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We present some properties of the distance function and of shortest paths in 
+ l-weighted undirected graphs. These extend some basic results, e.g., on matchings, 

on the Chinese postman problem, and on plane multicommodity flows. Furthermore, 
distances turn out to be efficient tools to generalize the matching-structure of 
graphs to a structure related to subgraphs having only parity constraints on their 

degrees (these are called joins or postman sets), a problem posed by Lovasz and 
Plummer. The special cases include the generalization of the matching-structure of 

graphs to the weighted case. The main result of the paper is a good characterization 

(linear in the number of edges), conjectured by A. Frank, of the minimum weights of 

paths from a fixed vertex of an undirected graph without negative circuits. This result 
contains the well-known minimax theorems on minimum “odd joins” and maxi- 
mum packings of “odd cuts” (namely, Lovasz’s theorem on half integer packings 
and its sharpening by Seymour and later by Frank and Tardos) and strengthens 
them by constructing a “canonical” maximum packing of odd cuts with favourable 
properties. This packing of odd cuts turns out then to be characteristic for the 

structure of minimum odd joins. Using these, a Gallai-Edmonds type structural 
description of minimum odd joins is worked out. (The generalization of the Kotzig- 
Lovasz canonical partition will appear in a forthcoming paper.) Briefly, distances in 
k l-weighted graphs make it possible for us to treat some properties of matchings 
themselves in a more compact way, and to generalize them providing new results 
on some other interesting special cases of k l-weighted graphs as well. This 
technique is worked out in the present paper. % 1994 Academic Press, Inc. 

1. INTRODUCTION 

In this paper we investigate the distance function in weighted undirected 
graphs. Several results about different problems can be presented in this 
framework. Let us see some examples: 

Berge’s well-known improving path statement [3] about the maximum 
cardinality of a matching can be formulated in the following way: Let the 
edges of a matching be of length - 1, and let all the other edges have 

10 
0095~8956/90 $3.00 
Copyright 0 1990 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



POSTMAN STRUCTURE OF GRAPHS 11 

length 1. This matching is maximum if and only if the distance (the minimum 
weight of a path) between any two non-saturated points is at least 2. 

Similarly, in order to see how the deletion of 1 or 2 given vertices 
decreases the matching number (the cardinality of a maximum matching) it 
is enough to look at distances defined by appropriate weight functions. 
Such questions play an important role in the description of the matching- 
structure [ 171, and distances provide an elegant way to obtain this 
description [ 201. 

A (Chinese) postman tour in a graph is a closed walk that covers every 
edge of the graph at least once [ 191. It is also easy to see and well known 
from [19] that a postman tour is of minimum cardinality, if and only if it 
covers each edge of G once or twice, and putting weight - 1 on the edges 
covered twice and 1 on those covered once, there is no circuit with negative 
total weight in the graph (see later). 

If there is no negative circuit, then this weight function defines finite 
distances between the vertices of G. We shall see in this paper that through 
the examination of these distances we can get deeper in the structure of the 
Chinese Postman Problem, and of some special cases such as (weighted) 
matchings or plane multicommodity flows. As a consequence, e.g., the 
results on the matching structure can be generalized to weighted matchings 
as well, and the existence of integer flows can be characterized in some new 
cases (see [24], [25]). 

Besides these results the general structure theorem we present provides a 
common formulation, and its proof gives a new proof, e.g., of Berge and 
Tutte’s minimax theorem on matchings (and actually of the Gallai- 
Edmonds structure theorem [lo, 41, see Theorem 5.1 below, or of the 
Kotzig-Lovasz theorem [ 17]), of Edmonds and Johnson’s “Chinese 
postman” minimax theorem [6] (and actually of the stronger forms proved 
by Lo&z [14], Seymour [27], and Frank, Sebo, and Tardos [9]), and, 
of course, of all the consequences of these (e.g., the fractional sums of 
circuits theorem of Seymour [26] or the perfect matching polyhedron, cf. 
e.g. [ 171). Thus distances in + l-weighted undirected graphs provide a 
general “language” which makes it possible for us to treat all these 
problems in a compact and unified way. 

Actually, undirected distances will permit us to make a first step in the 
direction of Lovasz and Plummer’s problem of developing “a structure 
theory of T-joins similar to the Gallai-Edmonds structure theory for 
matchings.” A second step, the generalization of the Kotzig-Lo&z 
theorem about canonical partitions, and the related canonical decomposi- 
tion complete the generalization of the structure theory of matchings, and 
extends its applications [20]. 

Finally, let us indicate how plane multicommodity flows relate to distan- 
ces in undirected graphs. Profiting from the fact that they are easier to 
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visualize, we also illustrate the main result and some ideas of the paper 
with the help of the special case of plane multicommodity flows. 

Suppose we are given the planar graph G, a set R c E(G) of edges, and 
we must determine a path in E(G)\R between the endpoints of each r E R, so 
that these paths are pairwise edge-disjoint. Seymour [27] has solved the 
fractional relaxation of this problem by observing its equivalence to the 
linear programming dual of the planar Chinese postman problem. A trivial 
necessary condition for the existence of such paths is: for every cut C, 
1 C/R 1 2 1 C n R [ . This is called the cut condition. This problem is unsolved 
in general, and by a theorem of Seymour, if G is Eulerian (all of its degrees 
are even) and planar, then the cut condition is sufficient. We shall indicate 
a simple constructive proof of Seymour’s theorem that reflects the main 
ideas of the paper. Recently, this method made it possible for us to find 
some integrality results for non-Eulerian graphs as well [24]. 

So, from now on, suppose that G is Eulerian, and that the cut condition 
is satisfied. 

Consider a fixed embedding of the graph in the plane, and write into 
each face f the minimum cost A(f) of reaching the face from the infinite 
region, where the cost of traversing an edge of E(G)\R is $1, and that of 
traversing an edge of R is $-1. (This latter condition should be interpreted 
as a gain. Of course n(f) can also be negative.) More precisely, we take the 
minimum of p - q over all “dual paths” (paths of the planar dual), which 
join the infinite region to the given face, where p is the number of edges of 
E(G)\R, and q is the number of edges of R which are crossed by the path. 
(We may even allow the repetition of edges, if, to prevent infinite gains, we 
forbid walks which cross request edges in both directions.) 

First note that the gain is not bounded, if and only if there is a dual 
circuit of negative total cost, i.e., if and only if the cut condition is not 
satisfied. So, if our assumption, the cut condition, is satisfied, then A(f) is 
bounded. In this case, clearly, in order to reach a face with a minimum 
cost, we always have a dual path without any repetition of vertices. 

(1.1) Let b be the face for which A(b) is minimum, and suppose b is not 
the infinite face. Then the cycle that is the boundary of b contains exactly 
one edge of R. 

Proof Take a dual path of minimum cost from the infinite face to b. 
The edge through which this path goes last is in R, otherwise the cost of 
the face that precedes b would be one less than that of b. This edge is on 
the boundary of b. If there were another edge of R on the boundary of b, 

then traversing it, we would get to a neighbouring face with less cost, a 
contradiction either with the cut condition or with the choice of b. 

Statement ( 1.1) gives some hope that the boundary of b can participate 
in a flow. Fortunately even much more is true: 
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(1.2) Deleting the boundary of b, the cut condition is still satisfied. 
Furthermore, the “united” face arising after the deletion inherits the 1 of the 
neighbours of b (they all had the same A), and tf x is not the unitedface, then 
n(x) is unchanged. 

Statement (1.2) is the specialization of a key result of the paper 
(Lemma 3.7) to this special problem. Using this statement it is not difficult 
to develop an algorithm which finds the edge-disjoint paths. The details for 
an arbitrary plane multicommodity flow problem with consequences for 
the complexity of this problem are being worked out in [25]. (The 
computation of distances in undirected graphs is polynomially equivalent 
to the weighted matching problem, as it was remarked by Edmonds and 
Johnson [S], cf. also Lawler [13] and Barahona [S]. For a version which 
is advantageous in the algorithm sketched above, cf. [25 or 241.) 

Statement (1.2) can be easily proved from (1.1) and the following 
“switching lemma” which is actually the heart of the proof. 

(1.3) If C is a tight cut, that is IC\RI = [Cn RJ, then replacing R by 
RAC, the cut condition still holds, and 1 does not change. 

Statement (1.3) is the special case of (3.2) and (3.3). 
The above example shows how distances will be used in the paper. 

Actually, it is a good characterization of the existence of negative circuits 
and of distances in undirected graphs that will yield the results. Let us see 
the simple and well-known analogous statement for directed graphs. 

Let us call a directed graph conservative, if it does not contain a directed 
circuit with negative total weight. The distance of the ordered pair (x, y) is 
the minimum weight of a directed path from x to y. 

Let G be a digraph, x0 E V(G), and w  : E(G) -+ Z. (G, w) is conservative if 
and only tf there exists a potential, i.e., a function 7t: V(G) -+ Z with the 
following property: 

(1.4) For each directed edge xy E E(G), n(y) - rc(x) < w(xy), and 
?T(x(J = 0. 

Moreover, if (G, w) is conservative, the distances 2(x) from x0 form a 
potential; for any potential 71 with z(x,,) = 0, we have n(x) > n(x) for each 
x E V(G). 

It is natural to ask for a similar statement in the undirected case. A 
graph G with weight function w: E(G) -+ Z is called conservative if for any 
circuit CcE(G), w(C)>O. (For YsE(G), w(Y):=C{w(e):e~Y}.) The 
distance of a and b is defined as J.(a, 6) : =;l,(a, b) :=&.(a, b) : = 
min { w(P): P is an (a, 6) path}. It will turn out that the essential property 
analogous to (1.4) in the undirected case is (1.5) below: 
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(1.5) For each edge xy E E(G): 1 n(y) - n(x)1 < w(xy), and X(X,,) = 0. 
Furthermore, if D is a component of the “level-set” {x E V(G): 
&(x0, x) < i} for some integer i, then: x,, E D implies that all edges which 
enter D have positive weight; x,, 4 D implies that there exists exactly one 
negative edge entering D. 

The essence of the main result of the paper is that the distances n(x) from 
x0 satisfy (1.5) (cf. Theorem 3.1, and see also its consequence for the 
weighted general case in Section 4). The first line of (1.5) (which is the 
same as that of (1.4)) is not sufficient to handle undirected distances; i.e., 
in an undirected graph it does not characterize conservativeness, and does 
not give a lower bound for distances from a fixed point! 

Note that the minimum weight path problem in undirected graphs cannot 
be reduced to the corresonding problem in directed graphs: If we replace 
every edge by two parallel edges directed in opposite directions, then 
negative circuits arise. Undirected distances do not satisfy the triangle 
inequality, and it is not true that a subpath of a minimum weight path has 
minimum weight. However, undirected distances also have some interesting 

properties. The study of these is one of the main goals of this paper. 
Finally, let us give an idea how conservative graphs apply to matchings. 

Clearly, if we are given an arbitrary graph and a matching, then putting 
- 1 weights on the edges of this matching and + 1 weights for the other 
edges we get a conservative graph. We shall see that the distance in this 
conservative graph are the same for any choice of a maximum matching, and 
they reflect the matching-structure of this graph. It might be already felt that 
the last line of (1.5) will correspond to the odd components of the Berge- 
Tutte (or Gallai-Edmonds) theorem. 

In order to be able to speak more easily about the components of the 
level sets defined by a function, let us introduce the following notation used 
throughout the paper: Let rr : V(G) --$ Z be arbitrary, and define the family 
9 : = 9(rc) : = 9(G, rc) to be the union of the families &, where 9’ consists 
of the vertex sets of the components of the graph induced by the level set 
{XE V(G): n(x) d i}, i=m,m+l,..., M, with m:=m(n):=m(G,n)= 
min(n(x):xEV(G)}, M:=M(z):=M(G,n):=max{n(x):x~V(G)}. 

The notation 9(x) will be used throughout the paper. Clearly, 9(x) is 
a laminar family. (A family % of subsets of V(G) is called Zaminar if 
H,, H, E 2 implies that either H, n H, = 0 or H, c H,, or H, s H, .) 

The paper contains the following: Section 2 is an introduction to the 
Chinese postman problem, in other words, to parity constrained graph 
factors. The goal of this section is to show that conservative weightings 
represent a hopeful equivalent language to investigate the structure of 
matchings and of their generalizations. Section 3 is a study of distances in 
conservative graphs. As a result the main theorem is proved. Section 4 
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deduces good characterizations of the conservativeness and distances in 
undirected graphs, and points out some consequences on the structure of 
the shortest paths. Section 5 is devoted to a structure theorem for the 
Chinese postman problem, which is a consequence of all the previous 
results. The application of the results to the matching-structure is also 
shown in Section 5. 

2. PARITY CONSTRAINED FACTORS 

Let G = (V, E) be a graph. The degree of x G V is denoted by &(x). 
Given a function t: V+ Z (Z is the set of integers), F s E will be called a 
t-join in G, if dF(x) = t(x) mod 2, for all x E V. In the future “mod 2” will 
be deleted in the notation. 

Obviously, G has a t-join if and only if for each connected component 
G’ of G, t( V(G’)) = 0. (V(G) is the vertex set and E(G) the edge set of the 
graph G. t(X) :=C {t(x) :xeX}.) 

Let us remark that in the literature t-joins are called T-joins, TC V(G). 
A T-join is a t-join with t(x) = 1 if x E T, 0 otherwise. Our notation seems 
to be more convenient for our purposes. Of course, the only important 
factor is the parity of t(x). 

G is always supposed to be connected, and t (with maybe some index) 
will always denote an integer function on the vertices for which t( V(G)) 5 0 
is satisfied; on the other hand, w  will always denote a function on the 
edges. Finally, for any graph G and w  : E(G) -+ R let us introduce the notation 
E- := Ep(G, w) := (egE(G): w(e)<O} and d-(x) := dE-(x) for the 
whole paper. 

We suppose from now on that a path does not contain a repetition of 
vertices. A walk may even contain a repetition of edges. Paths and walks 
are considered to be sets of edges, and if their two endpoints coincide, they 
are called circuits and closed walks, respectively. We allow loops and 
parallel edges in G. 

Let us now see some examples for t-joins. Examples 3 and 4 and the 
definitions and notations they contain are used throughout the paper. 

EXAMPLE 1: CHINESE POSTMAN TOURS. Obviously, a postman tour is 
designed by doubling certain edges of the graph so that all degrees become 
even. Thus a one-to-one correspondence is established between Chinese 
postman tours and d,-joins, and in addition minimum (perhaps weighted) 
Chinese postman tours correspond to minimum (weighted) d,-joins. 

Since the results or the algorithms are not really more general for t-joins 
than for the Chinese postman problem, this latter term is often used for the 
subject of t-joins. 

58?b/49!1-2 
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EXAMPLE 2: PATHS. For a#b~ V(G) let P”,~(x) :=0 if x4 (a, bf and 
p”“(x) : = 1 if XE {a, 6). A pa* b-join is obviously the union of an (a, b) 
path and circuits, all pairwise edge-disjoint. 

Obviously, Fs E(G) is a minimum weight pa, b-join of a conservative 
graph if and only if it is the edge-disjoint union of a minimum weight (a, b) 
path and O-weight circuits. 

Paths as the simplest “joins” will play an important role in analyzing 
r-joins for arbitrary t. Actually, it turns out that for arbitrary t, the mini- 
mum weight paths from a fixed vertex with respect to a certain f 1 objective 
function contain all information about the set of minimum t-joins. 

EXAMPLE 3: MATCHINGS. Let G be a graph and let us add a point x,, to 
its vertex set, and all edges x,,x, x E V(G), to its edge set. Let t(x) : = 1 for 
XE V(G), and t(x,) := 1 V(G)1 . To each matching of G there corresponds 
a t-join in the graph defined above, and the t-joins that correspond to 
maximum matchings are minimum. 

Minimum weight perfect matchings can also be easily handled as 
minimum cardinality t-joins. Adding a big constant to the weights, the 
minimum weight l-joins will be exactly the minimum weight matchings, 
and the structure of the minimum weight t-join problem can be reduced to 
the cardinality case by subdividing each edge into as many edges as its 
weight. 

This shows a major advantage of t-join problems compared to the 
special case of matchings: they are closed under the contraction or the 
subdivision of edges by new vertices, and consequently, for many purposes, 
it is enough to treat the cardinality case. As Lovasz and Plummer [ 17, 8.03 
remark, “many problems on matchings are just as interesting, and 
sometimes even more easily handled, when generalized to T-joins.” 

t-joins can also be applied to multicommodity flows [27] (cf. Introduc- 
tion), and an application in physics has been shown in [ 11. Such questions 
as deciding which edges of G are elements of all or none of the minimum 
t-joins have signification in physics. The results of this paper make it 
possible for one to get some insight into these questions [20]. 

Despite these, we do not emphasize any algorithmic aspects here, we 
only aim at giving simple proofs to the results. ([22] is devoted to an 
algorithmic approach.) However, a remark concerning the construction of 
plane multicommodity flows is included at the end of Section 3. According 
to a referee report, an alternative algorithmic proof of the main result can 
be given using Korach’s postoptimality algorithm [ 111, which was worked 
out to determine maximum packings of odd cuts in bipartite graphs. 

In the remainder of this section we present some minimax theorems on 
t-joins and show their relation to conservative graphs. 
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B c E(G) is called a t-cut if B = 6(X) for some XG V(G) with t(X) z 1, 
where 6(X) :=6,(X) : = (XY E E(G): x E X, y $ X) is the coboundary of X. 
Instead of 6( (x}) we shall simply write 6(x). G(X) will denote the subgraph 
of G spanned by X E V(G). 

Let v = v(G, t) be the maximum number of disjoint t-cuts, and r = z(G, t) 
the minimum cardinality of a t-join, Furthermore, let v2 = v,(G, t) be the 
maximum cardinality of a family of t-cuts in G with the property that each 
e E E(G) is covered at most twice, i.e., contained in at most 2 of its 
elements. (A family is a list of sets where repetition is allowed, and its 
cardinality is the length of the list. A set of disjoint t-cuts is called a 
packing, and a family of t-cuts where each edge is covered at most twice is 
called a 2-packing of t-cuts.) Obviously, r 3 v,/2 > v. (Moreover, t-joins and 
t-cuts constitute a blocking pair of hypergraphs; i.e., the cut B is a minimal 
t-cut if and only if for ail t-joins F: 1 B n FI > 1 and B has no proper subset 
with this property; F is a minimal t-join if and only if for all t-cuts B: 
(F n B( 2 1 and F has no proper subset with this property. Actually, 
(B n FI is odd for any pair of t-join and t-cut.) The following fundamental 
theorem is implicitly contained in Edmonds and Johnson [S], and a first 
proof was published by Lovasz [14]. 

THEOREM 2.1 [14]. r(G, t) = v,(G, t)/2. 

The pair (&, t4), where K, is the complete graph on 4 vertices, and 
t4(x) = 1 for all XE V(K,), is an example where r(G, t) > v(G, t). Seymour 
proved the following: 

THEOREM 2.2 [27]. Zf G is bipartite, then z(G, t) = v(G, t). 

For a first algorithmic proof of Theorem 2.1 or 2.2 see Korach [ll]. 
Theorem 2.1 is easily proved to be a special case of Theorem 2.2: divide 
each e E E(G) by a new node v, with t(v,) = 0 and apply Theorem 2.2 to the 
resulting bipartite graph. This correspondence shows that it is not a restric- 
tion of generality to investigate t-joins and t-cuts only in bipartite graphs, 
and the statements even become stronger. 

An easy computation using the equality of Theorem 2.2 (or 2.1) shows 
that each odd cut of a maximum (2-)packing contains one edge of each 
minimum t-join, and each edge of a minimum t-join is covered exactly once 
(twice) by any maximum (2-)packing. 

It is not difficult to prove from these theorems the characterization of 
fractional sums of circuits [26], or of the perfect matching polyhedron [S], 
[17]. To prove the Berge-Tutte theorem it is better to use Theorem 2.4 
below. 

Let 0 be the function that takes the value 0 for all XE V(G). A O-join is 
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the edge-disjoint union of circuits. Thus conservativeness means that all 
O-joins are non-negative. 

If F, is a t,-join and F2 is a t,-join, then we shall often use the fact that 
F, AF, is a t, + t,-join. (XA Y : = (q Y) u ( flX) is the symmetric difference 
of X and Y.) Thus, if both F, and F2 are t-joins, then F, AF, is a O-join. 

The following simple fact was observed by Mei Gu Guan: 

(2.3) A t-join FE E(G) is minimum if and only if putting w(e) = - 1 for 
e E F and w(e) = 1 for e $ F, (G, w) is conservative. 

Proof. If F is a minimum t-join and C is an arbitrary circuit, then FAC 
is a t-join and consequently w(C) = 1 C\FI - 1 C n Fj = 1 FAC I- ) PI 2 0. 
Conversely, if (G, w) is conservative and F’ is a t-join, then FAF’ is a 
O-join, and 0 < w(F’AF) = 1 F’ 1 - I FI . Q.E.D. 

Through this remark any statement on t-joins has an equivalent 
reformulation in terms of conservative graphs. Reformulating the above 
theorems we arrive at a good characterization of conservativeness. We 
show how, for example, the reformulation of a stronger form of 
Theorem 2.1 due to Frank and Tardos can be carried out: 

THEOREM 2.4 [9]. Assume that G is bipartite with bipartition {A, B}, 
and let q(X) (Xc V(G)) denote the number of t-odd components of G - X. 
Then 

t = max 
{ 

i q(Xi): {X,, . . . . X,} is a partition of A}. 
i=l 

THEOREM 2.4’ [9]. Assume that G is bipartite with bipartition {A, B}, 
and let w:E(G)+ (-1, 11. (G, ) w  is conservative if and only if A has a 
partition {X, , . . . . X,} such that the coboundary of each component of G - Xi 
contains at most one negative edge (i = 1, . . . . k). 

The proof of the equivalence of Theorems 2.4 and 2.4’ is left to the reader 
as an excercise (cf. [9]). 

Besides giving an optimal packing of odd cuts in a particular form, the 
insight provided by Theorem 2.4 led to a simple direct proof (providing a 
simple proof of Seymour’s theorems as well) using the distance function 
[9,21]. However, in order to understand the role of distances in its full 
extent we need A. Frank’s conjecture, which sharpens Theorem 2.4’ by 
defining an optimal partition with the help of distances. It is clearly implied 
by, and actually equivalent to, Theorem 3.1 or 4.1 below: 

FRANK'S CONJECTURE [S]. Assume that G is connected and bipartite, 
w:HG)+{-611, (G, ) w  is conservative, and x0 E V(G). Let i E Z and D 
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be a component of the graph induced by the set {x E V(G): &,,(xO, x) 6 i}. 
Then 6(D) contains at most one negative edge. 

Frank’s conjecture easily implies Theorem 2.4’ and thus all the theorems 
presented in this section so far (and thus all their consequences): 

The if part of Theorem 2.4’ is trivial since each circuit intersects each cut 
in an even number of edges at most one of which is of weight - 1. To prove 
the only if part assume, e.g., that x0 E A and define for fixed i, a partition 
9” of the set S’ := (x E V(G): A,( x0, x) = i) whose classes are the inter- 
sections of S’ with the components of the graph G’ induced by 
{x E V(G) : &,(x0, x) < i}. Take the union of such partitions for all even i-s. 
Using the property of G’ stated in Frank’s conjecture, we get that this 
union is a partition of A with the property stated in Theorem 2.4’. 

It may be worth comparing the above theorems on the level of 
matchings: while we cannot prove the Berge-Tutte theorem easily from 
Theorem 2.1 or 2.2, it follows easily from Theorem 2.4 (cf. [9]). In addi- 
tion, Frank’s conjecture will provide the classes of the Gallai-Edmonds 
structure theorem (cf. Theorem 5.1), and more generally, it will provide a 
unique “canonical” maximum packing of odd cuts, depending only on 
(G, t). 

3. DISTANCES IN CONSERVATIVE GRAPHS 

The goal of this section is to prove Frank’s conjecture, which is a 
fundamental property of undirected distances. This is the main result of the 
paper. To facilitate its use we put it in the following more technical and 
detailed form: 

THEOREM 3.1. Assume that G is connected and bipartite, w: E(G) -+ 
{ - 1, l}, (G, w) is conservative, and X~E V(G). Let J(x) := AW(xO, x). Then 

(1) wd=o 
(2) J/z(x) - E,(y)1 = 1 for all xy E E(G) 

(3) 1 S(D) n E-(G, w)l = 1 provided x,, 4 D E 9, 

) 6(D) n E-(G, w)l = 0 provided x,, E D E $9, where $22 : = 9(n). 

(This theorem has an inverse which is much easier, and will be discussed 
later. Together with its inverse, it yields a good characterization of conser- 
vativeness and distances in undirected graphs [cf. Theorem 4.1, and for 
arbitrary weights Theorem 4.43, and it is the basis of the notion of poten- 
tials, cf. Section 4.) 
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Let us fix the notation L(x) := &,(x0, x) for the whole paper. 

We first prove some simpler properties of the distance function. These 
properties are then used to prove the main property stated in Theorem 3.1 
that actually implies all the others. 

If w  is a weight function and Y c E(G), let w[ Y] be the switched weight 
function defined as follows: w[ Y](e) = -w(e) ife E Y and w(e) if e $ Y. The 
following two “switching lemmas” constitute the heart of this paper. 

(3.2) Assume that (G, w) is conservative and C s E(G), w(C) = 0. Then 
(G, WCC]) is also conservative, and &&a, 6) = &,,(a, b) for all a, 
b E V(G). 

Proof. Let P be an (a, b) path. (a = b is allowed.) WCC](P) = w(P\C) - 

w(P n C) = w(PAC) - w(C) = w(PAC). But PAC is the edge-disjoint union 
of an (a, b) path and circuits. Since (G, w) is conservative, the circuits of G 
have non-negative weight, so if a = b, then we get w(PAC) B 0, and if a # b, 
then w( PAC) > &,,(a, b) follows. Thus (G, w[ C] ) is conservative, and 
&Cc,(a, b) 2 &,(a, b). Apply this inequality to w[C] instead of w  and use 
w[C][C] = w  to get &&a, b) = &,(a, b). Q.E.D. 

(3.3) Assume that (G, w) is conservative, and Q z E(G) is a w-minimum 
(x,, xb) path, X,#X~E V(G), I:= w(Q) (=&,(x0, x6)). Then (G, w[Q]) is 
conservative, and 

Vx E V(G): &,sce, (xb, x) = &,(x0, x) - 1. 

Proof. Let P be an (xb, x) path or a circuit. w[Q](P) = w(P\Q)- 

w(PnQ)=w(PAQ)-1. 

- If P is a circuit, then PAQ is a p”O.“b-join and thus, using the 
conservativeness of (G, w), w(PAQ) 2 1. Hence, w[Q](P) > l-- I= 0, and 
the conservativeness of (G, w[ Q] ) is proved. 

- !f P is a y-minimum (xb, x) path, then PAQ is a ~~6%~ +pxo3xb join. 
Since pXl,X +p-W3XOEp-~OrX, PAQ is the union of an (x0, x) path and disjoint 
circuits. Using the conservativeness of (G, w), w[PAQ] > &+(x0, x), whence 
1 wce,(xb, x) = wCQl(P) = WAQ) - 12 &(xo, x)-- 1. 

Apply this inequality for w[Q] instead of w  interchanging the role of x0 
and xb and use w[Q][Q] = w  and w[Q](Q)= -1 to get 1,+,(x0,x)> 
I ,ro,(xb, x)-(-Z). (Q is also a w[Q]-minimum (x0, XL) path: if Q’ is 
an arbitrary (x0, xb) path, then w[Q](Q’) - w[Q](Q) = w(Q’\Q) - 
w(Q n Q’) + w(Q) = w(Q’AQ) > 0, since Q’dQ is a O-join.) Q.E.D. 

Statement (3.3) means that &.ro, (XL, x) - &,(x0, x) is independent of x; 
thus, the “level-sets” of the distances from x,, and xb are the same, and 
consequently, 9(n) = 9(2’), where 1(x) : = l,,.(xO, x), A’(x) : = A,,r&xb, x). 
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The similarities in the claims and the proofs of (3.2) and (3.3) raise the 
question of whether they have a common generalization. The answer is that 
they do; they are two special cases of the following statement, which will 
be useful later: 

(3.4)) If (G, w) is arbitrary and Fj is a ti-join (i = 1, 2) then the 
following statements are equivalent: 

(i) F, AF, is a w-minimum t I + t,-join 

(ii) w[F, AF,] is conservative 

(iii) F, is a w[F,]-minimum t,-join 

(iv) F2 is a w[F,]-minimum t,-join. 

Proof: Copying the proof of (2.3) we get that F is a w-minimum c-join 
if and only if w[F] is conservative. (Replace “ 1 1” by “w”, and “w” by 
“w[F]” in the proof of (2.3)) This implies the equivalence of (ii) with all 
the rest, since w[F, AF,] = w[FJ[F,] = w[Fl]]F2]. Q.E.D. 

(To prove (3.2) and 3.3) from (3.4) note that in a conservative graph 
a O-weight circuit is a w-minimum O-join, and a w-minimum (a, b) path 
is a w-minimum p “,b-join. Then use the trivial equality w[X]( Y) = 
w(XAY) - w(X), X, Yc E(G). We preferred, however, to provide separate 
direct proofs as well.) 

Now, we are getting closer to Theorem 3.1. We first show that i satisfies 
(3) for the l-element components D = (6) E 9. 

LEMMA 3.5. If (G, w) is conseruatiue, w(e) # 0, Ve E E(G), and b E V(G) 
is such that 1(x,, 6) = min(I(x,, y): ye V(G)}, then d-(b) = 1 except if 
b=xo, when d-(b)=O. 

Proof: If b = x0, then Vy E V(G): 2(x,-,, y) 2 ,X(x,, x0) = 0, whence 
d-(b) = d-(x,) = 0. Assume that b #x0, and let P be a w-minimum (x,, b) 
path (w(P)=l(x,, 6)). By the choice of b, VXE V(P): w(P(x, b))= 
w(P(x,,, 6)) - w(P(x,, x)) Q 0. Namely, w(ab) < 0 for the last edge ab of P. 
(w(ab) #O by hypothesis.) Suppose for a contradiction that a’bE E-, 
a’ # a. a’ $ V(P) since a’ E V(P) would imply that P(a’, 6) u a’b is a negative 
circuit. Thus P u a’b is an (x,, a’) path, w(P u a’b) < w(P), which is in 
contradiction with the choice of 6. Q.E.D. 

Note that the proof above is the same as the one we saw for plane multi- 
commodity flows in the Introduction. 

Statements (3.2) and (3.3) and Lemma 3.5 are summarized in the follow- 
ing statement: 
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LEMMA 3.6. Let (G, w) be conservative, w(e) # 0, Ve E E(G). Furthermore 
let x0, bE V(G) be such that A(x,, b)=min{;l(x,,y):yE V(G)}. Let K be 
either a O-weight circuit or a w-minimum path between x0 and an arbitrary 
vertex x,#b of G. If IKn6(6)1 #a, then 

Kn&b)= {cl, e,}, where w(el) < 0, w(ez) > 0. 

Proof: By (3.2) and (3.3), resp., (G, w  [ K] ) is conservative. Define 

Xl : = x0 if K is a circuit. A wCKI(xl, b)=min{LCK1(xl, Y) :Y E V(G)}, since 
I wcK3(x,, y) arises from 1(x,, y) by adding a constant independent of y. 
Consequently, we have by Lemma 3.5: 1 + 1 > ds-(o, ,,(b) + d,-(o, wCK,j(b) 
2 1 K n 6(b)/ = 2, and equality must hold throughout. Q.E.D. 

Note that Theorem 3.1 implies Lemma 3.6, and Lemma 3.5 is also an 
easy consequence of it. Of course, just conversely, we wish to prove 
Theorem 3.1 using these lemmas. Before proving Therem 3.1 we need one 
more step: 

Shrinking US V(G) to u means replacing U by a single new vertex u and 
defining for each edge of the original graph an edge of the shrunken graph 
in the natural way. (Of course loops and parallel edges may emerge. The 
shrunken graph has the same number of edges as that of the original.) 
Shrinking the two endpoints of an edge is called the contraction of the edge. 
If we also delete the edge(s) induced by U we shall speak about identification. 

If a function t: V(G) -+ Z is given, then t(u) : = t( 17). If a function 
w  : E(G) + Z is given, then it is inherited by the shrunken graph. The nota- 
tions t and w remain unchanged in the shrunken graph, since it does not 
cause any misunderstanding. Moreover, if u’ E U, then u’ will also be used 
as an alternative notation for U. The converse operation is blowing up u to U. 

LEMMA 3.7. Let G be connected and bipartite, and w: E(G) -+ { - 1, 1 }. 
Assume that (G, w) is conservative, x,,, b E V(G), and I(x,, b) = 
min(A(x,, y): ye V(G)}. Let a,b, a,bEE(G), a, #a,. Then shrinking 
{a,, a*} to a single point a, the resulting graph (G*, w) is conservative and 
IZG.,,,(xO, x) = AG,w,(~o, x) for all x E V(G). 

Proof. Let us first prove that (G*, w) is conservative and AG.,(xO, x) 2 
&JxO,x). Let K* be either a circuit or an (x,, x) path in G* (XE V(G) 
is arbitrary). We have to prove that w(K*) ~0 if K* is a circuit, and 
w(K*) > &Jx,,, x) if it is an (x,, x) path in G*, i.e., it is enough to show 
that there exists in G a circuit K or an (x0, x) path K, respectively, such 
that w(K*) 2 w(K). If x = b and K is an arbitrary (x0, x) path, then this is 
trivial, because w(K*) > w(K*\ab) - 1 > AC, ,,,(xO, a) - 1 = AC, ,,,(xO, b). 



POSTMAN STRUCTURE OF GRAPHS 23 

So suppose x # 6. We can assume that K* n 6(a) = {ax,, ax,}, alxl, 

u2x2 E E(G). (If 1 K* n h(a)1 = 0, or if 1 K* n d(a)1 = 2 but in G either both 
edges of K* n 6(a) have ai or both have a, as an endpoint, then K* is a 
circuit or an (x,,, x) path resp. in G too, and K : = K* is good.) But then 
K : = K* u {a, 6, a2 b} E E(G) is a circuit or an (x,, x) path, respectively. 

- If {w(ul b), w(a,b)} = { - 1, l}, then w(K*)= w(K) and we are 
done. 

- w(ul b) = w(a,b) = - 1 cannot hold because d-(b) Q 1 by 
Lemma 3.5. 

- Finally, if w(ul b) = w(a,b) = 1, then w(K*) = w(K) - 2. But in this 
case we know from Lemma 3.6 that K can neither be a O-weight circuit nor 
a minimum weight (x0, x) path. Since G is bipartite, we have by parity: 
w(K) > 2 if K is a circuit, and w(K) 2 &,(x0, x) + 2 if it is an (x,, x) path. 
So w(K*) 3 0 or w(K*) > &(x0, x), resp., hold in any case. 

A G’,n” (x,, x) <&(x,,, x) remains to be proved. If we contract {a,, +} 
in a w-minimum (x,, x) path P c E(G), then the result is the edge-disjoint 
union of an (x,, x) path P* of G* and perhaps a circuit of G*. Since we 
have already proved the conservativeness of (G*, w), we have w(P*) d 

w(P) = ~G,&,, -xl. Q.E.D. 

Now we only have to put the results together, and Theorem 3.1 is proved: 

Proof of Theorem 3.1. (1) is trivial. To prove (2) let xy E E(G). By 
parity A(x) # A(y), say A(X) > A(y). We prove that A(x) 6 A(y) + 1. Let 
P G E(G) be a w-minimum (x,, v) path. w(xy) d 1 and - w(xy) < 1 hold by 
hypothesis. 

If x $ V(P), then set P’ : = P u {xy >. Clearly, w(P’) 6 w(P) + 1. 

If x E V(P), then P’ : = P(x,, x) = P\P(x, y) is an (x,, x) path: 

if xy E P, then P(x, I’) = xy and w(P’) Q w(P) + 1 immediately follows; 

if xv+ P, then P(x, y) u xy is a circuit, and -w(P(x, y)) < w(xy) 
follows by the conservativeness of (G, w), whence w(P’) = w(P) - 

w(P(x, y)) < w(P) + w(q) < w(P) + 1. 

Since P’ is an (x,, x) path in any case, l(x),<w(P’) <w(P)+ 1 =2(y)+ 1 
and (2) is proved. 

In order to prove (3) we proceed by induction on ) V(G)1 . For graphs 
consisting of one vertex the theorem is obvious. Let bcz V(G), 
;l(b)=min{I(x): XE V(G)}. 

- If 1 T(b)1 = 1 (f(b) := { XE V(G):xb~l?(G)l), then (G-b, w) is 
connected, bipartite, and conservative, and the statement for (G, w) follows 
by induction. (If b =x0, then the “new center,” that is the “new q,” in 
G-b, is the element of f(b).) 
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- If Ir(b)l 22, then choose a, #alit and shrink {a,, u2) to a. 
Let G* be the contracted graph. Clearly, G* is bipartite, and by Lemma 3.7 
(G*, w) is conservative. Furthermore, 1 V(G*)l < 1 V(G)1 , so, by induction, 
(3) holds for 9* := 9(G*, A*), where n*(x) := &*,W,(~,,, x) (XE V(G*)). 
But the elements of 9 = 9(G, rc) emerge by blowing up “a” to {a,, uz} 
in the elements of 9*, since A,,( x0, x) = &*,JxO, x) by Lemma 3.7. 
(The connectedness of the components of the graph spanned by 
{x E V(G*) : &*,(x0, x) < i} is not broken when a is blown up since 
a, b, u,b E E(G).) Thus the coboundary of each DE 9 contains the same 
number of negative edges as the coboundary of the corresponding element 
of 9*. Q.E.D. 

4. POTENTIALS 

In this section we develop potentials in undirected graphs, and describe 
the structure of shortest paths with their help. 

First let G be bipartite, w  : E(G) + { - 1, 1 } and x0 E V(G). The function 
rr: V(G) + Z will be called a potential in (G, w) centered at x,, if (l), (2), 
and (3) hold: 

(1) “(-%I)=0 

(2) In(x)-n(y)l= 1 for all xyeE(G) 

(3) 16(D)nE-(G, w)l= 1 provided x,$DE~, 

jJ(D)nE-(G, w)l=O provided x,EDE~, where 9 := 9(rc). 

The following theorem, which is analogous to the corresponding statement 
on directed graphs (cf. statement after (1.3)), is nothing else but a refor- 
mulation of Theorem 3.1: 

THEOREM 4.1. Let G be connected and bipartite, w: E(G) --) { - 1, l} and 
x0 E V(G). Then (G, w) is conservative if and only if there exists a potential 
centered at x,,. Moreover, if (G, w) is conservative, then A(x) :=&,(x0, x) is 
a potential centered at x0, and A(x) B X(X) for any potential x centered at x0 
and any x E V(G). 

Proof of Theorem 4.1. The essential only if part, and the fact that I is 
a potential, is exactly Theorem 3.1. It is now worth checking the easy “if 
part” in detail to see how potentials work: Assume that 71 is a potential 
centered at x,,, and let CS E(G) be an arbitrary circuit. Condition (2) 
implies that {6(D) : D E 9 > is a partition of E(G), and hence 
w(C)=C {w(Cnd(D)): DEQ]. But w(Cn&D))- ICn6(D)I ~0 and 
Ia( E-(G, w)l < 1 imply w(Cn a(D))20 for any DEB, whence 
w(C) > 0 as stated above. 
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An informal way of describing this is the following: if an edge of a circuit 
goes from a level i down to level i- 1, then, by (2), later another edge must 
come back from level i- 1 to level i. Clearly, the two edges are in the same 
6(D), and since 6(D) contains at most one negative edge, the contribution 
of these two edges is non-negative. 

The same is true for a path if it starts from x,, and first goes “under,” and 
then comes “over,” a level. If it leaves a level without coming back, then 
it leaves that component of the corresponding level-set which contains x,,, 
so it leaves on a positive edge. In this way it is easy to see the inequality 

4x09 x) > z(x). More formally: 
Let P be a w-minimum (x,, x) path, and for a, bE V(G) let 

9(a, 6) := {DE% LED, bED}, Q(a,b):= 9(&a):= {DEGhzED, 
b$D}, 9(&b) := {DE~+D, b$D). 

jl(xO,x)=w(P)=C {w(Pn6(D)):D&} 

=I {w(Pn&D)): DE9(Xo, x)} 

+C (w(Pn&D)): DEL@&, .f)> 

+C {w(Pn6(D)):DE9(x0,x)} 

3 -I~(x,,x)l+I~(x,,x)l+o+o, 

because w(P n 6(D)) > E with E = 0 for the members of the third and fourth 
sum, with E = - 1 for those of the first, and E = 1 for those of the second. 

I qx,, a- I %f,, x)1 = (I 9(x,, X)1 + IS@,, x)1)-(9(x0, x)+9(X,, x)) 

= (M-71(x0)+ l)-(M-71(x)+ l)=n(x). 

so 1(x,, x) 3 n(x). Q.E.D. 

We have in addition that equality holds in the result if and only if 
equality holds throughout, i.e., w(P n 6(D)) = E. This determines the 
following structure: 

(4.2) If P is an (x,, x) path and x is a potential centered at x,,, then the 
equality w(P) = z(x) holds if and only if (a), (b), (c), and (d), are satisfied: 

(a) Pn 6(D) = {e>, e E E-, provided D = E 9(~,, x) 

(b) Pn6(D)= {e>, eEE+, prouidedDE9(x,,.?) 
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(c) Pnb(D)= { e,, e,}, w(el) = - 1, w(e*) = 1, provided D E 9(&,X) 
and Pnd(D)#@. 

(d) P n 6(D) = 0, provided D E 9(x,, x). 

Moreover, if C is a circuit, w(C) = 0, then C n 6(D) # @ (D E 9) implies 
that 

x,4D> CnW)= {e,, e>, w(el) = - 1, w(e2) = 1. 

Since by Theorem 4.1, L is a potential, and w(P”) = A(x) holds for any 
w-minimum (x0, x) path P”, (4.2) applies for P” and 9(L), which is a crucial 
property of the potential 1. 

We now extend the definition of potentials and Theorem 4.1 to arbitrary 
graphs and weights. This is a trivial technical matter but we shall need it 
later. 

Assume that G is an arbitrary graph and w: E(G) -+ Z is arbitrary. 
Contract the edges of weight 0 and subdivide each edge e, w(e) # 0 into 
2 1 w(e)1 edges of weight w(e)/1 w(e)] by adding 2 1 w(e)1 - 1 new points. 
Denote the result by (G’, w’). Obviously, (G’, w’) is bipartite, f 1 weighted, 
and it is conservative if and only if (G, w) is conservative. Moreover, 

L-,,Jx, Y) = &,,Ax, Y) for all x, Y E UG). 
We say that a function TC: V(G) -+ Z is a potential centered at x0, if 

X(X) = z(y) for xy E E(G), w(xy) = 0, and the function 27r can be extended 
to V(G’) so that the extended function 71’: V(G’) + Z is a potential in (G’, 
w’). (n’ is the extension of 27c, if rc’(x) = 27c(x) for all XE V(G).) It is easy 
to see that such an extension of the function 271, provided it exists, is 
unique, and potentials can be defined directly in terms of (G, w) by 
converting properties (2) and (3) of rc’ into properties of n. We give this 
direct definition here for arbitrary G with f 1 weights ((l), (2’), (3) below), 
for it will be used in Section 4. (For general weights (1.4) is the essential 
part, but it is not yet enough, see the details in [25]). 

Given a function rc: V(G) + Z let us introduce the following notations: 
recall m := m(x) := min{n(x): x E V(G)}; M := M(z) := max{rc(x): 
x E V(G)}; denote D’ : = D<(n):= G({xE If(G):~(x)<i}); Qi:= Qi(x):= 
Di(~)\(xy E E(G): z(x) = z(y) = i}; let 9’ and & consist of the vertex sets 
of components of D’ and Qi resp., and 9 : = 9(7c) : = IJ { @: m < i < M}, 
22 := 2?(7c) := u {P: m<i<M}. 9 := 9?(x) :=~(x)u~(x), where the 
union is understood with multiplicity; i.e., if R E 99 is an element of both 9 
and 9, then it is contained twice by the family 9. (For bipartite graphs 
9 = 9, and 9 is twice this.) 

Note that if c E Z, then 9(n) = 9(n + c), L?(X) = .9(7c + c), B(n) = w(n + c). 

(4.3) Let G be arbitrary and w: E(G) + { - 1, 1). 7~: V(G) -+ Z is a poten- 
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tial centered at x0 tfand only if( 1) and (3) are satisfied by 99 = B(n) instead 

of by 9, and (2’) holds: 

(2’) ( X(X)-rr(y)J < 1 provided xyeE(G), and if xy~E-, z(x)= 
rr(y) = i, then x and y are in different elements of 2’ (i.e., in different 
components of Q’). 

Proof For this special w  (G’, w’) arises from (G, w) by putting a vertex 
u, on each edge e = xy E E(G) and by defining w’(xu,) : = w’( yup) : = w(xy). 

If it satisfies ( I), (2’), and (3), then let 7~’ : V(G) + Z, rc’(x) : = 271(x) if 
x E V(G), and rc’(u,) : = 1 + min {n’(x), n’(y)} if e = xy E E(G). rr‘ obviously 
satisfies (l), (2) and (3). 

Conversely, assume that the extension 7t’ of 27c is a potential in (G’, w’); 
i.e., it satisfies (1) (2), and (3). We prove that (2’) holds for z. If xy E E(G), 
then by (2): In’(x) - n’(o,)l = 1, In’(y) - rc’(u,)l = 1. n’(u,) = 1 + 

min(n’(x), n’(y)), since otherwise rr’(u,)= - 1 + min(n’(x), n’(y)>, and 
(u,}E@(x’), Io(u,( #l in contradiction with (3). So, e=xyEE-, 
z(x) = n(y) = i implies n’(u,) = 2i + 1. Since rc(x) = 7r’(x)/2 for x E V(G), 
and Z?= (Dn V(G): D is the vertex set of a component of G’((xE V(G’): 
n’(x) d 2i})}, (2’) follows. Q.E.D. 

Theorem 3.1 holds now for arbitrary graphs and weights: 

THEOREM 4.4. Let G be an arbitrary connected graph, w: E(G) + Z and 
X~E V(G). Then (G, w) is conservative if and only if there exists a potentiaZ 
centered at x0. Moreover, tf(G, w) is conservative, then A(x) := 1,(x0, x) is 
a potential and A(x) an(x) for any potential rt centered at x0 and any 
x E V(G). 

Proof If (G, w) is conservative, then (G’, w’) (see the definition of 
(G’, w’) earlier in this section, after (4.2)) is also conservative, and it is in 
addition bipartite. Applying Theorem 4.1 to (G’, w’), one easily gets the 
claim. Q.E.D. 

Similarly, (4.2) holds true for arbitrary graphs, $ 9(rc) is replaced by 
9(z). (We just must apply (4.2) for (G’, w’).) 

Note that the laminar system &f!(n) can be stored in a compact way, and 
that the properties (l), (2’), and (3) can be checked in linear time in function 
of the number of edges. 

Remark. Lovasz [ 141 proved Theorem 2.1 with the additional state- 
ment that there exists a maximum 2-packing of odd cuts which is laminar. 

If FC E(G) is a minimum t-join, then (G, 1 [F]) is conservative (see 
(2.2)) and fixing x0 E V(G) arbitrarily, according to Theorem 4.4, n(x) : = 
J.rcF,(x,, x) is a potential centered at x0. Moreover, 1 [F] is -Ir l-weighted 
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and consequently ( 1 ), (2’), and (3) apply for W(A). Properties ( 1 ), (2’), and 
(3) imply that {c~(R):x,$RE~~~(A)} is a maximum 2-packing of odd cuts. 
Besides being laminar, .%(A) has some additional properties: 

(1) S?(A) = 9(A) u 9(A) and each DE 23(A) is partitioned by elements 
of S(A). 

(2) If eE E(G) is contained in some 6(R) (REB?(A)), then either 1 
element of 6(g) and 1 of 6(d) or 2 elements of b(9) contain it, and there 
is no other possibility. (If %&2’(G), then 8(X) := {6(H): HE%}.) 

(3) h(9) is a packing of odd cuts; i.e., any two different elements in 
it are disjoint. (This is an obvious cosequence of 2.) 

The following corollary of Theorem 4.4 is irrelevant in this paper, but it 
may be interesting for its own sake: 

COROLLARY 4.5. Let (G, w) be conservative and x0, XE V(G). Denote by 
9(x,, x) and by ZI(x,) the set of all (x0, x) paths and the set of all potentials 
centered at x0, resp. Then for all XE V(G): 

min{w(P): PE~(x~, x)} =max{rc(x): rt~ZZ(x,)}. 

This is just a minimax reformulation of Theorem 4.4 (or 3.1). Note that 
by Theorem 4.4 the maximum on the right hand side is satisfied by one and 
the same potential for every XE V(G), namely, by A(x) = AW(xO, x). This 
property characterizes A. 

Let us now see some applications. First let us remark that by a well- 
known elementary construction of Edmonds and Johnson’s [6 or 131, the 
minimum t-join problem and the computation of the distance of two points 
in a weighted conservative undirected graph can be reduced to a weighted 
matching algorithm. Thus the potential n(x) : =AW(xO, x) can be determined 
by executing I V(G)1 weighted matching algorithms, independently of one 
another, for instance, parallely. Thus, knowing only the statement of 
Theorem 4.4 we have an algorithm to find a half-integer (integer) packing of 
odd cuts in (bipartite) graphs, which, e.g., implies a half integer (integer) 
packing of multicommodity frows in (Eulerian) planar graphs, with the same 
parallel complexity as that of matching algorithms. This is quite surprising 
in view of the sophisticated methods of Edmonds and Johnson [6] and 
Barahona et al [l] for finding a (fractional) optimal packing of t-cuts, of 
Barahona [2] and Korach [ 111 for finding a maximum integer packing for 
bipartite graphs, and of Matsumoto et al. [ 181 for solving the plane multi- 
commodity flow problem. The details of our approach are described in 
[25]. ([22] concerns only the cardinality case: it gives an algorithmic 
proof of Theorem 3.1. The subdivision of edges is not a polynomial reduction, 
and thus cannot be permitted in algorithms!) 
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Finally we apply (4.3) and Theorem 4.4 to prove an interesting recent 
result of Korach and Penn [12]. For the simplicity of notations we state 
it only in the unweighted case: 

THEOREM 4.6 [12]. If F is a minimum t-join, and its components are 
F , , . . . . Fk, then 

(a) 3 family g of pairwise disjoint t-cuts such that every CE %? 
contains exactly one edge of F, and all edges of F, (i= 1, . . . . k) are contained 
in some C E V, except perhaps for one edge of F, for i B 2. 

(b) z(G, t)-(k-l)<v(G, t)<z(G, t). 

Proof: Condition (b) follows immediately from (a). To prove (a) define 
w(e) : = - 1 if eE F, and w(e) := 1 otherwise. Let X~E V(F,), and 
n(x) := &,(x0, x). By Theorem 4.4 /1 is a potential. By (2’) and (3) we have 

(4.7) Vx E V( Fi), there is at most one y E V(Fi) such that xy E E(F,), and 
A(y) 3 i(x) (i = 1, . . . . k). 

From (4.7) it straightforwardly follows that T(F,) := (XE V(F,): A(x) = 
max,.. V(Fi) J(y)} (i= 1, . . . . k) has at most 2 elements. If it has 2 elements, 
then they are joined by an edge of Fj, and all edges xy in E(F,) but this 
one must satisfy IA(x)-A(y)/ = 1. Thus n(x)--d(y)=0 can hold for at 
most one edge in each Fi, and for none of the edges of F, because of 
T(F,) = {x0}. Th is means that S(9) contains all edges of F1, and all or all 
but one edge of each Fj (i= 1, . . . . k). Since J(9) is a packing of odd cuts 
by property (3) of .%!(A) in the remark above, V := d(9) satisfies (a). 

Q.E.D. 

The proof provides a trivial algorithm to construct a packing which 
satisfies the bound if the distances have already been computed (cf. the 
algorithmic remark above). As Korach and Penn [12] have remarked, 
Theorem 4.6 implies easily that in a plane multicommodity flow problem 
all the requests can be “almost” satisfied with an integer flow. Again, the 
proof immediately gives the construction of such a flow. 

Further applications of Theorem 4.4 are shown in [20,23,24,25]. 

5. THE STRUCTURE THEOREM 

Using the main result of the paper (i.e., Theorem 3.1 or rather 
Theorem 4.4 which is an equivalent formulation, and using the remark 
(4.3)), we derive here a “structure theorem” for t-joins. We do not know 
any definition of a structure theorem; we state the example of the 
Gallai-Edmonds theorem instead, and show by this example what we mean. 
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We mention, however, that our goal is to describe the set of minimum 
z-joins in a short way, by decomposing an arbitrary (G, t) pair into (G, t) 
pairs with a simple set of minimum t-joins. 

Let D(G) := { x E V(G) : G has a maximum matching contained in 
G - x}. Let the graph induced by D(G) have k = k(G) components, and 
denote these by D,(G), . . . . D,(G). Morerover A(G) := {XE I’(G)\D(G): 

EYED, XYEJW)}, and C(G):= V(G)\(A(G)uD(G)). A graph is 
called factor-critical, if G - x has a perfect matching for any x E V(G). 

THEOREM 5.1 [4, 10, 171. 

(a) The components of the graph induced by D(G) are factor-critical. 

(b) The graph induced by C(G) has a perfect matching. 

(c) Any XsA(G) is connected by an edge to at least 1x1 + 1 com- 
ponents of D(G). 

(d) F s E(G) is a maximum matching zf and only tf it is the union of 

a perfect matching of C(G), perfect matchings of D,(G)-xi (xie Dj(G), 
i=l , . . . . k), and a matching of all points of A(G) with points of the set 

fx %I. 1, .‘., 

(e) Zf F is a maximum matching, (FI = 1( I V(G)1 + (A( -k(G)). 

Of course the Berge-Tutte theorem is contained in Theorem 5.1 (cf. (e)). 
The main virtue of Theorem 5.1 is that it defines one “canonical” Tutte-set 
A depending only on the graph. 

Furthermore, in Theorem 5.1 “all properties” of the sets A(G), C(G), and 
D(G) are listed in the sense that the partition {A, C, D} of I’(G) satisfies 
(a), (b), and (c) if and only if A = A(G), C = C(G), and D = D(G) (see 
[17]). The essentially unique way of doing a matching-decomposition, i.e. 
of having (d), is also provided by Theorem 5.1. Lovasz and Plummer 
[15, 16, 171 reline Theorem 5.1 by further investigating C(G) and D(G). 
This refined analysis is also based on Theorem 5.1. 

In contrast to the previous two sections which can be viewed to be 
dealing with minimum t-joins (conservative graphs and minimum t-joins 
correspond to each other by (2.3)) in this section the (G, t) pair itself and 
the set of minimum t-joins are investigated. For this purpose invariants of 
the (G, t) pair are welcome. The following invariant is a crucial conse- 
quence of (3.2): 

(5.2) Let V(G) be arbitrary and t: I’(G) -+ (0, 1 }, t( V(G)) z 0 mod 2. 
Assume that F, , F, are w-minimum r-joins. Then (G, w[Fi] ) (i = 1, 2) are 
conservative, and 
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Proof: (G, w[Fj]) (i = 1, 2) is conservative by the weighted version of 
(2.3). (This is easy to prove in the same way as (2.3), cf. (3.4) “(i) * (ii),“) 
We know that F, AF, is the disjoint union of circuits; denote these 

by C,, . . . . C,. Clearly w[F,](Ci) = -w[F,](C,) (i = 1, . . . . k), and so 
w[F,](C,)= w[FJ(C,)=O. Starting from w[F,], and applying (3.2) k 
times, we get 4vcF,~(xy Y) = LCF,l~c,l cck~(x1 ~1, vx, YE UC). But 
wCF~lCcil..’ CC,1 = dFk1. Q.E.D. 

Statement (5.2) means that to each function t there belongs a specific dis- 
tance function. Since w-minimum t-joins with arbitrary weight functions can 
easily be reduced to the weight function 1, in the following we restrict 
ourselves to this weight function. (1 is the weight function that is 1 for each 
edge.) Although the arguments apply for arbitrary weights, the notations 
and some claims become considerably simpler for this case. 

Define 1,(x, y) := A&.x, JJ) := ,I1rF1(x, v) for all x, ye V(G), where F is 
a minimum (cardinality) t-join. The definition is correct since l[F] is 
conservative and by (5.2) 1, tFI(x, y) = II, cF81(~~, -v) if F’ is another minimum 
t-join. Thus the definition of A, does not deend on which minimum t-join 
F was chosen, (From now on, (5.2) will be used without reference.) Sur- 
prisingly enough, if we want to determine the distance of two points in a + 1 
weighted conservative graph, it is enough to know the parity of the number 
of negative edges adjacent to each point instead of the edge-weights. 

The function 1, will be our main tool in the investigation of (G, t) pairs. 
We apply the following method: 

(*) (1) Fix an arbitrary minimum t-join E 

(*) (2) Examine the distance function in the conservative graph 

(G, 1Cf’I). 
(3) Use J., = I.,tF, and deduce consequences for (G, t). 

The following proof can also be viewed to have such a scheme. Let 

t”3h(x) : - t +p”yb . (tuSb(x) - t(x) if x $ {a, b} and t(x) + 1 if x E {a, b}.) 

(5.3) I,(a, b) = t(G, trrqh) - s(G, t). 

ProoJ Let FE E(G) be a minimum t-join and P E E(G) a 1 [F]-mini- 
mum (a, b) path. ,$(a, 6) = llCE,(a, b) = l[F](P) = (P\FI - ( Pn Fj = 

I FAP( - I FI. But (FI = 7(G, t) and by “(3.4)(iii) =+ (i)” I FAPl = 7(G, Pb). 
Q.E.D. 

Note that (5.3) is strongly related to (3.3). Statement (5.3) will be a tool 
to achieve (3) of (*), namely, to convert some properties of 1, into proper- 
ties of (G, t). 

The result of the analysis of (G, t) pairs will be a “structure theorem,” 
analogous to the Gallai-Edmonds theorem, and in fact containing 

SX?h,f49:I-3 
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Theorem 5.1. The splitting up of (G, t) will be determined by %?(A), 
J(x) := licF,(x,, x), x0, XE V(G), where F is a minimum r-join. (9 is 
defined in Section 4.) 

The role played by x,, here would be disturbing in a theorem that is 
intended to depend only on G and t. We change the set of allowed (G, t) 
pairs, in order to obtain pairs whose structural decomposition does not 
depend on x0: 

Let t: V(G)+ (0, l} b e such that t( V(G)) - 1. Set t”(x) := t(x) if x #a 
and t”(x) : = r(x) + 1 if x = a. The “structure” of the pair (G, t) will mean 
“the structure of (G, t”) (a E I’(G)), with x0 : = a” which turns out to be 
independent of a. Set &‘(x) := IZtY(u, x) for a, x E V(G). 

(5.4) Let G be connected, t( V(G)) c 1, and a, bE V(G). Then 

(a) VXE V(G): n’(x) - rtb(x) = n”(b) = -x”(u) 

(b) CB(n”) = 9(x”), Z?(rP) = Z?(n”), W(rP) = 9(nb). 

Proof. Let F be a minimum P-join, set w  : = 1 [F], and assume that Q 
is a w-minimum (a, b) path. Z”(X) = &,,(a, x) by definition, and rcb(x)= 
/I ,,,[&b, x), since w[Q] =l[F][Q] =l[FdQ], and FAQ is a minimum 
ta+p a*b - lb-join by (3.4)(iv) Z= (i). Applying (3.3), V(x) - rib(x) = 

L(4 x) - L[Q] (b, x) = &,.(a, b) = z”(b). Interchanging the roles of (a) and 
(b), rib(x) - no(x) = rcb(u) and ( a 1s ) ’ p roved. Since (a) means that rP(x) and 
r?(x) only differ by a constant (a number independent of x), we have (b) 
as an immediate consequence. Q.E.D. 

The pair (G, t) will be called a tower if G is connected and t( V(G)) 3 1. 
Let Bt := 9(x”), J& := $(rP), %?t := 9(rc”) (UE I’(G) is arbitrary). (These 
notations are introduced before (4.3).) We have by (5.4)(b) that the 
definitions of 9,, Z$, and 9& do not depend on the element a. Recall that 
according to Theorem 4.4, distances in + l-weighted undirected graphs 
satisfy (l), (2’), (3) (cf. (4.3)). This will be used without any more reference. 

We now define the two fundamental classes of towers that will be used 
as “bricks” in splitting up an arbitrary tower, and characterize them with 
their distance function: 

The tower (G, t) will be called factor-critical, if each x E V(G) satisfies 
t(x) z 1 and r(G, t”) = (I V(G)1 - 1)/2. It will be called comb-critical, if there 
exists a stable set B s I’(G) for which B u T(B) = I’(G), and each b E B 
satisfies t(b) E 1 and r(G, tb) = (BI - 1. The elements of B are called the 
teeth of the comb-critical tower. 

The following two lemmas explain that factor- and comb-critical towers 
are the simplest towers from the point of view of distances. 
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LEMMA 5.5. The foliowing statements are equivalent: 

(i) (G, t) is factor-critical. 

(ii) n’(x) = 0 for all a, x E V(G). 

(iii) There exists aE V(G) such that au(x) =0 for all XE V(G). 

Proof. (i) * (ii) follows from (5.3): n”(x) = l,(a, x) = s(G, t”) - z(G, t”) 
= 0. (ii) + (iii) is trivial. To prove (iii) => (i) suppose that a E V(G) is such 
that X’(X) = 0 for ail x E V(G). Let F be a minimum P-join and w  := 1 [F]. 
Since &,,(a, x) = 0 for all XE V(G), we have by Lemma 3.5, d,(a) = 
d-(a) =O, and dF(x)=dP(x)= 1 if x#a. Thus F is a perfect matching of 
G-a. Consequently, for all x E V(G), t(x) = 1, which implies z(G, t”) > 
1 V(G)1 - 1)/2. Furthermore, if P is an (a, X) path with l[F](P)=O, then 
FAP is a t-‘-join, 1 FA P 1 = ) V(G) j - 1)/2, whence FAP is a perfect matching 
of G-x. Q.E.D. 

Factor-critical towers (G, t) are a very special type of tower: their mini- 
mum P-joins are perfect matchings of G-a, and consequently G is a 
factor-critical graph. Factor-critical graphs are investigated in [ 171 in 
detail. Their ear decomposition is a clear description of all of their mini- 
mum P-joins, for arbitrary XE V(G). 

LEMMA 5.6. Suppose B c V(G) is a stable set, and A : = r(B) = V(G)\B. 
The following statements are equivalent: 

(i) (G, t) is comb-critical with the elements of B as teeth. 

(ii) VaEA:n”(x)=O Z~XEA, andz”(x)= -1 ifx~B. 

(iii) 3aEA:n’(x)=O ifx~A, andn”(x)= -1 ifx~B. 

ProoJ: To prove (i)=+(ii) we show that r(G, t”) = (BI for ail aE A, 
provided (G, t) is comb-critical. Statement (5.3) then implies (ii), similarly 
to the previous proof. r(G, t”) > 1 B( is obvious since t”(b) = 1 (b E B), and 
B is a stable set. Fix a E A and choose b E B such that ab E E(G), and let F 
be a minimum tb-join. 1 FJ = 1 B 1 - 1 by definition, and F’ : = Fu ab is a 
P-join, 1 F’ 1 = ) B I. 

(ii) z. (iii) is trivial. To prove (iii) * (i) let a E V(G), and assume that F 
is a minimum P-join. Apply Lemma 3.5 to w  : = l[F]: d,(b) = d_(b) = 1 
for all b E B. Consequently t(b) = 1, and t(G, tb) 2 I B 1 - 1 for all b E B. But 
IFI=C{~,(~):~EB}=IBI, and if P is an (a, 6) path with w(P) = - 1, 
then F’ : = FAP is a tb-join, (F’( = I BI - 1. Q.E.D. 

Note that the edges induced by A do not participate in any minimum 
weight path; i.e., only the bipartite graph with bipartition {A, B} is 
important. 
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Comb-critical towers are also a very special type of tower: minimum 
P-joins have degree 1 in each vertex b E B, b #x. They are investigated in 
[20]. They also have an ear decomposition which describes clearly the set 
of their minimum t-joins. 

Note that both factor-critical and comb-critical towers are “extreme 
towers” in the sense that the cardinality of their minimum P-joins satisfies 
with equality the trivial lower bound arising from the number of odd 
vertices in (G, t”). They constitute the simplest and the simplest bipartite 
towers, respectively: factorcritical towers are exactly the “one-level” towers; 
it is easy to see that comb-critical towers are exactly the “two-Zeuef” 

bipartite towers, and those we get by joining two non-teeth vertices of such 
a tower. 

We shall need the following technical lemma in the proof of the structure 
theorem. It might be of some interest for its own sake since it is a consola- 
tion for the fact that in undirected graphs, subpaths of minimum weight 
paths are not necessarily of minimum weight. (This is a reason why mini- 
mum weight paths in undirected graphs have a more complicated structure 
than those in directed graphs.) The following lemma says that this is true, 
however, for certain subpaths. 

Given a conservative graph (G, w) w: E(G) + { - 1, 1) and a potential 
n := V(G) + Z centered at X~E V(G), let us call r E V(G) the root 
of R (x,,$RfW(z)), if IG(D)nEP(G, w)l =(sr>, s&R, rER. Each R, 
x0 4 R E $8 has a unique root that will be denoted by r(R). These roots play 
an important role: for example, if x E R, then (4.2) claims that for any 
w-minimum (x,, x) path P, r : = r(R) E V(P), P(x,, r) n E(G(D)) = 0, 
P(r, x) G E(G(D)). 

LEMMA 5.7. Let G be an arbitrary graph, w: E(G) + { - 1, 1 } and 
x,, E V(G). Assume that (G, w) is conservative and n(x) : = A,, ,(x0, x). 

(a) If xo$R~~(~), then ~G~D,w, (r(R), x) = 2(x) - A( r( R)) for any 

XER. 

(b) If we contract R E a(1) such that x0 4 R to a singIe point r after 
having deleted the edges of G(R), the resulting graph (G*, w) is conservative, 
and 

L-*,&o, xl = &,dXO? x) forall x$R 

and 

&?*,w(%~ r) = &,Axo, r(R)) 

Proof. In order to prove (a), note that the restriction of A - I(r(R)) to 
R is a potential in (G(R), w) centered at r(R). Let x E R, and let P be a 
w-minimum (x0, x) path. By Theorem 4.4, w(P(r(R), x)) 2 I(x) - ;l(r(R)), 
and by the remark preceding the lemma A(x) = w(P) = w(P(.u,, r(R))) + 
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w(P(r(R), x)) 2 A(r(R)) + A(x) - A(r(R)) = A(x). Thus equality holds 
throughout, and (a) is proved. 

Now let A*(x) := A(x) for x4 R and A*(r) := A(r(R)). Clearly, A* is a 
potential centered at x0 in (G*, w). Thus (G*, w) is conservative, and by 
Theorem 4.4, 

A G*,u’ h,, x) 3 A*(x) = LG,n~(XO, x) for all x$R 

and 
E .G*,&o, I) >, A*(r) = &H.(&,, r(R)). 

(We have applied the trivial part of Theorem 4.4.) Now let P be an (x,, x) 
path, x$ R or x = r(R). We construct an (x,, x) path P* of G* and 
we prove w(P*)< w(P). If Pn&R)=@, then P* := P will do. If 
Pn&R)#@, then by (4.2)(c) Pn6(R)= {e,,e,), ~,EE-, e,eE+. 
e, =: sr, s 4 R, r = r(R), and e2 =:pq, p $ R, q E R. Since the restriction of 
I - l(r(R)) to R is a potential centered at r(R), w(P(r, q)) 2 I(q) - A(r) = 0. 
Thus, for P* := P\P(r, q) we have that P* is an (x,, x) path in G*, and 
w( P*) < w(P). Q.E.D. 

We have arrived now at the structure theorem. Let a E V(G), and 
define the top of the tower (G, t) as T, := {xe V(G): z”(x)= 
max(rr”(y):yE I’(G)}}. By (54)(a), rP(x) and r&‘(x) differ only by a 
constant independent of x, and so T, does not depend on a. Specially, if 
a E T,, then z’(x) < rP(a) = 0 for all XE I’(G). 

Let a~ T, and define z,(x) := n’(x). The definition of n,(x) is inde- 
pendent of the choice of a: if a, b E T,, then Y-F’(X) - r&x) = n”(b) = -~~(a) 
by (5.4)(a), and z”(b) GO, ~“(a) ~0 imply k’(h) = nb(a)=O, whence 
rP(x) = rcb(x) follows for all XE V(G) (from 5.4(a)). Clearly, m(rr,) <O= 
M(7c,). Let m, := m(n,)=min{rr,(x):xE V(G)}. Of course at=9(rr,), 
2, = 22(rc,), 92, = %!‘(rc,) hold true. 

If E’ E E(G) and H is a subgraph of G, then we shall sometimes write 
E’ n H instead of E’ n E(H). If 2 is a family of subsets of V(G) and 
Xc I’(G), then we say that HE Z is an X-maximal element of X, if H s X 
and there is no H’ E 2 with HE H’ E X, H # H’. If X is laminar, then 
clearly, the X-maximal elements are pairwise disjoint for any Xc V(G). 

THEOREM 5.8. Let (G, t) be a tower. Then: 

(a) If DEAL,, then the identification in (G(D), t) of all D-maximal 
elements of $I results in a factor-critical tower (G*(D), t). 

(b rf Q E&, then the identification in (G(Q), t) of u/l Q-maximal 
elements of 9, results in a comb-critical tower (G*(Q), t). The teeth are the 
contracted Q-maximal elements. 

(c) If x E V(G) and FE E(G) is a minimum t-‘-join, then: 
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Zf XE REW,, then Fn&R)= @, and FnG*(R) is a minimum f-join 
of G*(R). 

Ifx$ReSf*, then Fnd(R)={sr}, s$R, rER, and FnG*(R) is a 

minimum f-join of G*(R). 

td) bW:x$R~%,) is a maximum 2-packing of tx-cuts and 
z(G, t”) = l/2 1 W, 1 + K,(X) - 1 (Vx E l’(G)). 

Proof. If F is a minimum t-join, then (G, 1 [F] ) is conservative, and ? 
is a potential centered at x in (G, 1 [F]). (First (2.3), then Theorem 4.4 was 
applied.) So, by (4.3) (l), (2’) and (3) hold. Condition (c) is just a refor- 
mulation of (3), and the first part of (d) is an easy consequence of (2’) 
and (3). 

Now fix x0 E T, and a minimum PO-join FO. Recall that Vx E V(G): 

n,(x) = nXO(x) = 21 [Fo,( 09 x x) ~0. Note that only two elements of 9?t 
contain x0: D 0 : = V(D”) ( 7 V(G)) and a component Q, of the graph 
Q’=G- (xydZ(G): %(x)=~,tY)=ol). s ince (c) claims that 6(R) 

(RE-%\{Do, Qo>) contains one edge of F, and (2’) implies that each edge 
e E F. is contained in 2 elements of 6(R), we have z(G, t”) = $( Ia,1 - 2). By 
(5.3), (applying it to tXo instead of t and a=~,, b=x), z(G, t”) = 
r(G, PO) + n,(x) and (d) is proved. 

Let us add a new vertex xb to G with the only edge xbxO, w(xbxo) = - 1. 
(This is merely a technical step: formally we need xb 4 Do, xb # Q, to apply 
Lemma 5.7, and it is convenient that Do and Q, also have a root, 

r(Do) = r(Qo) =x0.) 
We shall use the following trivial consequences of the definitions of 9* 

and A’,: if DE LISA,, then the D-maximal elements of 9, partition D, and 
n,(r(D))=n,(r(Q)) provided QE~, is D-maximal; if QE~,, and DEB, 
is Q-maximal, then z,(r(D))=n,(r(Q))-1; if QE~,, and XEQ is not 
contained in a Q-maximal element of gt,, then n,(x) = rc,(r(Q)). 

To prove (a), let DE gl,, and denote by r* the contraction of that 
D-maximal element of & which contains r(D). Contract the D-maximal 
elements of -!& one by one, and apply Lemma 5.7(b) each time. Then apply 
Lemma 5.7(a) to get AG.(D), Jr*, x) = 0 for all x E V(G*(D)). 

Statement (a) follows now from “Lemma 5.5(iii) * (i)” as applied to 
G*(D) and a := r. 

The proof of (b) is similar: contract the Q-maximal elements of 9t one 
by one, and apply Lemma 5.7(b) each time; then apply Lemma 5.7(a) to 
get that A,*(o),,(r, x) = - 1 if x is the contraction of a Q-maximal element 
of 9. If x E Q is not contained in any Q-maximal element of gf,, then 
Lemma 5.7(a) implies that &*(o+( r, x) =O. Statement (b) follows now 
from “Lemma 5.6(iii) * (i).” (Clearly, the contracted elements form a stable 
set B in G*(D), and any other vertex of G*(D) has a neighbour in B.) 

Q.E.D. 
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The only towers that are not split up by this theorem are the factor- 
critical and comb-critical towers, which in turn, have ear decompositions 
(cf. [17,20]). 

Let us sketch now the proof of Theorem 5.1, using Theorem 5.8: Add the 
point x,, to the vertex set of G together with all edges x0x (x E V(G)), and 
denote the result by G’. 

Let t(x) := 1 if XE V(G) and t(x,) := 1 V(G)/ + 1. (G’, t) is a tower. If M 
is a matching, then F,,,, . . = A4 u {xOy : y is not covered by M} is a P-join. 
There is a one-to one correspondence between alternating paths 
augmenting M and negative circuits in (G’, 1 [FM]): it follows that M is a 
maximum matching if and only if FM is a minimum tXO-join. 

It is easy to see that x0 E T,, m, = - 1 and D(G) = {x E V(G) : 
n,(x) = - l} = V(D-‘). Theorem 5.8(a) states that the components of D(G) 
are factor-critical and Theorem 1.2(a) is proved. 

The component QO of Q” that contains x0 is easily seen to consist of 
D(G) and its neighbours. Contracting the components of D(G) (= V(D-I)) 
in Q,, we get a comb-critical tower by Theorem 5.8(b). This is equivalent 
to Theorem 5.1(c). 

The other components of Q” are l-element components. Theorem 5.8(a) 
states that contracting Q, to a single vertex q. we get a factor-critical 
tower. Thus G - q. has a perfect matching, and Therem 5.1 (b) is proved. 
Theorem 5.1(d) and (e) are immediate consequences of Theorem 5.8(c) and 
(d), respectively. 

Clearly, since we saw in the Introduction that weighted matchings can be 
reduced to minimum t-joins, Theorem 5.8 is also a generalization of the 
Gallai-Edmonds structure theorem for weighted matchings. 

Note that the characterization of n(x) as the maximal potential 
(cf. Theorem 4.4) yields, in this special case, the following well-known 
characterization of A(G) (from [ 171): A(G) is an extreme set (i.e., a set 
with f( 1 V(G)1 + 1 A I -q(A)) = max{ I FI : F is a matching}, where q(A) is the 
number of odd components of G - A) and it has the property that the union 
of the odd components of G-A(G) is contained in the union of the odd 
components of G - A for any extreme set A. 

It is important to remark (but we find it too long to state it precisely) 
that the properties listed in Theorem 5.8 are “complete” in the sense that 
they provide one unique decomposition of the graph G in the following way: 

Starting from a factor-critical tower and blowing up its vertices 
to comb-critical towers, then blowing up the teeth of the comb- 
critical towers to factor-critical towers then blowing up the 
vertices of the new factor-critical towers to comb-critical towers, 
etc., results in a tower (G, t) with these graphs as (G*(D), t), 
D E 9,. (If a vertex d is blown up to D, the adjacent edges can 
be distributed arbitrarily among the vertices of D.) 
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Moreover, a minimum F-join (x E V(G)) can be constructed by taking the 

union of an arbitrary minimum tr-join of each factorcritical and comb-critical 
tower of the construction. (r E D is determined by the previously constructed 
odd joins.) 

Conversely, by Theorem 5.8 all graphs are constructed in this way, and 
all of their minimum t-joins arise by some choice in the step by step 
construction. 

In short: Given a tower (G, t) there exists a unique laminar system that 
satisfies (a) and (b) of Theorem 5.8, and essentially one way of building up 
all minimum P-joins (x E V(G)). 

Finally we remark that (*) can be used to treat and generalize some 
other concepts and results of the structure theory of matchings set forth 
in [15], [16], or [ 171. An example: the decomposition provided by 
Theorem 5.1 is refined in [ 151 on the basis of a theorem of Kotzig and 
Lovasz; recently, on the basis of the present paper, the Kotzig-Lou&z 
theorem has been generalized to conservative graphs [20], and the decom- 
position of (G, t) pairs has been relined. (Then, the decomposition has been 
applied, e.g., to determine the dimension of minimum t-joins, generalizing 
Edmonds, Lovasz’s, and Pulleyblank’s [7] result.) It has also been used to 
derive new conditions for the existence of integer plane multicommodity 
flows [24]. Distances often help to simplify proofs concerning matchings 
themselves. 
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