 1.93 1.494 m

ro = 80 m 80.89 80.71 79.04 80.92 80.49 0.794 m (0.99%)
zo = 2.75 m 2.54 2.29 1.74 2.48 1.29 0.682 m (24.80%)

d01 (m) 0.91 0.85 1.39 0.96 1.54 1.130 m
d01: distance between the actual and estimated sound source locations.

Table 1 summarizes the results of the estimated source locations at various source
locations (4–80 m) and sound frequencies (3–7 kHz) as obtained from the experiments
conducted in the towing tank. Notably, the distances between estimated and actual sound
source locations (denoted as distance deviation d01) were mostly less than 2 m. Large
deviations originated mainly from depth errors. The range errors in all studied cases were
less than 1 m, even when the sound source was 80 m from the TRM. However, the depth
errors were considerably large.

Table 1 also presents the average absolute errors for the range, depth, and distance
between the actual and estimated source locations. The average of the values obtained at
various sound frequencies was computed. Notably, Table 1 indicates that the percentage
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of the range error decreased when the range increased; however, the percentage of the
depth error and the average value of d01 did not change in response to changes in the
source location or sound frequency. The results obtained from the towing tank experiments
revealed that with only four hydrophones and an aperture (i.e., the interval between
hydrophones) of 0.5 m in the TRM, relative to the results of previous experiments in
which more than 20 hydrophones were usually used [21,26,32], the present passive TRM
configuration combined with the AcTUP allowed for reasonably accurate source locations
to be obtained. Through their numerical simulations, Sun [48] and Chen [49] demonstrated
that an increase in the number of TRM elements and TRM’s aperture resulted in higher
sound pressure at the retro-focused location. Accordingly, having more TRM elements
and a larger aperture increases the accuracy of source localization. The performance of the
proposed source localization algorithm required further field testing, which is described in
the subsequent section.

5. Field Tests

After the localization performance of the passive TRM installed on a floating buoy
was verified in a towing tank, field tests were conducted to examine the performance in
actual ocean environments. On 25 April 2020, field tests were conducted in the offshore
region off Small Liuqiu Island, Taiwan. The test location (22◦19′83” N, 120◦23′02” E) was
1 km from the south-eastern beach of the island. The local water depth was 77 m. During
the tests, four bottles of seawater were collected at water depths of 1, 1.5, 2, and 2.5 m to
measure temperature and salinity levels. At the depths of 1, 1.5, 2, and 2.5 m, the measured
temperatures were 28.5, 27.2, 27.0, and 26 ◦C, respectively; the measured salinity levels
were 35.5, 35.8, 35.6, and 35.7 psu; and the associated sound speed was 1543, 1540, 1540,
and 1538 m/s, respectively. The average seawater density (ρsw) was 1023 kg/m3. At the
area where the tests were performed, the sound speed profile from 2.5 to 77 m was assumed
to be uniform (Figure 6).
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The sound speed in the seawater was calculated using the following formula [50]:

c = 1449.2(m/s) + 4.6T − 0.055T2 + 0.00029T3

+(1.34− 0.01T)(S− 35) + 0.016z
(33)

where T is the temperature in degrees Celsius, S is the salinity in ppt, and z is the water
depth in meters. Although the salinity in Equation (33) is expressed in ppt, because the
numerical difference between psu and ppt is small, the salinity expressed in psu was used
to determine the sound velocity from Equation (33).
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The density of seawater at 1 atm (denoted as ρsw) is calculated using the following
equation [51]:

ρsw = ρw + AS + BS1.5 + CS2 (34)

where ρw is the density of pure water (no salinity); S is the salinity of seawater in ppt; and
A, B and C are coefficients, which values depend on the temperature.

The rigidity of sediment is usually substantially less than that of a solid, and accord-
ingly, bottom sediment is treated as a fluid. The sediment layer at the offshore region off
Small Liuqiu Island is several meters deep. In this study, it was assumed to be 10 m deep.
A field survey revealed that the density of the sediment layer was 1750 kg/m3 and that
the sound speed in the sediment was 1563 m/s [52,53]. The sound attenuations in both the
water column and sediment layer were ignored for the field tests conducted in the offshore
region off Small Liuqiu Island. Hence, both αw and αs were set to zero. Figure 7 presents
the parameters and geometry of the TRM experiments that were conducted in the offshore
region off Small Liuqiu Island. The sound transmitter emitted a series of sound pulses
every 0.7 s at the frequencies of 3, 4, 5, 6, and 7 kHz. The duration of each pulse was 0.3 s.
The sound transmitter was installed on the side of a boat, and it was positioned at a water
depth of 2.5 m.
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Figure 8 presents the time series of signals received by the third hydrophone in the
TRM, which was 550 m from the sound source with a frequency of 3 kHz. Figure 9 presents
the sound signals within a period of 2× 10−3 s that were received by the third hydrophone
in the TRM, and these results demonstrated that the sound frequency was 3 kHz. Figure 10
presents the calculated sound pressure levels near the sound source location, which was
located 550 m away from the TRM at a depth of 2.5 m. Figure 10 reveals that the estimated
sound source location was roe = 548.6 m and zoe = 2.45 m. The distance between the
actual and estimated source locations (d01) was 1.36 m (Table 2). Figures 11 and 12 present
the results that correspond to those presented in Figures 8 and 10 when the aforementioned
distance increased to 1600 m. Figure 12 indicates that the estimated source location is
roe = 1601.9 m and zoe = 2.60 m, and the distance between the actual and estimated sound
source locations (d01) was 1.90 m.
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locates at ro = 550 m and zo = 2.5 m. The result indicates that the estimated source location was
roe = 548.6 m and zoe = 2.45 m.
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Table 2. Estimated sound source locations at various source locations and sound frequencies obtained
from the TRM experiments conducted in the offshore region off Small Liuqiu Island.

Actual Source Location
(Range, Depth)

Estimated Source Location (roe, zoe)
Average Errors

3 kHz 4 kHz 5 kHz 6 kHz 7 kHz

ro = 550 m 548.6 548.4 552.8 551.3 548.5 1.72 m (0.31%)
zo = 2.5 m 2.45 2.87 3.09 3.36 2.04 0.466 m (18.64%)

d01(m) 1.36 1.66 2.89 1.58 1.55 1.808 m

ro = 1100 m 1095.0 1102.9 1100.6 1102.4 1097.7 2.64 m (0.24%)
zo = 2.5 m 3.21 4.00 2.57 2.65 2.51 0.468 m (18.72%)

d01(m) 5.05 3.26 0.60 2.40 2.30 2.722 m

ro = 1600 m 1601.9 1600.2 1600.2 1600.5 1595.3 0.70 m (0.044%)
zo = 2.5 m 2.60 3.44 3.44 2.84 3.89 0.742 m (29.68%)

d01(m) 1.90 0.96 0.96 0.60 4.90 1.864 m
d01: distance between the actual and estimated sound source locations.
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Table 2 summarizes the actual and estimated source locations and the distance between
the actual and estimated locations as obtained from the Small Liuqiu Island tests conducted
at different source locations and sound frequencies. The results in Table 2 reveal that the
range errors were usually negligibly small; for example, when ro = 550 m, the average
error was 1.72 m or 0.31%. By contrast, the depth errors were considerably larger, and
the average error was 0.466 m or 18.64%. The average d01 value was 1.808 m. When
ro = 1100 m, the average range error was 2.64 m or 0.24%, the average depth error was
0.468 m or 18.72%, and the average d01 value was 2.722 m. Similarly, when ro = 1600 m, the
average range error was 0.70 m or 0.04%, the average depth error was 0.742 m or 29.68%,
and the average d01 value was 1.864 m. Notably, Table 2 reveals that the characteristics of
the estimated source locations obtained from the Small Liuqiu Island tests are consistent
with those obtained from the towing tank experiments. The main characteristic is that
the implementation of a TRM with a VLA of four hydrophones allows for the accurate
estimation of the source range; however, this model also results in unsatisfactory depth
accuracy. The poor accuracy of source depth could be improved if more hydrophones with
a larger aperture were installed in the line array to extend its depth range.

Several reasons could explain the source depth errors in the results obtained from the
field tests. The TRM was installed on a floating buoy, which moved up and down on the
water surface. The variation in the vertical position of the TRM due to the effect of surface
waves and the effects of the local currents in bending the VLA are factors that increased the
difficulty of obtaining an accurate position of the hydrophones. During the Small Liuqiu
Island tests, a small significant wave height of 0.38 m was detected by a nearby data buoy.
Hence, the effects of surface waves on location error should be minimal. Furthermore, in
the simulation that was performed using AcTUP, the seabed was assumed to be flat, but
this assumption does not reflect actual seabed conditions.

A comparison of the results presented in Figures 8 and 11 also revealed that the
signals received by the TRM elements decreased when the distance between the sound
source and TRM increased. This finding indicates that a further increase in this distance
may result in the received signals becoming indistinguishable from environmental noises
and limit the localization capability of the proposed TRM configuration that incorporates
BELLHOP code.

This study used the ray-tracing code BELLHOP to determine the transfer function
between a sound source and a field point. As indicated in Section 3, the ray-tracing
method is based on linear wave propagation and does not consider sound absorption
and dispersion in water or diffraction and scattering when sound waves encounter an
object. Scattering also occurs when sounds are bounced by a rough boundary. Sound
absorption in seawater is insignificant below 1 kHz, and even at 10 kHz, the attenuation
factor α is 0.60 dB/km (for water at 20 ◦C under 1 atm) based on the attenuation formula
of Fisher and Simmons [54]. The corresponding value at 5 kHz is 0.24 dB/km. Therefore,
the transmission loss of sound caused by absorption is insignificant in the frequency range
studied herein. Acoustic dispersion is the phenomenon of a sound wave separating into
its component frequencies because of the dependence of sound propagation speed on
signal frequency. Therefore, the effect of acoustic dispersion is relatively insignificant
for narrow-band signals and can be neglected for the single-frequency signals used in
this study unless nonlinear phenomena occur such that higher harmonics are generated.
However, for broadband signals propagating in a deep ocean, because of the complexity
of the ocean channel, dispersive effects should be considered [55]. When a sound wave
encounters an obstacle, a scattered wave is generated and spreads out from the obstacle
in all directions. The scattered wave interferes with the incoming wave and results in the
change of wave direction. Diffraction refers to the case when the scattering object is large
compared with the wavelength of the scattered sound, and scattering refers to the case
when the obstacle is very small compared with the wavelength [56–58].

These factors reduce the intensity of the received sounds and prompt substantial
multipath effects that result in localization errors. However, when more elements are
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added to the time-reversal array to span a wider space, the fraction of the original wave
front that is time-reversed increases, such that the diminishing intensity of the received
sounds and the multi-path effects can be compensated for and the effectiveness of the
retrofocusing can be improved. This is why the localization accuracy can be improved by
increasing the number of TRM elements and their apertures, as demonstrated by Sun and
Chen [48,49] through numerical simulations.

Comparing the performance of the proposed TRM with available sonar systems for
the same localization purpose (e.g., range and depth) would be beneficial. However, this is
beyond the scope of this study. For detailed information on the localization performance of
various sonar systems, refer to Hodges [59].

Notably, because the source locations were not determined right after the completion
of the tests, the source locations could not be reported through a GPRS or satellite to the
desired land locations. This limitation of the present study will be addressed in our future
research. Furthermore, the present study only determined the range and depth of the
sound source. The bearing of the source was not determined.

6. Conclusions

In order to reduce the fragility of a bottom-deployed TRM, an alternative option
is to install the TRM on an anchored floating buoy. The present study investigated the
performance of a passive TRM that was installed on a buoy for underwater sound source
localization. The sounds emitted by the NEPTUNE-TX335 transducer had high frequencies
ranging from 3 to 7 kHz. Accordingly, BELLHOP code, which was developed based on
acoustic ray theory, was adopted to determine the transfer function in the frequency domain
between the probe source and the TRM. The TRM comprised a VLA with four hydrophones
and an aperture of 0.5 m.

The performance of the proposed TRM combined BELLHOP code for source localiza-
tion was examined by conducting laboratory experiments in a towing tank and field tests
in offshore regions off Small Liuqiu Island at a local water depth of 77 m.

These test results revealed that in most cases, the distance between the estimated and
actual source locations was less than 2 m even when the distance between the sound source
and TRM was up to 1600 m. Errors originated mainly from inaccurate depth estimation,
and they can be reduced by increasing the numbers of TRM elements and the size of
the aperture.

The present study suggests that implementing a design comprising an anchored
floating buoy with a VLA that acts as a TRM, a power supply, a computer with a data
acquisition module, a GPRS module for real time data transmission, and an algorithm for
estimating source locations, can yield a USMS for reporting real-time 2D underwater sound
source locations.
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