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Abstract

The representation of the approximate posterior

is a critical aspect of effective variational autoen-

coders (VAEs). Poor choices for the approximate

posterior have a detrimental impact on the gener-

ative performance of VAEs due to the mismatch

with the true posterior. We extend the class of

posterior models that may be learned by using

undirected graphical models. We develop an ef-

ficient method to train undirected approximate

posteriors by showing that the gradient of the

training objective with respect to the parameters

of the undirected posterior can be computed by

backpropagation through Markov chain Monte

Carlo updates. We apply these gradient estima-

tors for training discrete VAEs with Boltzmann

machines as approximate posteriors and demon-

strate that undirected models outperform previous

results obtained using directed graphical models.

Our implementation is available here.

1. Introduction

Training of likelihood-based deep generative models has

advanced rapidly in recent years. These advances have been

enabled by amortized inference (Hinton et al., 1995; Mnih &

Gregor, 2014; Gregor et al., 2013), which scales up training

of variational models, the reparameterization trick (Kingma

& Welling, 2014; Rezende et al., 2014), which provides low-

variance gradient estimates, and increasingly expressive

neural networks. Combinations of these techniques have

resulted in many different forms of variational autoencoders

(VAEs) (Kingma et al., 2016; Chen et al., 2016).

It is also widely recognized that flexible approximate poste-

rior distributions improve the generative quality of vari-

ational autoencoders (VAEs) by more faithfully model-

ing true posterior distributions. More accurate approxi-
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mate posterior models have been realized by reducing the

gap between true and approximate posteriors with tighter

bounds (Burda et al., 2015), and using auto-regressive archi-

tectures (Gregor et al., 2013; 2015) or flow models (Rezende

& Mohamed, 2015).

A complementary (but unexplored) direction for further im-

proving the richness of approximate posteriors is available

through the use of undirected graphical models (UGMs). In

this approach, the approximate posterior over latent vari-

ables is formed using UGMs whose parameters are inferred

for each observed sample in an amortized fashion similar to

VAEs. This is compelling as UGMs can succinctly capture

complex relationships between variables. However, there

are three challenges when training UGMs as approximate

posteriors: i) There is no known low-variance path-wise gra-

dient estimator (like the reparameterization trick) for learn-

ing parameters of UGMs. ii) Sampling from general UGMs

is intractable and approximate sampling is computationally

expensive. iii) Evaluating the probability of a sample under

a UGM can require an intractable partition function. These

two latter costs are particularly acute when UGMs are used

as posterior approximators because the number of UGMs

grows with the size of the dataset.

However, we note that posterior1 UGMs conditioned on ob-

served data points are often simple as there are usually only

a small number of modes in latent space explaining an obser-

vation. We expect then, that sampling and partition function

estimation (challenges ii and iii) can be solved efficiently

using parallelizable Markov chain Monte Carlo (MCMC)

methods. In fact, we observe that UGM posteriors trained in

a VAE model tend to be unimodal but with a mode structure

that is not necessarily well-captured by mean-field poste-

riors. Nevertheless, in this case, MCMC-based sampling

methods quickly equilibrate.

To address challenge i) we estimate the gradient by repa-

rameterized sampling in the MCMC updates. Although an

infinite number of MCMC updates are theoretically required

to obtain an unbiased gradient estimator, we observe that a

single MCMC update provides a low-variance but biased

gradient estimation that is sufficient for training UGMs.

1We may use “posterior” when referring to “approximate pos-
terior” for brevity. To disambiguate, we always refer to “true
posterior” explicitly.

https://github.com/QuadrantAI/dvaess
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Binary UGMs in the form of Boltzmann machines (Ackley

et al., 1985) have recently been shown to be effective as pri-

ors for VAEs allowing for discrete versions of VAEs (Rolfe,

2016; Vahdat et al., 2018b;a). However, previous work in

this area has relied on directed graphical models (DGMs)

for posterior approximation. In this paper, we replace the

DGM posteriors of discrete VAEs (DVAEs) with Boltzmann

machine UGMs and show that these posteriors provide a

generative performance comparable to or better than previ-

ous DVAEs. We denote this model as DVAE##, where ##

indicates the use of UGMs in the prior and the posterior.

We begin by summarizing related work on developing ex-

pressive posterior models including models trained nonvari-

ationally. Nonvariational models employ MCMC to directly

sample posteriors and differ from our variational approach

which uses MCMC to sample from an amortized undirected

posterior. Sec. 2 provides the necessary background on vari-

ational learning and MCMC to allow for the development in

Sec. 3 of a gradient estimator for undirected posteriors. We

provide examples for both Gaussian (Sec. 3.1) and Boltz-

mann machine (Sec. 3.2) UGMs. Experimental results are

provided in Sec. 4 on VAEs (Sec. 4.1), importance-weighted

VAEs (Sec. 4.2), and structured prediction (Sec. 4.3), where

we observe consistent improvement using UGMs. We con-

clude in Sec. 5 with a list of future work.

1.1. Related Work

Inference gap reduction in VAEs: Previous work on re-

ducing the gap between true and approximate posteriors can

be grouped into three categories: i) Training objectives that

replace the variational bound with tighter bounds (Burda

et al., 2015; Li & Turner, 2016; Bornschein et al., 2016). ii)

Autoregressive models (Hochreiter & Schmidhuber, 1997;

Graves, 2013) that use DGMs to form more flexible dis-

tributions (Gregor et al., 2013; Gulrajani et al., 2016; Van

Den Oord et al., 2016; Salimans et al., 2017; Chen et al.,

2018). iii) Flow-based models (Rezende & Mohamed, 2015)

that map data to a latent space using a class of invertible

functions (Kingma et al., 2016; Kingma & Dhariwal, 2018;

Dinh et al., 2014; 2016). To the best of our knowledge,

UGMs have not been used as approximate posteriors.

Gradient estimation in latent variable models: REIN-

FORCE (Williams, 1992) is the most generic approach

for computing the gradient of the approximate posteriors

but suffers from high-variance and must be augmented

by variance reduction techniques. For many continuous

latent-variable models the reparameterization trick (Kingma

& Welling, 2014; Rezende et al., 2014) provides lower-

variance gradient estimates. Reparameterization does not

apply to discrete latent variables and recent methods for dis-

crete variables have focused on REINFORCE with control

variates (Mnih & Gregor, 2014; Gu et al., 2015; Mnih &

Rezende, 2016; Tucker et al., 2017; Grathwohl et al., 2018)

or continuous relaxations (Maddison et al., 2016; Jang et al.,

2016; Rolfe, 2016; Vahdat et al., 2018b;a). See (Andriyash

et al., 2018) for a review.

Variational Inference and MCMC: A common alternative

to variational inference is to use MCMC to sample directly

from true posteriors in generative models (Welling & Teh,

2011; Salimans et al., 2015; Wolf et al., 2016; Hoffman,

2017; Li et al., 2017; Caterini et al., 2018). However, this

approach is often computationally intensive, as it requires

computing the prior and decoder distributions (often im-

plemented by neural networks) many times at each each

parameter update for each training data point in a batch.

Moreover, evaluating these models is more challenging, as

there is no amortized approximating posterior for impor-

tance sampling (Burda et al., 2015). Our method differs

from these techniques, as we use MCMC to sample from an

amortized approximate posterior represented by UGMs.

2. Background

In this section we provide background for the topics dis-

cussed in this paper.

Undirected graphical models: A UGM represents the

joint probability distribution for a set of random vari-

ables zzz as q(zzz) = exp(−E���(zzz))/Z���, where E��� is a ���-

parameterized energy function defined by an undirected

graphical model, and Z��� =
R
dzzz exp

�
−E���(zzz)

�
is the parti-

tion function. UGMs over binary variables zzz with bipartite

quadratic energy functions E���(zzz1, zzz2) = bbbT1 zzz1 + bbbT2 zzz2 +
zzzT1WWWzzz2 are called restricted Boltzmann machines (RBMs).

Parameters ��� = {bbb1, bbb2,WWW} encode linear biases and pair-

wise interactions. RBMs permit parallel Gibbs sampling

updates as q���(zzz1|zzz2) and q���(zzz2|zzz1) are factorial in the com-

ponents of zzz1 and zzz2.

Variational autoencoders: A VAE is a generative model

factored as p(xxx,zzz) = p(zzz)p(xxx|zzz), where p(zzz) is a prior dis-

tribution over latent variables zzz and p(xxx|zzz) is a probabilistic

decoder representing the conditional distribution over data

variables xxx given zzz. VAEs are trained by maximizing a

variational lower bound (ELBO) on log p(xxx):

L = Eq(zzz|xxx)



log
p(xxx,zzz)

q(zzz|xxx)

�

≤ log p(xxx), (1)

where q(zzz|xxx) is a probabilistic encoder that approximates

the posterior over latent variables given a data point. A

tighter importance-weighted bound is obtained with

LIW = Ezzz1:K

"

log

 

1

K

KX

i=1

p(zzzi,xxx)

q(zzzi|xxx)

!#

≤ log p(xxx), (2)

where zzz1:K ∼
Q

i q(zzzi|xxx). For continuous latent variables,

these bounds are optimized using the reparameterization
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trick (Kingma & Welling, 2014; Rezende et al., 2014). How-

ever, as noted above, continuous relaxations are commonly

employed with discrete latent variables.

MCMC: MCMC methods are used to draw approximate

samples from a target distribution q(zzz). Each MCMC

method is characterized by a transition kernel K(zzz|zzz0) de-

signed so that

q(zzz) =

Z

dzzz0q(zzz0)K(zzz|zzz0) ∀zzz. (3)

Samples from the fixed point q(zzz) are found by sampling

from an initial distribution q0(zzz) and iteratively updating the

samples by drawing conditional samples using zzzt|zzzt�1 ∼

K(zzzt|zzzt�1). Denoting the distribution of the samples after

t iterations by qt = Ktq0, the theory of MCMC shows that

under some regularity conditions qt → q as t → ∞. In

practice, K(zzz|zzz0) is usually chosen to satisfy the detailed

balance condition:

q(zzz)K(zzz0|zzz) = q(zzz0)K(zzz|zzz0) ∀zzz,zzz0 (4)

which implies Eq. (3). Kt itself is a valid transition kernel

and satisfies Eq. (3) and Eq. (4).

Gibbs sampling is a particularly efficient MCMC method

when variables zzz = [zzz1, zzz2] are partitioned as in an RBM.

The transition kernel in this case may be written as

KGibbs(zzz1, zzz2|zzz
0

1, zzz
0

2) = q(zzz2|zzz1)q(zzz1|zzz
0

2). (5)

where all partitioned variables in zzz1 or zzz2 may be updated

in parallel. Gibbs sampling is a special MCMC method that

does not satisfy the detailed balance condition. However, it

does admit a reverse kernel in the form:

KReverse(zzz
0

1, zzz
0

2|zzz1, zzz2) = q(zzz01|zzz
0

2)q(zzz
0

2|zzz1), (6)

which samples from the variables in a reversed order. Thus,

for Gibbs sampling on bipartite UGMs, we have:

q(zzz0)KGibbs(zzz|zzz
0) = q(zzz)KReverse(zzz

0|zzz) ∀zzz,zzz0, (7)

where zzz = [zzz1, zzz2] and zzz0 = [zzz01, zzz
0

2].

3. Undirected Approximate Posteriors

In this section, we propose a gradient estimator for generic

UGM approximate posteriors and discuss how the estimator

is applied to RBM-based approximate posteriors.

The training objective for a probabilistic encoder net-

work with q���(zzz) being a UGM can be written as

max��� Eqφφφ(zzz)[f(zzz)], where f is a differentiable function of

zzz. For simplicity of exposition, we assume that f does not

depend on ���.2 Using the fixed point equation in Eq. (3), we

2If f does depend on φφφ, then Eqφφφ(zzz)[∂φφφf(zzz)] is approximated

with Monte Carlo sampling.

q��� zzz0 zzz L

zzz0 ∼ q���(zzz
0) zzz ∼ K���(zzz|zzz

0)

@���zzz(✏✏✏,���, zzz
0)

f(zzz)

@zzzf(zzz)

Figure 1: To estimate the gradient of L = Eqφφφ(zzz)[f(zzz)]
w.r.t the parameters of the UGM posterior (���), we first sam-

ple from the approximating posterior (zzz0 ∼ q���(zzz
0)), then,

we apply an MCMC update via reparameterized sampling

(zzz ∼ K���(zzz|zzz
0)). Finally, we evaluate the function on the

samples (f(zzz)). The gradient is computed automatically

by backpropagating through the reparameterized samples

while ignoring the dependency of zzz0 on ���.

have:

Eqφφφ(zzz)[f(zzz)] = Eqφφφ(zzz0)

h

EKt

φφφ
(zzz|zzz0)[f(zzz)]

i

, (8)

where the right hand side implies sampling zzz0 ∼ q���(zzz
0) and

applying MCMC updates t times. To maximize Eq. (8), we

require its gradient:

@���Eqφφφ(zzz)[f(zzz)] =

Z

dzzz0 @���q���(zzz
0)EKt

φφφ
(zzz|zzz0)[f(zzz)]

| {z }

I

+Eqφφφ(zzz0)

h

@���EKt

φφφ
(zzz|zzz0)[f(zzz)]

i

| {z }

II

. (9)

The term marked as I is written as:

I = Eqφφφ(zzz0)Kt

φφφ
(zzz|zzz0)

⇥
f(zzz)@��� log q���(zzz

0)
⇤

(10)

= Eqφφφ(zzz)K
t

φφφ
(zzz0|zzz)

⇥
f(zzz)@��� log q���(zzz

0)
⇤

(11)

= Eqφφφ(zzz)

h

f(zzz)EKt

φφφ
(zzz0|zzz)

⇥
@��� log q���(zzz

0)
⇤i

, (12)

where we have used detailed balance to get Eq. (11) from

Eq. (10). The form of Eq. (12) makes it clear that I
goes to zero as t → ∞, because Kt

���(zzz
0|zzz) → q���(zzz

0) and

Eqφφφ(zzz0)

⇥
@��� log q���(zzz

0)
⇤
= 0. However, similar to REIN-

FORCE, Monte-Carlo estimate of I will have high variance

due to the presence of q���(zzz
0) in the denominator3.

The expectation in Eq. (9) marked as II involves the gra-

dient of an expectation with respect to MCMC transition

kernel. The reparameterization trick provides a low-variance

gradient estimator for this term, and as t → ∞, the II con-

tribution approaches the full gradient because I → 0.

Our key insight in this paper is that, given the high variance

of I , it is beneficial to drop this term from the gradient

(Eq. (9)) and use the biased but lower-variance estimate II .

3Technically, Gibbs sampling does not satisfy detailed balance.
Instead, we can use the identity in Eq. (7) to derive the same
argument for Gibbs sampling. In this case, the transition kernel in
Eq. (11) and Eq. (12) will be the reverse kernel.
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The choice of t trades increased computational complexity

for decreased bias. We observe that increasing t has little

effect on the optimization performance. Therefore, t = 1 is

a good choice giving the smallest computational complexity.

Consequently, we use the approximation:

@���Eqφφφ(zzz)[f(zzz)] ≈ Eqφφφ(zzz0)

h

@���EKφφφ(zzz|zzz0)

⇥
f(zzz)

⇤i

(13)

= Eqφφφ(zzz0)E✏✏✏⇠p(✏✏✏)

⇥
(@���zzz)@zzzf(zzz)

⇤
,

where zzz = zzz(✏✏✏,���, zzz0) is a reparameterized sample from

K���(zzz|zzz
0) where ✏✏✏ is a sample from a base distribution. Our

gradient estimator is illustrated in Fig. 1. The extension to

t > 1 Gibbs updates is straightforward.

In principle, MCMC methods such as Metropolis-Hastings

or Hamiltonian Monte Carlo (HMC) can be used as the

transition kernel in Eq. (13). However, unbiased reparame-

terized sampling for these methods is challenging.4 These

complications are avoided when Gibbs sampling of q���(zzz)
is possible. The Gibbs transition kernel q���(zzz2|zzz1)q���(zzz1|zzz

0

2)
of Eq. (5) does not contain an accept/reject step or any

hyper-parameters. Assuming that the conditionals can be

reparameterized, the gradient of the kernel is approximated

efficiently using low-variance reparameterized sampling

from each conditional. In this case, the gradient estimator

for a single Gibbs update is:

@���Eq[f(zzz)] ≈ Eqφφφ(zzz0)

⇥
@���Eqφφφ(zzz2|zzz1)qφφφ(zzz1|zzz0

2)
[f(zzz)]

⇤
(14)

= Eqφφφ(zzz0)E✏✏✏1,✏✏✏2

⇥
@���f(zzz1, zzz2)

⇤
,

where zzz1(✏✏✏1,���, zzz
0

2) ∼ q���(zzz1|zzz
0

2) and zzz2(✏✏✏2,���, zzz1) ∼

q���(zzz2|zzz1) are reparameterized samples.

Lastly, we note that the reparameterized zzz sample has dis-

tribution q���(zzz) if zzz0 is equilibrated. So, if f has its own

parameters (e.g., the parameters of the generative model

in VAEs), the same sample can be used to compute an un-

biased estimation of @✓✓✓Eqφφφ(zzz)[f✓✓✓(zzz)] where ✓✓✓ denotes the

parameters of f .

3.1. Toy Example

We assess the efficacy of our approximations for a multivari-

ate Gaussian. We consider learning the two-variable Gaus-

sian distribution depicted in Fig. 2(b). The target distribu-

tion p(zzz) has energy function E(zzz) = (zzz−µµµ)TΛΛΛ(zzz−µµµ)/2,

where µµµ = [1, 1]T and ΛΛΛ = [1.1, 0.9; 0.9, 1.1]. The ap-

proximating distribution q���(zzz) has the same form and we

learn the parameters ��� by minimizing the Kullback-Leibler

(KL) divergence KL[q���(zzz)||p(zzz)]. We compare Eq. (14)

for t = 1, 2, 4, 8 with reparameterized sampling and with

4For example, Metropolis-Hastings contains a nondifferen-
tiable operation in the accept/reject step, and HMC additionally
requires backpropagating through gradients of the energy function
and tuning hyper-parameters.

REINFORCE. Fig. 2(a) shows the KL divergence during

training. For our method we consider two variants including

with and without I in Eq. (9).

Our method significantly outperforms REINFORCE due

to lower variance of the gradients as depicted in Fig. 2(c).

There is little difference between different t until KL diver-

gence becomes ∼ 10�4. Our method performs worse than

reparameterized sampling, which is expected due to the bias

introduced by neglecting I in Eq. (9). Including I negatively

impacts optimization. The dashed lines of Fig. 2(a) show

the KL objective when the I term is included. All curves

lie atop one another and are noticeably slower to converge.

This deterioration is driven by the noisier gradient estimates

shown as dashed lines in Fig. 2(c).

Note that this experiment confirms that the reparameteri-

zation trick provides low-variance unbiased gradient esti-

mation. However, this trick is not applicable to UGMs in

general. In the case of UGMs, our gradient estimator pro-

vides gradient estimation with variance properties similar to

the reparameterization trick.

3.2. Learning Boltzmann Machine Posteriors

Next, we consider training DVAE##, a DVAE (Rolfe, 2016;

Vahdat et al., 2018b;a) where both approximating posterior

and prior are RBM. The objective function of DVAE## is

given by Eq. (1), where q(zzz|xxx) ≡ q���(xxx)(zzz) is an amortized

RBM with neural-network-generated parameters ���(xxx) =
{bbb1(xxx), bbb2(xxx),WWW (xxx)}. To maximize L, we use the gradient

@���(xxx)L = @���(xxx)Eqφφφ(xxx)(zzz)



log
p(xxx,zzz)

q���(xxx)(zzz)

�

. (15)

at each training point xxx. Although the RBM has a bipar-

tite structure, applying the gradient estimator of Eq. (14)

is challenging due to binary latent variables. To apply our

estimator in Eq. (14), we relax the binary variables to contin-

uous variables using Gumbel-Softmax or piece-wise linear

relaxations (Andriyash et al., 2018).5 Representing the relax-

ations of zzz1 ∼ q���(zzz1|zzz
0

2) by ⇣⇣⇣1 = ⇣⇣⇣1(✏✏✏1, zzz
0

2,���) and zzz2 ∼

q���(zzz2|zzz1) by ⇣⇣⇣2 = ⇣⇣⇣2(✏✏✏2,⇣⇣⇣1,���), where ✏✏✏1, ✏✏✏2 ∼ U [0, 1],
we use the following estimator:

Eqφφφ(zzz
0

1,zzz
0

2)

⇥
@���Eqφφφ(⇣⇣⇣1|zzz

0

2)
Eqφφφ(⇣⇣⇣2|⇣⇣⇣1)

[f(⇣⇣⇣1,⇣⇣⇣2)]
⇤

= Eqφφφ(zzz
0

1,zzz
0

2)
E✏✏✏1,✏✏✏2

⇥
@���f(⇣⇣⇣1,⇣⇣⇣2)

⇤
, (16)

@���f(⇣⇣⇣1,⇣⇣⇣2) is computed using the reparameterization trick.

Thus far, we have only accounted for the dependency of the

objective f on ��� through samples ⇣⇣⇣. However, for VAEs, f
also depends on ��� through log q���(xxx)(zzz). This dependency

5Another option is to use unbiased gradient estimators such as
REBAR (Tucker et al., 2017) or RELAX (Grathwohl et al., 2018).
However, with these approaches, the number of f evaluations
increases with t.
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Figure 2: (a) Our gradient estimator (for various t) compared with REINFORCE and reparameterized Gaussian samples for

minimizing the KL divergence of a Gaussian to a target distribution (b). Dashed lines correspond to adding the term I of

Eq. (9) to our gradient estimator.

can be ignored in VAEs as Eq[@��� log q���(zzz|xxx)] = 0 (Roeder

et al., 2017), and it can be removed in importance weighted

autoencoders using the doubly reparameterized gradient

estimation (Tucker et al., 2018) (see Appendix C for more

details). Note that Roeder et al. (2017) and Tucker et al.

(2018) do not introduce any bias to the gradient and are

known to reduce variance.

As t increases and each Gibbs update is relaxed, sampling

from the relaxed chain diverges from the exact discrete chain

resulting in increasingly biased gradient estimates. Thus,

we use t = 1 in our experiments (see Appendices A and D

for t > 1). Moreover, in Eq. (16), our estimator requires

samples from the RBM posterior in the outer expectation.

These samples are obtained by running persistent chains for

each training datapoint.

Algorithm 1 summarizes training of DVAE##. We represent

the Boltzmann prior using p✓✓✓(zzz) = exp
�
−E✓✓✓(zzz)

�
/Z✓✓✓. The

number of Gibbs sweeps for generating zzz0 in Eq. (16) is

denoted by s and the number of Gibbs sweeps for sampling ⇣⇣⇣

is denoted by t. The objective L is defined so that automatic

differentiation yields the gradient estimator in Eq. (16) for

��� and @✓✓✓f is evaluated using relaxed samples for ✓✓✓. We use

the method introduced by Vahdat et al. (2018b) Sec. E to

obtain gradients of logZ✓✓✓.

4. Experiments

We examine our proposed gradient estimator for training

undirected posteriors on three tasks: variational autoen-

coders, importance weighted autoencoders, and structured

prediction models using the binarized MNIST (Salakhutdi-

nov & Murray, 2008) and OMNIGLOT (Lake et al., 2015)

datasets. We follow the experimental setup in DVAE# (Vah-

dat et al., 2018a) with minor modifications outlined below.

4.1. Variational Autoencoders

We train a VAE of the form p(zzz)p(xxx|zzz), where p(zzz) is an

RBM and p(xxx|zzz) is a neural network. p(xxx|zzz) is represented

Algorithm 1 DVAE## with RBM prior and posterior

Input: training sample xxx, number of Gibbs sweeps s, number
of relaxed Gibbs sweeps t.
Output: training objective function Lxxx

φφφ = encoder(xxx)
zzz0old = retrieve_persistent_states(xxx)
zzz0new = update_gibbs_samples(zzz0old,φφφ, s)
zzz0sg = stop_gradient(zzz0new) B zzz01, zzz

0

2 in Eq. 16
ζζζ = relax_gibbs_sample(zzz0sg,φφφ, t) B ζζζ1,ζζζ2 in Eq. 16

φφφ0 = stop_gradient(φφφ) B Roeder et al.
Lxxx = −Eθθθ(ζζζ)− logZθθθ

| {z }

prior

+ log pθθθ(xxx|ζζζ)
| {z }

likelihood

+ Eφφφ0(ζζζ)
| {z }

approx. post

using a fully-connected neural network having two 200-unit

hidden layers, tanh activations, and batch normalization

similar to DVAE++ (Vahdat et al., 2018b), DVAE# (Vahdat

et al., 2018a), and GumBolt (Khoshaman & Amin, 2018).

We compare generative models trained with an undirected

posterior (DVAE##) to a directed posterior.

For DVAE##, q(zzz|xxx) is modeled with a neural network hav-

ing two tanh hidden layers that predicts the parameters of

the RBM (Fig. 3(a)). Training DVAE## is done using Algo-

rithm 1 with s = 10 and t = 1 using a piece-wise linear re-

laxation (Andriyash et al., 2018) for relaxed Gibbs samples.

We follow (Vahdat et al., 2018a) for batch size, learning

rate schedule, and KL warm up parameters. During training,

samples from the prior are required for computing the gradi-

ent of logZ✓✓✓. This sampling is done using the QuPA library

that offers population-annealing-based sampling and parti-

tion function estimation (using AIS) from within Tensorflow.

We also use QuPA for sampling the undirected posteriors

and estimating their partition function during evaluation. We

explore VAEs with equally-sized RBM prior and posteriors

consisting of either 200 (100+100) or 400 (200+200) latent

variables. Test set negative log-likelihoods are computed

using 4000 importance-weighted samples.

Baselines: We compare the RBM posteriors with directed

posteriors where the posteriors are factored across groups

of latent variables zzzi as q(zzz|xxx) =
QL

i qi(zzzi|xxx,zzz<i). Each
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xxx

bbb1(xxx), bbb2(xxx),WWW (xxx)

ccc(xxx)

(a)

xxx

lll1(xxx) lll2(xxx,zzz1)

+++

zzz1

(b)

xxx

lll1(xxx)

+++

zzz1
lll2(xxx,zzz1)

+++

lin. layer

concat

tanh

ccc(xxx)

(c)

Figure 3: Neural networks representing q(zzz|xxx): (a) A 2-

layer network predicts the parameters of RBM. (b) The

directed posterior used in DVAE# consists of parallel 2-

layer networks to successively predict, lll, the logits for each

conditional in q(zzz|xxx) =
Q

i qi(zzzi|xxx,zzz<i). (c) Our directed

posterior differs from DVAE# and predicts the parameters

of each conditional in q(zzz|xxx) =
Q

i qi(zzzi|ccc(xxx), zzz<i) using

a linear transformation given the shared context feature ccc(xxx)
and previous zzz.

conditional, qi, is factorial across the components of zzzi and

L is the number of hierarchical layers. A fair comparison

between directed and undirected posteriors is challenging

because they differ in structure and in the number of pa-

rameters. We design a baseline so that the number of pa-

rameters and the number of nonlinearities is identical for

a directed posterior with a single group (L = 1) and an

undirected posterior with no pairwise interactions. This is

reasonable as both cases reduce to a mean-field posterior. In

Appendix B, we present a new structure for directed poste-

riors with shared context (Fig. 3(c)) that further improves

the posteriors used in DVAE# (Vahdat et al., 2018a) and

GumBolt (Khoshaman & Amin, 2018) (Fig. 3(b)).

We examine three recent methods for training VAEs with

directed posteriors with shared context. These baselines are

i) DVAE# (Vahdat et al., 2018a) that uses power-function

distribution to relax the objective function, ii) Concrete re-

laxation used in GumBolt (Khoshaman & Amin, 2018), and

iii) piece-wise linear (PWL) relaxation (Andriyash et al.,

2018). All models are trained using L = 1, 2, or 4 hierar-

chical levels.

Results: The performance of DVAE## is compared against

the baselines in Table 1. We make two observations. i) The

baselines with L = 1 are equivalent to a mean-field poste-

rior which is also the special case of an undirected posterior

with no pairwise terms. Since PWL and DVAE## use the

same continuous relaxation, we can compare PWL L = 1
and DVAE## to see how introducing pairwise interactions

improve the quality of the DVAE models. We consistently

observe ∼0.5-nat improvement arising from pairwise inter-
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Figure 4: The difficulty of partition function estimation is

visualized using the mean absolute difference between logZ
estimates and its true value in top and the variance of the

estimates for different number of temperatures in bottom.

The true value is computed using 218 temperatures. The

number of temperatures required for achieving � = 10�2

for the RBM posterior is ∼10x smaller than the number of

temperatures required for the RBM prior.

actions. ii) DVAE## with undirected posteriors outperforms

the directed baselines in most cases indicating that UGMs

form more appropriate posteriors.

Varying the number of Gibbs steps: In Appendix D, we

study the effect of changing s and t.

Using MCMC to sample from the true posterior: In Ap-

pendix E, we compare our DVAE## against MCMC meth-

ods that approximately sample from the true posterior.

4.1.1. EXAMINING UNDIRECTED POSTERIORS

We also examine the posteriors trained with DVAE## on

MNIST in terms of the number of modes and the difficulty

of sampling and partition function estimation.

Multimodality: To estimate the number of modes, we

find a variety of mean field solutions as follows: Given

an RBM we draw samples using QuPA and use each sample

to initialize the construction of a mean-field approxima-

tion. Specifically, we initialize the mean parameter of a

factorial Bernoulli distribution to the sample value and then

iteratively minimize the KL until we converge to a fixed

point describing a mode. This way, the initial population of

samples converges to a smaller number of unique modes.

We observe that the majority (∼90%) of trained posteri-

ors have a single mode. This is in contrast with the prior

RBM that typically has 10 to 20 modes. However, we also

note that the KL from the converged mean-field distribu-

tions to the RBM posteriors is typically in the range [0.5, 2]
indicating that, while most RBM posteriors are unimodal,

the structure of the mode is not completely captured by a

factorial distribution.

The difficulty of sampling and partition function estima-

tion: Fig. 4 visualizes the deviation of log partition function

estimations for an RBM posterior and prior for different

numbers of AIS temperatures. As shown in the figure, the
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Table 1: The performance of DVAE## is compared against directed posteriors, trained with the variational bound.

Mean±standard deviation of the negative log-likelihood for 5 runs are reported. Boldface numbers indicate the best

performing models per latent variable size and dataset.

Prior RBM: 100+100 Prior RBM: 200+200

L DVAE# GumBolt PWL DVAE## DVAE# GumBolt PWL DVAE##

M
N

IS
T 1 84.97±0.03 84.66±0.04 84.62±0.05

84.09±0.06

83.21±0.03 83.19±0.05 83.22±0.05

82.75±0.052 84.96±0.05 84.71±0.03 84.50±0.07 83.13±0.04 83.04±0.02 82.99±0.05

4 84.58±0.02 84.39±0.04 84.07±0.04 82.93±0.04 83.14±0.04 82.90±0.03

O
M

N
I. 1 101.64±0.05 101.41±0.06 101.24±0.02

100.69±0.04

99.51±0.03 99.39±0.04 99.32±0.04

98.61±0.082 101.75±0.04 101.39±0.06 101.14±0.05 99.40±0.05 99.12±0.07 99.10±0.04

4 101.74±0.07 102.04±0.10 101.14±0.05 99.47±0.04 99.97±0.02 99.30±0.03

Table 2: The performance of DVAE## is compared with directed posteriors with the PWL relaxation trained with the IW

bound. Mean±standard deviation of the negative log-likelihood for 5 runs are reported. Boldface numbers indicate the best

performing models per latent space size, dataset, and K.

Prior RBM: 100+100 Prior RBM: 200+200

K PWL L = 1 PWL L = 2 PWL L = 4 DVAE## PWL L = 1 PWL L = 2 PWL L = 4 DVAE##

M
N

IS
T 1 84.60±0.04 84.49±0.03 84.04±0.03 84.06±0.03 83.27±0.06 82.99±0.04 82.89±0.03 82.76±0.05

5 84.15±0.06 83.88±0.02 83.53±0.06 83.56±0.02 83.24±0.06 82.90±0.06 82.65±0.03 82.76±0.06

25 83.96±0.05 83.70±0.03 83.38±0.02 83.44±0.04 83.38±0.04 83.05±0.03 82.84±0.02 82.97±0.11

O
M

N
I. 1 101.21±0.06 101.14±0.07 101.12±0.03 100.68±0.05 99.32±0.02 99.11±0.02 99.28±0.09 98.61±0.06

5 100.72±0.05 100.58±0.05 100.51±0.04 100.16±0.04 99.19±0.05 98.69±0.09 98.78±0.02 98.34±0.03

25 100.58±0.01 100.48±0.05 100.37±0.03 100.02±0.04 99.10±0.03 98.70±0.07 98.86±0.06 98.34±0.04

number of temperatures required for achieving an accept-

able precision (e.g., � = 10�2) for the RBM posterior is

10 times smaller than the number of temperatures required

for the RBM prior. The main reason for this difference is

that the RBM posteriors have strong linear biases. When an-

nealing starts from a mean-field distribution containing only

the biases, AIS requires fewer interpolating temperatures

in order to accurately approximate the partition function.

However, RBM priors which do not contain strong linear

biases, do not benefit from this.

4.2. Importance Weighted Autoencoders

Next, we examine the generative model introduced in the

previous section but using the importance-weighted (IW)

bound. For comparison, we only use the PWL baseline as

it achieves the best performance among directed posterior

baselines in Table 1. For training, we use the same hyper-

parameters used in the previous section with an additional

hyperparameter K representing the number of IW samples.

To sidestep computation of the gradient of the partition

function for undirected posteriors in the IW bound, we

use the path-wise gradient estimator introduced by (Tucker

et al., 2018). However, we observe that an annealing scheme

in IWAEs (similar to KL-warm up in VAEs) improves the

performance of the generative model by preventing the latent

variables from turning off. In Appendix C, we introduce this

annealing mechanism for training IWAEs and show how

the path-wise gradient can be computed while annealing the

objective function.

The experimental results for training DVAE## are com-

pared against directed posteriors in Table 2. As can be seen,

DVAE## achieves a comparable performance on MNIST,

but outperforms the directed posteriors on OMNIGLOT.

4.3. Structured Output Prediction

Structured prediction is a form of conditional likelihood

estimation (Sohn et al., 2015) concerned with modeling the

distribution of a high-dimensional output given an input.

Here, we predict the distribution of the bottom half xxx2 of

an image given the top half xxx1. For this, we follow the IW

objective function proposed by (Raiko et al., 2015):

Ezzz1:K⇠

Q
i
q(zzzi|xxx1)



log
⇣ 1

K

KX

i=1

p(xxx2|zzzi)
⌘�

+ �H(q(zzz|xxx1)).

We have added an entropy term H(q(zzz|xxx1)) to prevent the

model from over-fitting the training data. This expectation

(without the entropy term) is identical to the IW bound in

Eq. (2), where the prior and the approximate posterior are

both set to q(zzz|xxx1) and it can thus be considered as a lower

bound on log p(xxx2|xxx1). The scalar � is annealed during

training from 1 to a small value (e.g., 0.05).

Experimental results for the structured prediction problem

are reported in Table 3. The latent space is limited to 200

binary variables and q(zzz|xxx1) and p(xxx2|zzz) are modeled by

fully-connected networks with one 200-unit hidden layer
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Table 3: The performance of DVAE## is compared against

hierarchical posteriors with the PWL relaxation on the struc-

tured prediction problem.

RBM Size: 100+100

K
PWL

L = 1

PWL

L = 2

PWL

L = 4
DVAE##

M
N

IS
T 1 60.82±0.17 59.54±0.12 60.22±0.12 57.13±0.18

5 52.38±0.03 52.27±0.16 52.67±0.05 49.25±0.07

25 48.30±0.08 48.41±0.05 48.61±0.11 45.75±0.10

O
M

N
I. 1 67.06±0.04 67.11±0.11 67.35±0.08 63.74±0.08

5 59.00±0.03 59.28±0.08 59.34±0.10 57.53±0.08

25 54.79±0.04 54.83±0.04 54.88±0.06 54.32±0.04

Table 4: Comparison against previously published results on

binary VAEs and IWAEs. Our DVAE## outperforms previous

models that use similar encoder/decoder.

VAE IWAE
K = 1 K2{20, 25, 50}

MNIST OMNI. MNIST OMNI.

Concrete (Maddison et al.) 87.9 105.9 85.7 106.8

VIMCO (Mnih & Rezende) 88.4 111.7 85.5 113.2

DVAE++ (Vahdat et al.) 84.27 100.55 - -

GumBolt (Khoshaman et al.) 83.28 99.83 82.75 98.81

GumBolt (our implement.) 83.04 99.12 - -

DVAE# (Vahdat et al.) 83.18 99.65 82.82 98.88

DVAE# (our implement.) 82.93 99.40 - -

DVAE## 82.75 98.61 82.97 98.34

to limit overfitting. Performance is assessed using the aver-

age log-conditional log p(xxx2|xxx1) measured using 4000 IW

samples, and mean±standard deviation of the negative log-

likelihood for five runs are reported. Undirected posteriors

outperform the directed models by several nats on MNIST

and OMNIGLOT.

4.4. Comparison against Previously Published Results

The experiments in this paper are all performed under an

identical training framework for all the methods for a fair

comparison. However, this requires reimplementing previ-

ous work. In order to better situate DVAE## against the

state-of-the-art, we compare our performance with previ-

ously published results on training binary VAEs that use

similar encoder/decoder. Here, for each previous work, we

report the best number from the original paper for the latent

variable size of 400 with the IW sample size of K = 1 and

K ∼ 25. Note that, for the IWAE experiments on DVAE##,

K is set to 25, but for a previous work if K = 25 is not

available, we report the closest K in {20, 50}.

As we can see in Table 4, our DVAE## model outper-

forms the previous methods that use similar encoder/decoder.

We also observe that our implementation of GumBolt and

DVAE# improves the performance of these models (see

Appendix B for more details).

5. Conclusions and Future Directions

We have introduced a gradient estimator for stochastic op-

timization with undirected distributions and showed that

VAEs and IWAEs with RBM posteriors can outperform sim-

ilar models having directed posteriors. These encouraging

results for UGMs over discrete variables suggest a number

of promising research directions.

Exponential Family Harmoniums: The methods we have

outlined also apply to UGMs defined over continuous vari-

ables (as in Fig 2). Exponential Family Harmoniums

(EFHs) (Welling et al., 2005) generalize RBMs and are

composed of two disjoint groups of exponential-family

random variables. EFHs retain the factorial structure of

the conditionals q(zzz1|zzz2) and q(zzz2|zzz1) so that we can eas-

ily backpropagate through Gibbs updates. However, the

exponential-family generalization allows for the mixing of

different latent variable types and distributions.

Auxiliary Random Variables: An appealing property of

RBMs (and EFHs) is that either group of variables can

be analytically marginalized out. This property can be ex-

ploited to form more expressive approximate posteriors.

Consider a generative model p(zzz,xxx) = p(zzz)p(xxx|zzz). To

approximate the posterior we augment the latent space of

zzz with auxiliary variables hhh, and form a UGM over the

joint space. In this case, the marginal approximate posterior

q(zzz|xxx) =
P

h q(zzz,hhh|xxx) has more expressive power. Sam-

pling from q(zzz|xxx) can be done by sampling from the joint

q(zzz,hhh|xxx) and our gradient estimator can be used for train-

ing the parameters of the UGM. The objective function of

VAE can be optimized easily as the log-marginal log q(zzz|xxx)
has an analytic expression up to the normalization constant

given a sample from the posterior.

Combining DGMs and UGMs: VAEs trained with DGM

posteriors q(zzz) =
Q

i qi(zzzi|zzz<i) have shown promising re-

sults. However, each factor qi(zzzi|zzz<i) in DGMs is typ-

ically assumed to be a product of independent distribu-

tions. We can build more powerful DGMs by modeling

each qi(zzzi|zzz<i) using a UGM.

Sampling and Computing Partition Function: A chal-

lenge when using continuous-variable UGMs as posteriors

is the requirement for sampling and partition function es-

timation during evaluation if the test data log-likelihood is

estimated using the IW bound. However, we note that ap-

proximate posteriors are only required for training VAEs. At

evaluation, we can sidestep sampling and partition function

estimation challenges using techniques such as AIS (Wu

et al., 2017) starting from the prior distribution when the

latent variables are continuous.
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