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Abstract
We view the determinant and permanent as functions on directed weighted graphs and
introduce their analogues for undirected graphs. We prove that computing undirected
determinants as well as permanents for planar graphs whose vertices have degree at
most 4 is #P-complete. In the case of planar graphs whose vertices have degree at
most 3, the computation of the undirected determinant remains #P-complete while
computing the permanent can be reduced to the FKT algorithm, and therefore can be
done in polynomial time. Computing the undirected permanent is a Holant problem
and its complexity can be deduced from the existing literature. It is mentioned in
the paper as a natural context but no new results in this direction are obtained. The
concept of undirected determinant is new. Its introduction is motivated by the formal
resemblance to the directed determinant, a property that may inspire generalizations
of some of the many algorithms which compute the latter. For a sizable class of planar
3-regular graphs, we are able to compute the undirected determinant in polynomial
time.

Keywords Computational complexity · Enumerative combinatorics · Planar graphs ·
Determinant · Permanent · Pfaffian orientation

Mathematics Subject Classification 05A15 · 05C10 · 05C70

1 Introduction

The most elegant definition of the determinant of an n × n matrix A = [ai j ] is
obtained when we view A as the adjacency matrix of some weighted directed graph
on n vertices, denoted by the same letter A, where the weight of an edge i j is ai j .
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A cycle cover c of A is a subgraph which contains all the vertices of A and every
vertex of c has both in-degree and out-degree 1. Let cc(A) denote the set of all cycle
covers of A. Then the determinant of A is given by

det A = (−1)n
∑

c∈cc(A)

(−1)|c|w(c), (1.1)

and similarly the permanent of A equals

perm A =
∑

c∈cc(A)

w(c), (1.2)

where |c| denotes the number of connected components of c, and w(c) is the weight
of c, that is, the product of the weights of all the edges in c.

We see that the formulas above also make sense when A is an undirected graph.
Thus we define the undirected determinant and the undirected permanent using for-
mulas (2.1) and (2.2), respectively, applied to an undirected graph A. For undirected
graphs, cycle covers are also called 2-factors, thus the undirected permanent counts
the weighted 2-factors of a graph and the undirected determinant counts them with
the sign depending on the parity of the number of components.

We prove in this paper that the problem of computing undirected determinants as
well as permanents for planar graphs whose vertices have degree at most 4 is #P-
complete (Theorem 3.1). In the case of planar graphs whose vertices have degree at
most 3, the computation of the undirected permanent can be reduced (see Sect. 4) to the
Fisher–Kasteleyn–Temperley (FKT) algorithm [5, 6, 10], and therefore can be done in
polynomial time. This contrasts with our next result, Theorem 5.1, which establishes
the #P-completeness of computing the undirected determinant of 3-regular planar
graphs. However, for a sizable class of planar 3-regular graphs (actually, we barely
peek beyond the bipartite graphs) we are able to compute the undirected determinant in
polynomial time (Theorem6.18). InAppendixwe extend the proof of #P-completeness
of computing the undirected determinant to the cubic planar graphs whose edges all
have weight 1.

Computing the undirected permanent is an instance of a symmetric Holant problem
and its complexity can be deduced from the existing literature (see Cai, Fu, Guo and
Williams [1]). Nevertheless, we prove the results for the permanent alongside those for
the determinant, because little extra work allows us to emphasize the strain between
the polynomial and the #P-complete.

The concept of undirected determinant is new. The alterations of the definition of
the determinant have a long history. Computing the non-commutative generalization
of determinant, called the Cayley determinant, is #P-complete even over the ring of
2 × 2 matrices (see [3]). Computing the Fermionants and the immanants also tends
to be #P-complete (see [4, 8]). It would seem that almost any modification of the
definition of determinant leads to a polynomial whose computability is #P-complete.
We take a different approach: to draw inspiration from an algorithm rather than from
the definition. Although the final definition of the undirected determinant looks like
a very natural analogue of the usual determinant, it was actually inspired by the way
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the closed walks cancel in the Mahajan-Vinay algorithm [7, 9]. The M-V algorithm
exploits the fact that sums of closed walks in directed graphs are easily computable
and one can arrange a product of such sums where all the intersecting cycles cancel,
leaving precisely the cycle covers. A naive undirected version of M-Vwould use sums
of closed non-backtracking walks, which are also easily computable. In the analogous
products of these sums, at least in the case of cubic graphs, many intersecting cycles
cancel, but not all. In this paper we go some distance toward computing u-det for some
graphs in polynomial time and hope that more is possible.

Another source of our motivation is the intuition that the main reason that makes
these alterations #P-complete is their deprivation of some of the very special properties
enjoyed by the determinant. More specifically, we suspect that the key limitations
of the FKT algorithm stem from its direct dependence on the determinant. Linear
properties of the determinant cause the FKT algorithm to count only those structures
which allow some kind of “interpolation”. To illustrate what we have in mind, let us
recall that Valiant introduced matchgates [12, Section 2.2], [13, Section 4]. Then, the
characterization of the possible signatures of planar matchgates has been completed
by Cai and Gorenstein [2] in terms of Matchgate Identities. These identities imply
that for any matchgate G, if its signature ΓG is non-zero on two length-k bitstrings
α, β ∈ {0, 1}k then there exists a sequence

α = α0, α1, . . . , αs = β,

in {0, 1}k such that αi−1 differs from αi at exactly two places for i = 1, 2, . . . , s and
Γ

αi
G �= 0 for i = 0, 1, . . . , s. This contrasts with the behavior of Boolean formulas:

the information that two assignments (x1, x2, . . . , xn) and (y1, y2, . . . , yn) satisfy a
formula φ does not imply that any other assignment does.

The reach of the FKT algorithm has been extended by holographic reductions
introduced by Valiant [14, 15]. These, at least in large part, are a way to incorporate
the linear properties of the determinant into the formulation of combinatorial problems.

The undirected determinant seems promising since on the one hand it exhibits
essentially none of the linear properties of the determinant, which we like, but which
make it difficult for many combinatorial counting problems to be evaluated with the
usual determinant. Computing u-det is #P-complete even on cubic planar graphs. On
the other hand, u-det does not stray very far from some of the algorithms for det, which
may raise hopes of adapting them to compute u-det.

2 Notation and Preliminaries

Most of our terminology is standard and follows for example Thomas [11]. All graphs
considered are finite, planar and undirected, although in Sect. 6 we consider undirected
graphs whose edges are equipped with an orientation. The main graphs constructed in
this paper have no loops or multiple edges. Graphs with loops or multiple edges may
appear only in side comments or reasonings. Each case when they actually occur is
explicitly mentioned in the text. In each such case either we explicitly show how to
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modify our graphs to remove loops and multiple edges, or these are used only as parts
of a proof.

The symbols V (G) and E(G) denote the sets of vertices and edges of a graph G.
We write v ∈ G or e ∈ G instead of v ∈ V (G) or e ∈ E(G) when no confusion
can arise. Elements of E(G) are denoted {v1, v2}, or v1v2 if we want to indicate that
the edge is oriented from v1 to v2. The graph G is weighted, which means that it is
equipped with a weight function w : E(G) → F . The reader may view the F as
the rational numbers; we are going to use only the weights 1, −1 and, in Sect. 5, − 1

2 .
However, in our constructions, F may be any field of characteristic other than 2.

A cycle cover of G, denoted cc(G), is a spanning subgraph whose vertices all have
degree 2. In the literature, cycle covers are also called vertex cycle covers or 2-factors.
The weight of a cycle cover c ∈ cc(G) is the product of the weights of its edges:
w(c) = ∏

e∈c w(e).
The undirected determinant and the undirected permanent are defined as

u-detG = (−1)n
∑

c∈cc(G)

(−1)|c|w(c), (2.1)

and

u-permG =
∑

c∈cc(G)

w(c), (2.2)

where n is the number of vertices in G and |c| is the number of cycles in c. These
definitions make sense also in the case of graphs with loops and multiple edges.

The remainder of this section is devoted to introducing gadgets, convenient com-
ponents that facilitate the construction of larger graphs. Permanental gadgets are little
different than those used in matching theory; their properties are independent of the
planarity of the external part of the graph. On the other hand, determinantal gadgets
need a little extra structure and require the ambient graph to be planar.

Definition 2.3 A gadget is a graph G0 equipped with a set ext(G0) of external edges
such that each e ∈ ext(G0) is adjacent to exactly one vertex in G0. We consider
only those gadgets G0 which are planar and whose external edges stretch towards the
unbounded face. When referring to gadgets, we use the word cycle to mean either an
actual cycle or a path connecting two external edges. Each cycle cover c ∈ cc(G0) of
a gadget G0 determines a, possibly empty, subset S ⊆ ext(G0) consisting of those
edges in ext(G0) which belong to c.

Definition 2.4 A determinantal gadget is a gadget augmented by a choice of pairings
of elements of S ⊆ ext(G0). For every subset S of even size we choose a pairing
of its elements (= decomposition into pairs), denoted by PS . Each of these pairings
must be realized by disjoint paths connecting an element of S to another element of
S. To increase the flexibility of the reasonings, these paths may be any disjoint simple
curves in the plane R2 in which the gadget is embedded. These paths avoid the outer
face of the gadget, however, we do not require them to be graph-theoretic paths.
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Fig. 1 Modification of a pairing
of external edges inside a gadget
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Fig. 2 The skew crossover
gadget (weight 1 edges are
unlabeled)
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Fig. 3 The signature of the skew crossover gadget in the case of determinant; the permanental signature
has the opposite sign

The sets S of size 2 admit the unique pairing so that there is no need to indicate it.
The pairing PS is clearly marked in the gadget shown in Fig. 3. The remaining gadgets
constructed in the paper are of two types: those which synchronize edges (Figs. 5, 7
and 8), they have a natural choice of PS ; and those where the choice of PS is irrelevant
since the signature, constructed in Definition 2.6 below, is 0 whenever |S| > 2 (all
gadgets in Sect. 5).
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Fig. 4 The iff gadget and its symbolic notation

iff

1

= x

−1

−d

iff

1

= x

−1

−d

iff =

0

x

−1

−d +

1

x

−1

−d

−1

Fig. 5 Nonzero signatures of the iff gadget and cancellation of left to right paths. When all the external
edges belong to a cycle cover of the ambient graph, we determine the parity of the number of non-inner
cycles by connecting the left two and the right two edges

If |S| > 2, a pairing, as above, may be modified as shown in Fig. 1. Each modifica-
tion involves two pairs and is of the form {{a, c}, {b, d}} �→ {{a, b}, {c, d}} for some
a, b, c, d ∈ S.

Lemma 2.5 If P1 and P2 are two pairings, as defined above, of the same subset S ⊆
ext(G0) then they can be connected by a sequence of modifications shown in Fig. 1.

The parity of the number of modifications in a sequence which connects P1 and P2
does not depend on the sequence.

Proof Enumerate the elements of S = {e1, e2, . . . , e2k} in the order they appear on
the boundary of the gadget. Let P0 be the pairing obtained by connecting every e2i−1
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to e2i for i = 1, 2, . . . , k. Clearly P0 can be realized by disjoint paths drawn on the
plane inside the gadget.

In order to prove the first part of the statement it is enough show how to connect
P1 to P0. We proceed by induction. If two consecutive elements of S, e2i−1 and e2i ,
are already connected in P1, we do nothing. Otherwise, they are ends of two paths
which connect {e2i−1, x} and {e2i , y} for some x, y ∈ S. Since consecutive elements
cannot be separated by a path in P1, we may apply the modification shown in Fig. 1
for a = e2i−1, b = e2i , c = x and d = y. Eventually we obtain P0.

In order to prove the second part of the statement we connect the elements of S
by disjoint paths drawn on the plane outside the gadget. We use the same outer paths
for P1 and for P2. The outer paths together with P1 form n1 disjoint circles on the
plane and similarly n2 circles when completed with paths in P2. Every modification
in Fig. 1 changes the parity of the number of circles, hence the parity of the number
of modifications is the same as the parity of n2 − n1. ��

At the end of the proof above, we claim that every modification changes the parity
of the number of circles. Note that this is valid for planar graphs only.

A cycle cover c ∈ cc(G0) consists of cycles and paths with ends in ext(G0). These
paths determine a pairing, denoted by Pc, of the set S = c ∩ ext(G0). We use the
choice of PS to define a function

τ : cc(G0) → {0, 1}

as τ(c) = 0 if Pc can be transformed to PS by an even number of modifications and
τ(c) = 1 otherwise. Lemma 2.5 implies that τ counts the parity of the number of
modifications connecting Pc and PS .

Definition 2.6 A signature of a gadget G0 is a function

signature∗ : P(ext(G0)) → F

where P(ext(G0)) denotes the set of all subsets of ext(G0).
The determinantal signature of a gadgetG0 equippedwith a function τ : cc(G0) →

{0, 1} is defined as

signatured(S) = (−1)n0
∑

c∈cc(G0)

c∩ext(G0)=S

(−1)|c|+τ(c)w(c),

while the permanental signature is

signaturep(S) =
∑

c∈cc(G0)

c∩ext(G0)=S

w(c),

where n0 is the number of vertices of G0 and |c| is the number of cycles in c. In
particular, when |S| is odd, the sums are empty and the signature at such S is 0.
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The signature allows us to compute the undirected determinant (or permanent)
of a planar graph which contains G0 as a subgraph without analyzing the, possibly
complicated, inner structure of G0. This is explained by the following.

Lemma 2.7 Let G0 ⊆ G be a gadget in a planar undirected weighted graph. Let
G∞ = G\G0 and define the cycle covers cc(G∞) analogously to cc(G0). Let n∞ be
the number of vertices in G∞.

Then

u-detG = (−1)n∞
∑

S⊆ext(G0)

signatured(S)
∑

c∈cc(G∞)

c∩ext(G∞)=S

(−1)|c|w(c) (2.8)

and

u-permG =
∑

S⊆ext(G0)

signaturep(S)
∑

c∈cc(G∞)

c∩ext(G∞)=S

w(c)

The formulas above involve, respectively, the determinantal and the permanental
signatures.

The symbol |c| denotes the number of cycles in c ∈ cc(G∞) obtained when c is
completed with the paths in the pairing PS was introduced in Definition 2.4.

Proof The proof is straightforward. The sums indexed over c ∈ ext(G) in formulas
(2.1) and (2.2) are grouped according to S = c ∩ ext(G0). Then for every S, the
weights of the edges that belong to G0 are factored out into the signature∗(S).

In the case of u-det we need to verify the signs. The number |c| in formula (2.1)
splits into the sum of the number of cycles that are entirely inside of the gadget
(those are counted by the signature) and the number of remaining cycles, which are
modified inside the gadget by PS and then counted by formula (2.8). The cases when
this modification changes parity are corrected by τ(c) which is used to define the
signature (see Definition 2.6). ��

By abuse of terminology, we often write “signature” when we mean the value of
the signature at a specific subset. When we list the values of the signature we may
omit subsets at which the signature is zero.

3 Computing the Undirected Determinant and Permanent of Planar
Graphs of MaximumDegree 4 is #P-complete

In this section, for a given Boolean formula φ(x1, x2, . . . , xn) in conjunctive nor-
mal form with m clauses, where each clause is limited to three literals, we construct
undirected weighted planar graphs Aφ and Bφ , of maximum degree 4, such that

– the number of assignments satisfying φ,
– (−1)m times the undirected determinant of Aφ , and
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Fig. 6 A version of the iff
gadget when multiple edges are
allowed

−1 −d −1

– the undirected permanent of Bφ

are all equal. The graphs Aφ and Bφ differ only by signs of weights of some edges,
thus it is convenient to describe them in parallel. The size of each of these graphs is
O(m2).

We construct these graphs by means of the following gadgets:

1. The skew crossover gadget.
2. The iff gadget: it synchronizes two edges which belong to the boundary of a com-

mon face of a planar graph. Connecting the two edges with an iff gadget results
in a new graph whose permanent (respectively determinant) counts the weights of
only those cycle covers of the original graph which contain either both or none of
the edges connected by the gadget.

3. The extended iff gadget: it synchronizes any two edges of a planar graph.
4. The variable setting gadget: it encodes the variables of the formula φ.
5. The clause gadget: it encodes the clauses of the formula φ.

(1) The skew crossover gadget. We start with a skew crossover gadget, shown in
Fig. 2. We follow the convention that all unlabeled edges have weight 1. The gadget is
inspired by the Cai–Gorenstein [2] construction. Its signature is 0 unless the opposite
edges, either both or none, belong to a cycle cover. The nonzero signatures are either
1 or −1.

The weight d is defined as d = 1 for determinant and d = −1 for permanent.
In Fig. 3, we list all the possible ways a cycle cover may meet this gadget, and the

ways they add to yield the signature of this gadget, in the permanental case.
In the determinantal case, all values of the signature of this gadget have the opposite

sign, but the third one requires an additional comment. This is the only instance where
the parity of the number of components of the cycle cover depends on the way it meets
the gadget. The arcs inside the box indicate the way the cycles should traverse this
gadget, for the sake of counting the parity of the number of cycles in a cover.

(2) The iff gadget, shown in Fig. 4, has four external edges and its signature is 1
if either all or none of them belong to a cycle cover. Otherwise its signature is 0. All
other cycle covers cancel out. The gadget is used to synchronize two edges which
belong to the boundary of a common face of the planar graph.

The iff gadget can be constructed using the skew crossover gadget, as shown in
Fig. 4.
Notice the −d label near one of the external edges. It indicates that, when applying
the iff gadget, the original weight of this edge has to be multiplied by −d. As above,
we have d = 1 in the case of determinant and d = −1 for permanent.

If a component of a cycle cover c passes left to right through the gadget then, by
its symmetry, there exists a different cycle cover c′ with w(c′) = −w(c), thus c and
c′ cancel out.

The remaining, easy to compute, nonzero signatures of the iff gadget are shown in
Fig. 5.
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iff

x

x

x

x

e1 r1 r2 e2

Fig. 7 The extended iff gadget synchronizing two edges e1 and e2, across two other edges r1 and r2. The
colors indicate the way the paths, representing r1 and r2, traverse the gadget when both the ri ’s belong to
the cycle cover but none of the ei ’s does (color figure online)

iff

x

x

x

x

e1 r1 r2 e2

Fig. 8 The same gadget as in Fig. 7. The case when all the ri ’s and the ei ’s belong to the cycle cover

In the determinantal case, the inner loop introduces the −1 sign. This loop is not
seen outside the iff gadget hence, its sign is included in the signature.

In Fig. 4, we give a construction that avoids loops and multiple edges. However,
if we do not have to avoid multiple edges, we may use a simpler and more obvious
construction of the iff gadget, shown in Fig. 6.

(3) The extended iff gadget. We use the skew crossing gadgets and the iff gadget,
defined above, to synchronize any two edges e1 and e2 in the graph. By the synchro-
nization of the edges e1 and e2 we mean that inserting the extended iff gadget into the
graph causes the determinant (resp. permanent) of the new graph to count precisely
those cycle covers of the original graph which contain either both or none of the edges
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Fig. 9 A symbolic notation for
the gadget shown in Figs. 7
and 8

e1 r1 r2 e2

. . . . . .

xi x̄i

Fig. 10 The variable setting gadget

e1 and e2. Otherwise, the gadget has no effect on the remaining cycle covers. In Figs. 7
and 8 we present the construction of the extended iff gadget that goes across two other
edges.

The remaining cases, when the number of edges ri , i = 1, 2, . . . , rn , the gadget
passes through is different from 2, as well as different configurations of which of the
ri ’s belong or not to the cycle cover, are analogous.

Figure 9 shows the symbolic notation of the gadget.
We see that, any two skew crossing gadgets, that are drawn one above the other in

Figs. 7 and 8, have the same signature, either 1 or −1. Therefore the crossing gadgets
do not contribute to the values of the signature of the extended iff gadget. Neither does
the iff gadget.

It is straightforward to see that those cycle covers of the modified graph that con-
tribute to either the determinant or permanent must contain either both or neither of
the edges e1 and e1.

It remains to notice that insertion of the extended iff gadget affects neither the
number of cycle covers nor the parity of the number of cycles in a cycle cover. The
only restriction is that e1 belongs to a cover if and only if e2 does.

When neither e1 nor e2 is in the cover, a case similar to the one shown in Fig. 7,
whether a path representing ri belongs to the cover or not does not affect other paths.

When both e1 and e2 are in the cover, we start with a case similar to the one shown
in Fig. 8, where the cycle cover passes through all the ri ’s, i = 1, 2, . . . , n. Removal
of any path representing an edge ri from the cycle cover causes its central part to be
filled by the next path on the right.

We conclude that whenever the extended iff gadget is placed between any two edges
e1 and e1 as in Fig. 9, the determinant as well as the permanent of the resulting graph
counts exactly those cycle covers of the original graph which contain either both or
neither of the ei ’s.

(4) The variable setting gadget. For every variable xi in the formula φ we construct
a gadget as shown in Fig. 10.
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Fig. 11 The clause gadget
encoding a ∨ b ∨ c −d

a b c

The gadget consists of two loops connected to a single vertex. Clearly every cycle
cover contains exactly one of the two loops and the signature of the gadget is always
1 so that addition of the variable setting gadget does not affect the determinant or
permanent of the graph. One of these two loops represents the variable xi , while the
other represents its negation x̄i . The wavy lines in Fig. 10 denote the extended iff
gadgets which synchronize a loop with those edges in the clause gadgets, shown in
Fig. 11 , which represent the same xi or x̄i , respectively. We have one extended iff
gadget per one occurrence of xi or x̄i in the formula φ.

If xi or x̄i is not present inφ then the graphwe obtain has a loop. If this is undesirable
wemay synchronize this loopwith itself, using the iff gadget,which results in a loopless
graph.

(5) The clause gadget. For every clause of the form a ∨ b ∨ c in the formula φ we
construct a gadget as shown in Fig. 11.

Three edges of the gadget represent the three literals a, b, c ∈ {x1, x̄1, x2, x̄2, . . .}
in the clause. The wavy lines indicate the extended iff gadgets which synchronize
these three edges with those loops in the variable setting gadgets which represent the
same literal.

All the possible cycle covers of the clause gadget are shown in Fig. 12. We see that
the signature is 0 if all the three literals are set to false, represented by 0. Otherwise,
all the signatures are 1 in the permanental case and −1 in the determinantal case.

The construction of this gadget was chosen so as to make the exposition more
straightforward; however, the gadget can be simplified by removing those edges that
correspond to literals a and c and connecting the respective extended iff gadgets to ā
and c̄.

Theorem 3.1 Computing the undirected determinant and the undirected permanent of
planar graphs whose vertices have degrees 3 or 4 is #P-complete.

Proof Consider a Boolean formula φ(x1, x2, . . . , xn) = c1 ∧ c2 ∧ · · · ∧ cm , where
c j = t j,1 ∨ t j,2 ∨ t j,3 with t j,k ∈ {x1, x̄1, x2, x̄2, . . . , xn, x̄n}, where j = 1, 2, . . . ,m
and k = 1, 2, 3. Here x̄i represents the negation of xi .

We construct the planar graphs Aφ for determinant and Bφ for permanent by taking
one clause gadget for every ci and one variable setting gadget for every xi . For every
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0 0 1 0 1 0 0 1 1 1 0 0

1 0 1 1 1 0 1 1 1

Fig. 12 All the 7 cycle covers of the clause gadget. The labels indicate the corresponding valuations of a,
b, c

occurrence of xi or x̄i in the formula, we use the extended iff gadget to synchronize a
suitable edge of the variable setting gadget with the corresponding edge in the clause
gadget.

The properties of the gadgets, described in this section, imply that the number of
satisfying valuations of φ is equal to (−1)m times the undirected determinant of Aφ

and to the undirected permanent of Bφ . This proves the theorem. ��
As an aside, let us notice that the only weights used in this section are −1, 0 and

1. Therefore the reduction above can be applied to any field F , in which case we
obtain the number of satisfying valuations modulo the characteristic of the field. In
particular, for ch(F) = 2, computing the undirected determinant is a ⊕P-complete
problem. Therefore one does not expect it to be polynomially computable even in this
case.

4 Computing the Undirected Permanent of Planar Graphs of
MaximumDegree 3 Reduces to the FKT Algorithm

For the sake of completeness we present a straightforward observation that computing
the undirected permanent of cubic planar graphs reduces to the FKT algorithm. Con-
sequently, over a field of characteristic 2, also computing the undirected determinant
reduces to FKT.

Let G be a weighted undirected planar graph of maximum degree 3. If G contains
a vertex of degree 0 or 1 then clearly

u-permG = 0.
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Suppose that all the vertices of G have degree 2 or 3 and all the edges have nonzero
weight. We define Ginv as the subgraph of G induced by all vertices of degree 3, and
the weights of Ginv are inverted, that is, wGinv

(e) = 1/wG(e), where e denotes an
edge and wG(e) denotes its weight in the graph G. The complement of a cycle cover
of G is a perfect matching in Ginv . In fact the complement, in the set of edges of G,
establishes a one-to-one correspondence between the perfect matchings in Ginv and
the cycle covers ofG. The product of theweight of a cycle cover and the corresponding
perfect matching is always equal to the product of the weights of all the edges of G,
denoted by p. Since the weights in Ginv are inverted, we see that

u-permG = p · PerfMatchGinv,

where PerfMatchGinv is the sum of the weights of all the perfect matchings of Ginv .
Since Ginv is planar, the latter sum is computed in polynomial time by the FKT
algorithm.

5 Computing the Undirected Determinant of Cubic Planar Graphs is
#P-Complete

Unlike the undirected permanent, it turns out that computing the undirected deter-
minant is #P-complete even in the case of cubic planar graphs. By Theorem 3.1 we
already know that computing the undirected determinant is #P-complete for planar
graphs whose vertices have degree 3 or 4, hence it is enough to construct a cubic
planar gadget whose signature is the same as that of a single vertex of degree 4. This
reduction involves multiplying by powers of 2 and therefore requires the field over
which the edges are labeled to have characteristic different from 2. In view of Sect. 4
this is unavoidable.

Let us point out that while all the gadgets constructed in Sect. 3 had edges of
weight either 1 or −1, here we need to know that 2 is invertible or, at least, it is a non-
zero-divisor. This restriction is impossible to avoid since, modulo 2, the undirected
determinant coincideswith the undirected permanent, and computing the latter reduces
to the FKT algorithm, as proved in Sect. 4.

When defining a determinantal gadget one should choose a pairing PS for every
set S of an even number of external edges of the gadget. However, the signatures of
the gadgets constructed in this section are null whenever |S| > 2. Therefore these
signatures are independent of the choice of such pairings and we could conveniently
ignore discussion of the pairings.

(1) The auxiliary gadget is shown in Fig. 13.
The signatures, up to symmetry, corresponding to the different ways a cycle cover

can traverse the auxiliary gadget are shown in Fig. 14. The last (fourth) signature is
included only for the sake of completeness, as it is never realized in the subsequent
constructions. The value s in the computation of this signature is either 1 or −1,
depending on which way of passing through the gadget is chosen to be positive. We
do not specify this choice since in any case this signature is 0.

(2) The null edge gadget is shown in Fig. 15. This gadget plays the role of an edge
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=

Fig. 13 The auxiliary gadget and its symbolic notation
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2
1

+

1
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−1

=

0
s

+

s

+

−s

+

−s

Fig. 14 The signatures, up to symmetry, of the auxiliary gadget

of weight 0, so that the gadget is not necessary but convenient if we want to ensure
that all vertices have degree 3 and all weights are invertible. The arguments employed
in Sect. 6 are neater when we deal with cubic graphs instead of graphs of degree at
most 3.

(3) The degree 4 vertex gadget is constructed in Fig. 16.
The signatures of the degree 4 vertex gadget are listed, up to symmetry, in Fig. 17.
Theorem 3.1 and the existence of a planar 3-regular gadget whose signature is equal

to −4 times the signature of a single vertex of degree 4 implies the following.

Theorem 5.1 Computing the undirected determinant of cubic planar graphs with
weights in the set {−1,− 1

2 , 1} is #P-complete.
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Fig. 15 The null edge gadget and its signature
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− 1
2

− 1
2

− 1
2

Fig. 16 The degree 4 vertex gadget and its symbolic notation

6 Semi-Pfaffian Orientation and Computing the Undirected
Determinant

The purpose of this section is twofold. Firstly, we prove Theorem6.18which states that
the undirected determinant is polynomially computable for a reasonable class of cubic
planar graphs, which includes the bipartite graphs. This, together with Theorem 5.1,
introduces another instance of a tension between P and #P. The second aim of this
section is the search for tools and ideas which could guide us in our attempts to
find polynomially computable analogues of the determinant, hopefully improving
the computational strength of the FKT algorithm. In this direction, Definition 6.3
introduces the semi-Pfaffian orientation and Definition 6.8 introduces the tension of
an even cycle in a planar graph. Both play the key role in our proof of the polynomial
computability for the graphs mentioned above.
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Fig. 17 The signatures, up to
symmetry, of the degree 4 vertex
gadget =

0 1
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−1
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Additional Preliminaries

Let G = (V , E) be a weighted undirected graph. An orientation of G is a choice,
independently for every edge of G, of a direction from one of its end points to the
other; the orientation is not considered a part of the graph structure. An undirected
graph G on vertices V = {1, 2, . . . , n}, equipped with an orientation, is represented
by a skew symmetric matrix A = [ai j ]i, j=1,2,...,n where, for every edge of weight e,
oriented from i to j , we have ai j = e and a ji = −e. We put ai j = 0 if there is no
edge {i, j} in G.

A cycle c in a graph G is even if it has even length, and central if G\V (c) has a
perfect matching. An even cycle c is oddly oriented if for either choice of direction of
traversal around c, the number of edges of c directed according to the direction of the
traversal is odd.

Occasionally, it is convenient to abuse the notation and treat a planar graph as if it
was a subset of a plane.

Recall that an orientation of the edges of G is Pfaffian if every even central cycle
of G is oddly oriented. At the heart of the FKT algorithm we see two theorems:

1. Every planar graph admits a Pfaffian orientation.
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2. If A is the skew symmetric adjacency matrix, associated with a graph G with
Pfaffian orientation, then, up to sign,

Pfaffian A = PerfMatchG.

The standard definition of Pfaffian (see for example Thomas [11, Section 2])
involves a sign function sgnG : pm(G)−→{−1, 1}, defined on the set pm(G) of
all perfect matchings of G. It depends on the orientation of G and is given by

sgnG(a) = sgn

(
1 2 3 4 . . . 2n − 1 2n
i1 j1 i2 j2 . . . in jn

)
(6.1)

where sgn is the sign of the permutation, and the edges of the perfect matching a =
{i1 j1, i2 j2, . . . , in jn} are listed in such a way that every edge ik jk is directed from ik
to jk .

The Pfaffian of A is defined as

Pfaffian A =
∑

a∈pm(G)

sgnG(a)w(a). (6.2)

Let us recall that the Pfaffian is polynomially computable. In fact, the algorithms that
compute the determinant tend to translate to algorithms for the Pfaffian.

The Semi-Pfaffian Orientation

Definition 6.3 An orientation of a graph G is semi-Pfaffian if a central cycle in G of
length 2k is oddly oriented if and only if k is odd.

Remark 6.4 Not all planar graphs admit semi-Pfaffian orientation, but those which
have at most two faces bounded by an odd number of edges do. This includes the
bipartite graphs.

Proof If no faces of the graph have an odd number of edges then the graph is bipartite
and we orient the edges from one side of the bipartition to the other and the claim is
obvious.

Otherwise, since every edge belongs to precisely two faces, we must have two odd
faces (one may be unbounded). Connect the interior of one odd face with the other
using a path P in the plane which avoids vertices and crosses each edge at most once.

We split vertices of the graph into two subsets according to the following rule. Both
ends of an edge which crosses P belong to the same subset. The ends of an edge
disjoint from P belong to distinct subsets. Such a partition exists since P intersects
the boundary of the end faces an odd number of times, and the remaining faces an
even number of times. Therefore, whenever we travel along the perimeter of any face,
we switch the subsets an even number of times, and therefore this partition is well
defined.
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For those edges which are disjoint from P we choose the orientation from one side
of this partition to the other. For those edges which cross P we choose the orientation
from one side of the path to the other.

Let c be an even cycle in G. It must cross P an even number of times. We choose
a direction of traversal around c and claim that c crosses the path P the same number
of times in either direction. If not, we could find two points p0 and p1 in P such that
c crosses the path in the same direction in both of these points and the interior of the
segment Q ⊆ P between p0 and p1 is disjoint from c. Let C ⊆ c be the plane path
which is a segment of c between p0 and p0. We see that C ∪ Q is a closed curve
which splits the plane into two disjoint components. The cycle c enters C from one
component and leavesC towards the other. This is impossible since c is a cycle without
self-intersections and is disjoint from Q.

We conclude that c has an even number of edges that cross P; denote this number
2a. The orientation introduced in the fourth paragraph of the proof is such that a of
these edges are directed in either of the two directions of traversal around c. When we
contract these 2a edges we see that any two vertices which became identified belong
to the same side of the partition. We are left with 2b edges which were disjoint from
P , and see that the partition constructed in the third section induces a bipartition of the
contracted cycle. Therefore b of these edges are directed in either of the two directions
of traversal around c. This completes the proof. ��

Cubic Planar Graphs

From now on, we assume that G is a weighted undirected cubic planar graph with
invertible weights of edges. G is equipped with a semi-Pfaffian orientation, and is
represented by a skew symmetric matrix A.

In such a graph, the complement ā of a perfect matching a ∈ pm(G) in the set of
edges E(G) is a cycle cover. Conversely, the complement c̄ of a cycle cover c ∈ cc(G)

is a perfect matching. Note that if p is the product of all the weights of the edges in G
then for every c ∈ cc(G) we have

w(c)w(c̄) = p. (6.5)

Sincewe are ultimately interested in the undirected determinant, we rewrite formula
(6.2) for the Pfaffian in the language of cycle covers In the case of cubic graphs we
have

Pfaffian A =
∑

c∈cc(G)

sgnG(c̄)w(c̄). (6.6)

The Pfaffian is always polynomial time computable—no assumptions are neces-
sary except that A is skew symmetric. On the other hand, Theorem 5.1 implies that
computing the undirected determinant

u-detG =
∑

c∈cc(G)

(−1)|c|w(c) (6.7)
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is #P-complete even for cubic planar graphs. The (−1)n factor disappears since a cubic
graph has an even number of vertices.

When comparing (6.6) and (6.7), we see that the weights w(c) and w(c̄) are conve-
niently related by formula (6.5). In general, the relation between sgnG(c̄) and (−1)|c|
is more complicated; however, for some graphs and their orientations, these are nicely
related by Proposition 6.11 below.

Every cycle c in a planar graph G yields a decomposition of the plane P into two
closed subsets, the bounded one P∗ and the unbounded one P∞.We have P = P∗∪P∞
and c = P∗ ∩ P∞. Let G∗ = G ∩ P∗ and G∞ = G ∩ P∞. Let v ∈ c be a vertex.
We call v an in-vertex if the unique edge adjacent to v but not in c belongs to G∗.
Otherwise, we call v an out-vertex. If c is even then it is bipartite as a subgraph; let
V1, V2 be the bipartition of its vertices.

Definition 6.8 The tension of an even cycle in a cubic planar graph is the absolute
value of the difference between the numbers of out-vertices in V1 and in V2.

Note that the tension is independent ofwhetherwe use the out-vertices or in-vertices
in the definition above.

Definition 6.9 An undirected cubic planar graph G is without tension if the tension of
every even central cycle in G is null.

Remark 6.10 The graphsmentioned in Remark 6.4, thosewith at most two faces which
are bounded by an odd number of edges, are without tension.

Proof Let c be a central cycle inG. Since it has even length, the number of odd faces in
P∗ must be even. By symmetry between P∗, and P∞ wemay assume that P∞ has only
even faces, including the unbounded one. Therefore P∞ is bipartite. Since c is central
we see that P∞\c has a perfect matching and therefore each side of its bipartition has
the same number of vertices; denote it by m. Let n1 and n2 denote the numbers of
out-vertices in each of the two sides of the bipartition of c. We look at P∞ without the
edges in c. The sums of the degrees of vertices in each side of the bipartition must be
the same, hence n1 + m = n2 + m and therefore the tension |n1 − n2| is null. ��
Proposition 6.11 If G is an undirected cubic planar graph without tension, equipped
with a semi-Pfaffian orientation, then the function

fG : cc(G)−→{−1, 1},
fG(c) = (−1)|c| sgnG(c̄),

is constant.

Proof It is enough to show that for every c, d ∈ cc(G) we have

fG(c) fG(d) = 1. (6.12)

It is a standard observation that, in a cubic graph, any two cycle covers c and d can
be connected by a sequence ck ∈ cc(G) with

c = c0, c1, . . . , cr = d
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Fig. 18 The modification of G that shortens t and preserves the product fG (c) fG (d) = fG1 (c1) fG1 (d1)

such that for each k = 0, 1, . . . , r − 1, the union c̄k ∪ c̄k+1 contains exactly one cycle.
The cycle cover c̄k+1 is obtained from c̄k by replacing those edges in this cycle which
belong to c̄k with the remaining edges of this cycle—those remaining edges belong to
d̄.

Thus fromnowonwemay assume that c̄∪d̄ contains only one cycle, or equivalently,
that the symmetric difference c � d is a cycle. By assumption, the unique cycle in
c̄ ∪ d̄ (or equivalently c � d) above has null tension.

The idea of the proof is to construct recursively a series of modifications of the
cycle covers c, d, and of the ambient graph G. We construct sequences ci , di and Gi ,
i = 0, 1, . . . , s, where G0 = G and ci , di ∈ cc(Gi ), c0 = c, d0 = d. The graphs Gi

for i > 0 are going to be multigraphs – a pair of vertices may be connected by two
edges. At each stage we will have

fGi (ci ) fGi (di ) = 1. (6.13)

The number of edges in ci � di will be the same as in ci+1 � di+1. Both will have no
loops and at most one cycle of length exceeding 2. The longest cycle in ci+1 � di+1
will be two edges shorter than the longest one in ci � di . The ci+1 � di+1 will retain
the semi-Pfaffian orientation and null tension. Eventually we will have cs = ds , up to
choice of an edge of a multigraph between the same vertices.

A single modification is done in three steps which are shown in Fig. 18. Below we
describe such a modification. To simplify the notation we omit the index i and write
c1, d1, G1 for ci+1, di+1, Gi+1.

We have seen above that we may assume that t = c � d is a single cycle of even
length. After modifications c� d will have a unique component of length greater than
2. Since, by assumption, the cycle t has null tension, it must contain two adjacent
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v1 v2 v3 v4

σ = (v1, v2, v3, v4)

v1 v2 v3 v4

σ = (v1, v3)

v1 v2 v3 v4

σ = (v1, v2, v3, v4)

Fig. 19 Possible orientations, up to symmetry, and the corresponding permutations σ

in-vertices or two adjacent out-vertices. We consider the first case, the other being
analogous.

The modification is shown in Fig. 18. Below we outline the effect of such
modification on the objects we are interested in. The modification:

(1) Changes one of the cycle covers, either c or d. We obtain c1 and d1 where either
c1 = c or d1 = d.

(2) Shortens the cycle t by two edges. The new cycle t1, a connected component of
c1 � d1, retains semi-Pfaffian orientation and null tension.

(3) Transforms the ambient graph G into G1 so that the two adjacent in-vertices,
denoted v2 and v3 in Fig. 18, are connected by two parallel edges in G1.

(4) Leaves the product (6.12) unchanged, that is, fG(c) fG(d) = fG1(c1) fG1(d1).

In the leftmost part of Fig. 18 we see the adjacent in-vertices v2 and v3 with the
surrounding fragments of the cycle covers c and d. Possibly swapping the names c
and d, we may assume that the edge {v2, v3} belongs to c, as shown in Fig. 18. The
vertices v1 and v4 may be, independently, either in-vertices or out-vertices.

In the second part of Fig. 18 we mark the complements c̄ and d̄ .
In the third part we apply a permutation σ to the vertices {v1, v2, v3, v4}. The

permutation moves the edges {v1, v2} and {v3, v4}, together with their orientations,
and is subject to the following conditions:

(1) σ({v1, v2}) = {v2, v3} so that the old edge {v2, v3} and the new edge σ({v1, v2})
have the same orientation.

(2) σ({v3, v4}) = {v1, v4} so that the induced orientation of {v1, v4} agrees with the
direction of traversal around t which is induced by the orientations of the even
number of the original edges {v1, v2}, {v2, v3} and {v3, v4}.

This modification removes two vertices v2 and v3 from the cycle t which reduces
its length by 2, from some 2k to 2(k − 1). Condition (2) implies that the parity of
the number of edges directed clockwise (as well as those directed counterclockwise)
changes, therefore themodified cycle t1 retains the semi-Pfaffian orientation. Figure 19
lists, up to symmetry, all the possible original orientations of {v1, v2}, {v2, v3} and
{v3, v4}, and the corresponding permutations σ .

Since in every case shown in Fig. 19, the permutation σ is odd, it changes the sign
(see (6.1)) of the perfect matching c̄, viewed as a summand of the Pfaffian, in (6.2).
This way we obtain

sgnG1
(c̄1) = − sgnG(c̄). (6.14)
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In the rightmost part of Fig. 18 we see the cycle covers c1 and d1, the complements
of c̄1 and d̄ in the new graph G1. We see that c1 = c, but d1 is different from d.

The modification shown in Fig. 18 changes the parity of the number of cycles in
the cycle cover d so that

(−1)|d1| = −(−1)|d|. (6.15)

Combining (6.14) and (6.15) we obtain

fG1(c1) fG1(d1) = (−1)|c1| sgnG1
(c̄1)(−1)|d1| sgnG1

(d̄1)

= (−1)|c|(− sgnG(c̄))(−(−1)|d|) sgnG(d̄)

= fG(c) fG(d), (6.16)

thus the modification does not change the product.
We have deleted two in-vertices from t , one from either part of the bipartition of t ,

so that the modified cycle t1 retains the null tension.
We now repeat the operation shown in Fig. 18; at every step the length of t is

reduced by 2, until at some step s its length is 2. At that point we see that every edge in
c̄s corresponds to an edge in d̄s , which has the same end points. This correspondence
preserves the orientations. Therefore sgnGs

(c̄s) = sgnGs
(d̄s) and similarly |cs | = |ds |,

so that we obtain

fG(c) fG(d) = · · · = fGs (cs) fGs (ds)

= (−1)|cs | sgnGs
(c̄s)(−1)|ds | sgnGs

(d̄s)

= 1 (6.17)

where the dots indicate a sequence of equations given by (6.16). This completes the
proof. ��

As a corollary, we obtain the following.

Theorem 6.18 If G is a weighted undirected cubic planar graph with a semi-Pfaffian
orientation and without tension, and all the weights in G are nonzero, then, up to sign,

u-det G = p · Pfaffian(Ainv),

where p is the product of the weights of all the edges in G and Ainv is the matrix
whose nonzero entries are the inverses of the nonzero entries of the skew symmetric
adjacency matrix of G with the orientation.

Proof This is an immediate consequence of Proposition 6.11 and the identities (6.5),
(6.6) and (6.7). ��
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Appendix

The constructions presented in the preceding sections were chosen so as to minimize
the number of edges and labels. In this section we prove

Theorem 7.1 Computing the undirected determinant of cubic planar graphs is #P-
complete even when we restrict to graphs whose edges all have weight 1.

Proof The first place in the proof of Theorem 5.1 where labels different from 1 and
−1 appear is Fig. 16. There we have the degree 4 vertex gadget whose four edges have
weight − 1

2 . If we want to have only integral weights, we multiply the labels of all
the inner edges of this gadget by 2. The signature of the original gadget is shown in
Fig. 17. Doubling the weights of the edges does not affect the value 0 of the signature,
while the value −4 is multiplied by 247—in that case every cycle cover meets the
gadget in 47 internal edges and 2 external ones. Therefore, if the graph has v degree 4
vertex gadgets and each is modified as above, the undirected determinant is multiplied
by (247)v , and we conclude that computing the undirected determinant of cubic planar
graphs, with edge weights in the set {−2,−1, 1, 2} is #P-complete.

It remains to construct determinantal gadgets whose edges all have weight 1 and
whose signature is that of a single edge of integral weight. The gadget of weight 1 is
just a single edge. The gadget replacing an edge of weight −1 is shown in Fig. 20.

Given two gadgets replacing edges of weights a and b, the gadget for an edge of
weight ab is shown in Fig. 21. Computing of its signature is straightforward.

We also have an a+b edge gadget shown in Fig. 22. Note that the null edge gadget
defined in Fig. 15 includes the −1 edge gadget defined in Fig. 20.

In the first paragraph of this proof we have proved that computing the undirected
determinant of cubic planar graphs, with edge weights in the set {−2,−1, 1, 2}, is
#P-complete. Now we can replace these edges with suitable gadgets having weight 1
edges only. This completes the proof. ��

Using binary expansion we can replace an edge labeled with any integer by a
suitable composition of gadgets constructed in the proof above. Thus we obtain the
following.
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Fig. 20 The −1 edge gadget and its signature

Fig. 21 The ab edge gadget
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Fig. 22 The a + b edge gadget and its signature
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Corollary 7.2 Every cubic planar graph with integral edge weights can be replaced
with a cubic planar graph with edge weights 1. The increase of the size of the graph
is logarithmic in the size of the original edge weights.

Obviously, in the case of the undirected permanent it is impossible to construct a
weight 1 gadget that would replace an edge of negative weight.
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