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We explored properties of whole brain networks based on multivariate spectral analysis of human
functional magnetic resonance imaging (fMRI) time-series measured in 90 cortical and subcortical
subregions in each of five healthy volunteers studied in the (no-task) resting state. We note that
undirected graphs representing conditional independence between multivariate time-series can be
more readily approached in the frequency domain than the time domain. Estimators of partial
coherency and normalized partial mutual information f, an integrated measure of partial coherence
over an arbitrary frequency band, are applied. Using these tools, we replicate the prior observations
that bilaterally homologous brain regions tend to be strongly connected and functional connectivity is
generally greater at low frequencies [0.0004, 0.1518 Hz]. We also show that long-distance
intrahemispheric connections between regions of prefrontal and parietal cortex were more salient
at low frequencies than at frequencies greater than 0.3 Hz, whereas many local or short-distance
connections, such as those comprising segregated dorsal and ventral paths in posterior cortex, were
also represented in the graph of high-frequency connectivity. We conclude that the partial coherency
spectrum between a pair of human brain regional fMRI time-series depends on the anatomical
distance between regions: long-distance (greater than 7 cm) edges represent conditional dependence
between bilaterally symmetric neocortical regions, and between regions of prefrontal and parietal
association cortex in the same hemisphere, are predominantly subtended by low-frequency
components.

Keywords: graph theory; Fourier domain; coherence; neuroimaging; network;
multivariate time-series

1. INTRODUCTION

It is well known that neurophysiological time-series,

measured by functional magnetic resonance imaging

(fMRI), often demonstrate evidence of correlated

activity between anatomically remote brain regions,

even when the data have been acquired with a human

subject lying quietly in the scanner ‘at rest’ (Biswal et al.

1995; Lowe et al. 1998; Greicius et al. 2002; Salvador

et al. 2005). Resting state correlations have been

discussed in terms of functional connectivity, broadly

defined as the statistical association or dependency

between anatomically distinct time-series (Aertsen et al.

1989; Friston et al. 1996; Horwitz 2003). In contrast to

the related concept of effective connectivity, any

measure of functional connectivity will be agnostic

with respect to the direction of causal relations between

brain regions that might subtend their observed

dependency. Therefore, if regions A and B are

functionally connected, then this tells us nothing

about whether activity in A is driving B or vice versa.

On this basis, we can see that a simple diagramof a brain

network, in which a line is drawn between any pair of
functionally connected regions, will constitute an
undirected graph. This paper aims to rehearse the
theory of undirected graphs based onmultivariate time-
series, and to illustrate how these theoretical tools can be
applied in analysis of fMRI data. For a complementary
application of directed graphs to analysis of effective
connectivity in brain networks, see Eichler (2005).

We will show that a graph-theoretical analysis of
brain connectivity in fMRI data is simplified if the
metrics of association between regions are estimated in
the frequency domain, for example, as coherencies or
partial coherencies. This approach also accommodates
a decomposition of functional connectivity between
regions in terms of frequencies or frequency bands
(Sun et al. 2004). In the electrophysiological literature,
it has long been commonplace to estimate the
coherence spectrum for a pair of electrodes, and
often, it has been found that coherence is not equal at
all frequencies, or that different systems of brain
regions may be most coherent at different frequencies.
In fMRI studies to date, it has been repeatedly shown
that resting state correlations are often subtended
by low-frequency (less than 0.1 Hz) components
of the data (Biswal et al. 1995; Lowe et al. 1998;
Cordes et al. 2000). The other main objective of this
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paper is therefore to explore the frequency dependence
of resting state connectivity more comprehensively by
analysis of whole brain graphs based on metrics of
association estimated in the frequency domain.

2. MATERIAL AND METHODS

(a) fMRI datasets: acquisition and pre-processing

Five sets of T2*-weighted gradient echo echoplanar imaging

(EPI) data depicting blood oxygenation level dependent

(BOLD) contrast were acquired, one each from five healthy

volunteers in a no-task, resting state, using a Bruker Medspec

S300 scanner operating at 3.0T (Bruker Medical, Ettlingen,

Germany) in the Wolfson Brain Imaging Centre, Cambridge,

UK. Volunteers were scanned while lying quietly with eyes

closed for 37 min and 44 s. In this period, we acquired 2058

volumes with the following parameters: number of slices, 21

(interleaved); slice thickness, 4 mm; interslice gap, 1 mm;

matrix size, 64!64; flip angle, 908; TR, 1.1 s; TE, 27.5 ms;

inplane resolution, 3.125 mm. The first 10 volumes were

discarded prior to analysis to allow for T1 saturation effects,

leaving 2048 volumes available for analysis of resting-state

connectivity in each subject.

The datasets were initially corrected for geometrical

displacements resulting from estimated head movement,

and coregistered with the Montreal Neurological Institute

(MNI) EPI template image, using SPM2 software (http://

www.fil.ion.ucl.ac.uk/spm). The data were not spatially

smoothed prior to regional parcellation using the anatomi-

cally labelled template image previously validated by

Tzourio-Mazoyer et al. (2002). This parcellation divides

each cerebral hemisphere into 45 anatomical regions of

interest (ROIs), which are listed in table 1 together with

the abbreviations used to refer to them in this study. Regional

mean time-series were estimated for each individual simply by

averaging the fMRI time-series over all voxels in each of 90

regions over the whole brain. Each regional mean time-series

was further corrected for effects of head movement by

regression on the time-series of translations and rotations of

the head estimated in the course of initial movement

correction by image realignment. The residuals of these

regressions constituted the set of regional mean time-series

used for undirected graph analysis.

v1

v2

v8

v3

v4

S

v5

v6

v7

Figure 1. An undirected graph. Each edge between two
vertices shows a relation of conditional dependence (these
two vertices are dependent when conditioning on the rest of
the vertices in the network). For instance, while v1 and v2 are
still dependent when we condition on the rest of vertices, v1
and v3 are not (they are not linked by an edge). As a special
case, one vertex may not be conditionally dependent on any
other vertex, and will appear isolated in the graph (see v8).
The properties of conditional independence can be extended
to groups of variables. Thanks to the global Markov property,
the set of blue vertices becomes independent from the set of
green vertices when we fix S, the separator vertex. A separator
may be formed by more than one vertex (here, {s, v3} would
also be a separator set).

Table 1. Cortical and subcortical regions (45 in each cerebral hemisphere, 90 in total) as anatomically defined by a prior
template image in standard stereotaxic space.
(The abbreviations listed are those used in this paper, which differ slightly from the original abbreviations by Tzourio-Mazoyer
et al. (2002). All regions are bilaterally symmetric; left-hand and right-hand sided homologues are distinguished by the suffixes
L and R, respectively.)

region abbreviation region abbreviation

precentral gyrus PreCG lingual gyrus LING
superior frontal gyrus, dorsolateral SFGdor superior occipital gyrus SOG
superior frontal gyrus, orbital part ORBsup middle occipital gyrus MOG
middle frontal gyrus MFG inferior occipital gyrus IOG
middle frontal gyrus, orbital part ORBmid fusiform gyrus FFG
inferior frontal gyrus, opercular part IFGoperc postcentral gyrus PoCG
inferior frontal gyrus, triangular part IFGtriang superior parietal gyrus SPG
inferior frontal gyrus, orbital part ORBinf inferior parietal, but not supramarginal and

angular gyri
IPL

rolandic operculum ROL
supplementary motor area SMA supramarginal gyrus SMG
olfactory cortex OLF angular gyrus ANG
superior frontal gyrus, medial SFGmed precuneus PCUN
superior frontal gyrus, medial orbital ORBsupmed paracentral lobule PCL
gyrus rectus REC caudate nucleus CAU
insula INS lenticular nucleus, putamen PUT
anterior cingulate and paracingulate gyri ACG lenticular nucleus, pallidum PAL
median cingulate and paracingulate gyri DCG thalamus THA
posterior cingulate gyrus PCG Heschl’s gyrus HES
hippocampus HIP superior temporal gyrus STG
parahippocampal gyrus PHG temporal pole: superior temporal gyrus TPOsup
amygdala AMYG middle temporal gyrus MTG
calcarine fissure and surrounding cortex CAL temporal pole: middle temporal gyrus TPOmid
cuneus CUN inferior temporal gyrus ITG
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Figure 2. Spectral properties of functional connectivity between five pairs of brain regions in five subjects. The regional pairs
include a short-distance, bilaterally symmetric pair (THA.L–THA.R); a long-distance, bilaterally symmetric pair
(STG.L–STG.R); a short-distance, intrahemispheric pair (TPOsup.L–TPOmid.L); a long-distance, intrahemispheric pair
(IPL.L–MFG.L); and a long-distance, bilaterally asymmetric pair (STG.L–HES.R). Top row shows the modulus of the cross-
periodogram, individually estimated (black) and averaged over all subjects (red). Middle row shows the modulus of the filtered
cross-periodogram, individually estimated (black) and averaged over all subjects (red). Bottom row shows the modulus of the
partial coherencies (partial coherency spectra), individually estimated (black) and averaged over all subjects (red). Note the
variability in partial coherency spectra between regional pairs, with a relatively stronger role of low frequencies in two of the long-
range connections.
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(b) Undirected graph theory

Graph theory has proved very useful in statistics to

describe the dependence relations between random variables

(Lauritzen 1996; Pearl 2000). At its core, lies the concept of a

graph; a mathematical object defined by a pair GZ(V,E ) in

which V is a finite set of vertices (or nodes), and E is a set of

edges connecting pairs of vertices in V (see figure 1).

Depending on the nature of the graph, these edges will

describe different types of dependency between nodes. Thus,

the category of graphs defined as undirected does not account

for the directionality of connections, and the order of the

components on each edge may be ignored ((a,b)2E implies

(b,a)2E ). This lack of directionality has made them useful to

portray conditional independence among components of

random vectors (Whittaker 1990).

Given a multivariate Gaussian random vector XZ

(X1,.,Xm), its conditional independence properties can be

described by a graph, in which each component of X is drawn

as a vertex ofVZ{V1,.,Vm}, and the absence of an edge (i, j )

between Vi and Vj means that variables Xi and Xj are

independent given the remainder of the variables

pðXi ;Xj jXf1;.;mgni; jÞZ pðXijXf1;.;mgni; jÞpðXj jXf1;.;mgni; jÞ:
(2.1)

Here p( ) stands for a density function, and the symbol \ after

a set denotes the same set without the elements specified on

the right side of the operator. Under normality, equation

(2.1) is equivalent to

COVfXi KX̂ iðXf1;.;mgni; jÞ;Xj KX̂ jðXf1;.;mgni; jÞgZ 0 (2.2)

where X̂ iðXf1;.;mgni; jÞ is the best linear predictor of Xi given

X{1,.,m}\i, j.

An alternative, but homologous, way of defining con-

ditional independence under multivariate normality was

proposed by Dempster (1972). This definition is based on

the inverse of the covariance matrix of X

COVðXi ;Xj jXf1;.;mgni; jÞZ05 fCOVðXÞK1gi; j Z0 (2.3)

and it has important practical implications.

We note that a graph portraying pairwise conditional

independences is said to hold the pairwise Markov property

(Speed & Kiiveri 1986; Cowell et al. 1999). Interestingly, it

also holds the more general global Markov property, which

accounts for the conditional independence of any two

mutually exclusive subsets XA, XB of variables of X, given a

third exclusive subset S

pðXA;XBjSÞZ pðXAjSÞpðXBjSÞ: (2.4)

S is said to be a separator and it contains sufficient vertices to

intercept any path from a variable in XA to a variable in XB

(see figure 1 for illustration). In summary, an undirected

graph will not only be informative about the conditional

dependence relations between pairs of variables, but also

among any possible subsets of them.

(c) Undirected graphs and multivariate time-series

While standard conditional independence graphs seem

adequate to describe relations between variables in many

experimental applications, they do not fit naturally in the

fMRI setting. This is mainly a consequence of the fact that

these models were originally intended for vectors of random

variables, which would not properly account for the temporal

dimension of fMRI datasets. Recently, however, the theory

of conditional independence graphs has been extended to

multivariate time-series (see Brillinger 1996; Dahlhaus 2000;

Timmer et al. 2000; Bach & Jordan 2004, among others).

In this context, a multivariate Gaussian stationary time-

series Y(t)Z(Y1(t),.,Ym(t)) with t2Z (a multivariate sto-

chastic process) will have a conditional independence graph

GZ(V,E ), depicting each one of the individual time-series as

a vertex (VZ{V1,.,Vm}). However, the absence of an edge

(i, j ) between two vertices Vi and Vj, that is, the conditional

independence of time-series Yi and Yj given the remainder of

the time-series, will have a much more restrictive meaning

ði; jÞ;E0COVf3iðtÞ; 3jðtCuÞgZ 0 cu2Z; (2.5)

where 3iðtÞZYiðtÞK Ŷ iðtÞ½YnYi ;Yj� and Ŷ iðtÞ½YnYi ;Yj � is the
best linear predictor (the conditional expectation) of the

component of Yi at time t, given all the values (at all time

points) of all stochastic processes in the set except Yi and Yj.

Thus, the absence of an edge (i, j ) will mean that the

correlation between the residuals after subtracting the best

linear predictors will be zero for all possible lags. The global

Markov property has also been proved for undirected graphs

of multivariate time-series (Dahlhaus 2000).

(d) Conditional dependence in the frequency domain

Although conditional independence between two time-series

has been defined in the time domain, serious difficulties arise

when looking for proper time-domain estimators of con-

ditional dependence. Specifically, to obtain estimates of the

covariances of equation (2.5), we first require estimates of the

best linear predictors. However, under a broadly stationary

normal model, such estimates cannot be directly obtained

from the time-series. Fortunately, as we will see below,

analogous concepts to those described above can be used

to develop estimates of conditional dependence in the

frequency domain without having to estimate the best linear

predictor.

Provided that the cross-covariance function between any

two time-series, Yi and Yj is summable,

X

N

uZKN

jCOVfYiðtCuÞ;YjðtÞgj!N; (2.6)

we can use the cross-spectral density to define an analogous

measure of conditional dependence in the frequency domain.

The cross-spectral density between Yi and Yj at a given

frequency l is given by

fi; jðlÞZ
1

2p

X

N

uZKN

COVfYiðtCuÞ;YjðtÞgexpðKiluÞ; (2.7)

where fi, j(l) is a complex 2p-periodic function, with

fi, j(Kl)Zfj,i(l) for real valued time-series, and is fully

described by its values in the interval [0,p]. If we define

f(l) as the square hermitian matrix containing the cross-

spectral density values at frequency l for all pairs of time-

series, then we have a definition of conditional independence

equivalent to equation (2.3) (Brillinger 1996; Bach & Jordan

2004). Thus,

COVf3iðtÞ; 3jðtCuÞgZ0 cu2Z5

f f ðlÞK1gi; j Z 0 cl2½0;p�
(2.8)

This equivalence has important practical implications,

because it avoids having to estimate the values of the best

linear predictors directly.

Under the additional assumption of null expectations

(which can be approximately justified by mean-subtracting

the observed time-series), a first estimation of fi, j will be

obtained from the discrete Fourier coefficients of yi and yj
(the observed finite realizations of Yi and Yj), avoiding

the estimation of their cross covariance function. Specifically,
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if yi is of length n, then its kZ0,., nK1 discrete Fourier

coefficients are given by

diðkÞZ
1

n

X

nK1

tZ0

yiðtÞexpðKiktÞ; (2.9)

and the estimate of the values of the cross-spectral density

(the cross-periodogram) for the n Fourier frequencies lkZ

lkZ2pk=n will be f̂ i; j ðlkÞZdiðkÞ �djðkÞ, where the superscript

bar denotes the complex conjugate.

The cross-periodogram is a very noisy estimate of the

cross-spectral density (Brillinger 1981), and a linear filter is

usually required to reduce its variance. Here, we applied the

filter used by Bach & Jordan (2004)

W ðqÞZ r
ffiffiffiffiffiffi

2p
p

n
eKl2q r

2=2
; (2.10)

where r%n
K1/5 is a parameter that modulates the smoothness

of the filter, leading to a more stable estimate of the spectral

density

f̂ i;jðlkÞZ
X

N

qZKN

W ðqÞ di �dj
� �

ðlkCqÞ (2.11)

Finally, the estimates of the inverses of f(l) for the different

Fourier frequencies are obtained from f̂ ðlÞK1. However, owing

to the finite character of the sampled time-series, we cannot

expect that f f̂ ðlÞK1gi; j will be exactly zero when Yi and Yj are

conditionally independent.

(e) Quantifying the strength of connection in the

frequency domain

Confronting the situation opposite to equation (2.8), if

f f ðlÞK1gi; js0 for one or more frequencies, then Yi and Yj will

be conditionally dependent, given the rest of the time-series,

at these frequencies. Some measures of the strength of

such conditional dependence have been developed. In the

frequency domain, the partial coherency (different from the

partial coherence defined in equation (2.13) below) is a

standardized measure of strength specific for each possible l,

similar to the partial correlation coefficient in the time

domain. However, unlike the partial correlation, the partial

coherency is a complex quantity with bounded modulus:

jR(l)i, jj2[0,1]. Additional results defined in the next section

will allow us to formulate the partial coherency in a way (see

equation (2.22)) that makes its resemblance to a partial

correlation more explicit.

In practical terms, the matrix of partial coherencies (for a

given l) is derived in an analogous way to the partial correlation

matrix in a non-temporal setting (see Whittaker 1990).

Specifically, the main step of the process involves the inversion

of the spectral density matrix (the equivalent of the covariance

matrix). If, following Dahlhaus (2000), we calculate

RðlÞZK

½f f ðlÞK1g1;1�K1=2 0

1

0 ½f f ðlÞK1gm;m�K1=2

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

! f ðlÞK1

½f f ðlÞK1g1;1�K1=2 0

1

0 ½f f ðlÞK1gm;m�K1=2

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

(2.12)

then the partial coherencies between any given pair of time-

series Yi and Yj are given by the off-diagonal complex values of

this matrix.

On the one hand, the modulus of R(l)i, j will quantify the

intensity of the link between both time-series at l. This

information is usually reported as the square of the modulus,

known as partial coherence

PCohi; jðlÞZ jRðlÞi; j j2; (2.13)

which is also restricted to the [0,1] interval (and it is

analogous to the coefficient of determination in regression

analysis). On the other hand, the argument of the complex

number R(l)i, j conveys information on the temporal syn-

chronization of both signals (i.e. the averaged phase between

the two coherent processes). Hence, two time-series may be

strongly linked but with a delayed ‘connection’ time, or

may be instantaneously connected, then having a zero

argument.

Considering the high number of Fourier frequencies

potentially involved in an analysis of partial coherences, it

may be of interest to use summary parameters that integrate

the information over the whole spectrum or frequency bands.

Based on information theory, one such parameter is the

partial mutual information. The partial mutual information

can be defined in terms of partial coherences (Granger &

Hatanaka 1964; Brillinger 1996)

di; j ZK
1

2p

ð

p

Kp

logf1KPCohi; j ðlÞgdl (2.14)

But this is unbounded, ranging from 0 when partial

coherences are null in all frequencies to infinity when all are

1. However, a simple transformation may be applied to obtain

a normalized partial mutual information (Granger & Lin

1994; Harvill & Ray 2000), with scores in the interval [0,1]

fi; j Z ½1KexpfK2di; j g�1=2 (2.15)

Estimates of di, j and fi, j can be derived from observed

time-series by substituting estimates of the partial coherences

in equation (2.14), and by conducting a finite weighted sum

over the Fourier frequencies instead of the definite integral.

Alternatively, the sum can be restricted to a specific interval of

frequencies, providing a normalized mutual information

measure for that range of frequencies.

(f ) Estimating synchronicity of connections

Although, as mentioned above, the argument of coherencies

is related to the averaged phase, a simpler way to assess this

issue is achieved in the time domain. Here, we apply some of

the concepts and formulae given by Eichler et al. (2003) for

spatial point processes.

The definition of the residuals of the best linear predictor

presented in equation (2.5) leads naturally to the following

definition of the partial cross-spectral density:

f
p
i; jðlÞZ

1

2p

X

N

uZKN

COVf3iðtÞ; 3jðtCuÞgexpðKiluÞ (2.16)

Indeed, this expression is analogous to that of the

cross-spectral density (see equation (2.7)), although it

involves the residuals instead of the original values. f
p
i; jðlÞ is

easily derived from the matrix f(l)K1, as can be

deduced from Dahlhaus (2000) and the inverse variance

lemma of Whittaker (1990)

f
p
i; jðlÞZ

Kf f ðlÞK1gi; j
f f ðlÞK1gi; if f ðlÞK1gj; j K jf f ðlÞK1gi; j j2

(2.17)
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(see Eichler et al. 2003 for an alternative formula). When iZj,

a much simpler formula should be applied instead (Dahlhaus

2000); namely,

f
p
i; iðlÞZ1=f f ðlÞK1gi; i (2.18)

Here, it should be noted that f
p
i; j ðlÞ is the cross-spectral

density after conditioning on the rest of the variables

({1,.,m}\i, j ), and, accordingly, equation (2.18) is con-

ditioning on all variables except i ({1,.,m}\i ). If we

condition on both i and j, then a different formula should

be used instead:

fi; ijf1;.;mgni; jðlÞZ f
p
i; iðlÞ=ð1KPCohi; jðlÞÞ: (2.19)

Next, by the Fourier inversion formula, we can go back to

the cross-covariance functions of equation (2.16) linked to

these cross-spectral densities. Specifically, for every poss-

ible lag u, this partial cross-covariance function will be

given by

COV
p
i; j ðuÞZCOVf3iðtÞ; 3jðtCuÞgZ

ð

p

Kp

f
p
i; jðlÞexpðiluÞdl:

(2.20)

Then, a standardized version of the partial cross-covari-

ance function will given by the partial cross-correlation

function

r
p
i; j ðuÞZ

COV
p
i; j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

COVi; ijf1;.;mgni; jð0ÞCOVj; jjf1;.;mgni; jð0Þ
p ; (2.21)

where COVi; ijf1;.;mgni; jð0Þ is the value at zero lag of the

partial covariance function obtained by applying the same

rationale of equation (2.20) to the conditional spectral

density of equation (2.19).

Next, estimates of the partial cross-covariance and cross-

correlation functions can be derived from f̂ ðlÞK1 in the

observed data. Substituting the values in equations (2.17),

(2.18) and (2.19) will give the estimates of the partial
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Figure 3. Partial cross-correlation functions for five pairs of brain regions in five subjects. The individual estimates for the five
subjects are shown in black and their average is shown in red. For all regional pairs in all subjects, there is a clear peak at lag zero,
and the group mean partial cross-correlation function is approximately symmetric.

0 1000 2000

rank

3000 4000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m
ea

n
 n

o
rm

al
iz

ed
 p

ar
ti

al
 m

u
tu

al
 i

n
fo

rm
at

io
n

Figure 4. Sorted values of normalized partial mutual
information f estimated for all 4005 regional pairs and
averaged over five subjects. Solid line shows the results for f
estimated in the low-frequency range and dashed line shows
the results for f estimated in the high-frequency range. It is
clear that a small number of interregional connections are
associated with unusually large values of f in both frequency
ranges. The horizontal dotted line indicates the heuristic
threshold fZ0.19 used to define conditional dependence
between regions and so to prescribe an undirected edge
between the corresponding vertices in a graph.
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densities. Then, the discrete Fourier transform on the Fourier

frequencies can be used instead of equation (2.20) to obtain

the sample partial cross-covariances. When no specific model

is given for the data, the estimates of the partial cross-

covariance through the spectral densities overcome the

problem of finding direct estimates from the residuals of the

best linear predictor.

Finally, it should be noted that the introduction of the

partial cross-spectral density in equation (2.16) allows an

alternative definition of the partial coherency that (although

being of no direct practical interest) clarifies its conceptual

link to a partial correlation coefficient

RðlÞi; j Z
fi; jjf1;.;mgni; jðlÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fi; ijf1;.;mgni; jðlÞfj; jjf1;.;mgni; jðlÞ
p : (2.22)

3. RESULTS

(a) Cross-spectral densities, partial coherencies
and partial cross-correlation functions estimated

in functional MRI time-series

We estimated the partial coherencies and partial
cross-correlation functions for all 4005 possible inter-
regional pairs, derived from 90 cortical and subcortical
regions. However, for illustrative purposes, we will
initially focus on the results for five pairs. The chosen
pairs of functional MRI time-series are: (i) left and
right thalamus (THA.L–THA.R)—a short-distance,
bilaterally symmetric pair; (ii) left and right superior
temporal gyrus (STG.L–STG.R)—a long-distance,
bilaterally symmetric pair; (iii) left superior
temporal pole and left-middle temporal pole (TPO-
sup.L–TPOmid.L)—a short-distance, (left) intrahemi-
spheric pair; (iv) left inferior parietal lobule and left
middle frontal gyrus (IPL.L–MFG.L)—a long-dis-
tance, (left) intrahemispheric pair; and (v) left superior
temporal gyrus and right Heschl’s gyrus (STG.L–HES.
R)—a long-distance, bilaterally asymmetric pair.

For all five pairs, the modulus of the cross-periodo-
gram (before and after smoothing; figure 2) was greatest
at low frequencies. While this pattern was usually still
present in the modulus of partial coherencies, their
valuesweremore variable between pairs. Short-distance
pairs, both bilaterally symmetric (THA.L–THA.R) and
intrahemispheric (TPOsup.L–TPOmid.L), had greater
partial coherencies at high frequencies than two of
the long-distance pairs. Both bilaterally symmetric
(STG.L–STG.R) and long-distance, intrahemispheric
(IPL.L–MFG.L) connections had greater partial coher-
encies at low frequencies. The third bilaterally asym-
metric pair (STG.L–HES.R) had a slight dominance of
high over low frequencies.

The partial cross-correlation functions were
symmetrically peaked at zero lag for all five pairs,
providing little evidence for temporally asymmetric
effects in these data (figure 3).

(b)Undirected graphs based on partial coherency

in high- and low-frequency bands for all brain

regional pairs

To summarize the information contained in the partial
coherency spectrums, we calculated the normalized
partial mutual information in two frequency bands;
specifically we integrated equation (2.14) over [0.0004,
0.1518 Hz] for the low-frequency band and over

[0.3032, 0.4545 Hz] for the high-frequency band.
The normalized partial mutual information f, for
each regional pair in each frequency band, was
averaged over all five subjects. The sorted mean values
of f, plotted separately for high- and low-frequency
bands in figure 4, show that a minority of regional pairs
demonstrated exceptionally strong partial coherence
over low- and high-frequency bands.

We identified the value fZ0.19 as the point of
maximum inflexion for the order statistics of mutual
information, shown in figure 4, and used this as a
threshold to define edges in an undirected graph of
whole brain functional connectivity. IffO0.19 we drew
an edge between the pair of regions, whereas if f!0.19
the regions were not connected by an edge.
The resulting graphs, drawn separately for high- and
low-frequency bands, are shown in figure 5.

There are more edges in the low-frequency graph
(197) than in the high-frequency graph (113). The
coronal view of the graphs highlights bilaterally sym-
metric edges and almost all (44/45) possible bilaterally
symmetric edges are represented in the low-frequency
graph. There are only 24 in the high-frequency graph
and they tend to be relatively short-distance (involving
medial temporal, orbitofrontal and subcortical
regions). The sagittal view of the high-frequency
graph highlights the predominance of short-distance
intrahemispheric edges, which form segregated dorsal
and ventral paths in posterior cortex. The same view of
the low-frequency map demonstrates richer local
connectivity but also more long-distance intrahemi-
spheric and bilaterally asymmetric edges (16 edges
between regions separated by a Euclidean distance
greater than 7 cm) compared with the low-frequency
graph (three edges between regions greater than 7 cm
apart). Long-distance intrahemispheric edges in the
low-frequency graph, as shown more clearly in figure 6,
predominantly involve regions of prefrontal cortex and
parietal association cortex (IFGtriang.L–IPL.L,
SFGmed.L–ANG.L, SFGdor.L–ANG.L, MFG.
L–PCUN.L, SFGdor.R–ANG.R).

We can also visualize the differential importance of
high- and low-frequency components in subtending
short- and long-distance connections by plotting the
mean normalized partial mutual information between
each pair of regions in the brain versus the Euclidean
distance between regional centroids in Talairach space
(figure 7; see also Salvador et al. 2005 for a comparable
plot of partial correlations estimated in the time domain
versus Euclidean distance between regional centroids).
It is clear that functional connectivity between regions
separated by long distances is considerably stronger in
the low-frequency band than the high-frequency band.

4. DISCUSSION AND CONCLUSIONS

Wehave describedmethods for constructing undirected
graphs to represent conditional dependence relations
between all pairs of major cortical and subcortical
human brain regions.Wehave argued that this approach
is facilitated using frequency domain estimators of
conditional independence and, in particular, we have
described in detail estimation of the partial coherencies
and of an integrated measure over an arbitrary
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frequency band, the normalized partial mutual infor-
mation f, as key measures of frequency-dependent
functional connectivity between any pair of fMRI time-
series. Using fMRI data acquired from five healthy
volunteers in the resting (no-task) state, we have
constructed whole brain graphs separately depicting
salient conditional dependencies subtended by high-
and low-frequency bands. To the best of our knowledge,
these are the first maps to illustrate frequency depen-
dence of entire human brain functional networks.

From a neurobiological perspective, several aspects
of our results are consistent with prior analyses of
resting state correlations estimated in the time domain
(Biswal et al. 1995; Lowe et al. 1998; Salvador et al.
2005). For example, we have replicated previous
observations that bilaterally homologous regions tend

to be strongly and symmetrically connected, that
low-frequency components generally subtend stronger
functional connections than high-frequency com-
ponents, and that local connectivity is generally
stronger than long-distance connectivity. However,
previous studies have often used low-pass filters prior
to correlation analysis to focus exclusively on the low-
frequency components of functional connectivity in a
selected subset of regional pairs. The novelty of our
results in this context is twofold. First, we have
considered connectivity between all possible pairs of
regions (defined by a previously parcellated template
image). Secondly, we have mapped normalized partial
mutual information for both high- and low-frequency
bands. This has offered some preliminary insights into
the variability of partial coherency spectra between
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Figure 5. Undirected graphs of whole brain functional connectivity at low and high frequencies. Top row: coronal views of
undirected graphs derived by thresholding normalized partial mutual information estimated for each of 4005 regional pairs in
low (left) and high (right) frequency bands. Bilaterally symmetric edges are coloured green; other edges are coloured red.
Regions are located by their centroid coordinates in the x and z dimensions of standard (Talairach) anatomical space; regional
abbreviations are as listed in table 1. Bottom row: sagittal views of undirected graphs derived by thresholding normalized partial
mutual information estimated for each of 4005 regional pairs in low (left) and high (right) frequency bands. Bilaterally
symmetric edges are coloured green; other edges are coloured red. Regions are located by their centroid coordinates in the y and
z dimensions of standard (Talairach) anatomical space.
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different regional pairs. In particular, we have found

that long-distance connections involving regions sep-

arated by a Euclidean distance greater than 7 cm are

predominantly subtended by low-frequency com-

ponents, whereas short-distance connections are also

often subtended by high-frequency components. In

short, it seems that low-frequency components may be

differentially important in subtending long- and short-

distance functional connectivity in the human brain.

It is beyond the scope of this paper to provide a

comprehensive explanation for this difference in the

partial coherency spectra of long- and short-distance

functional connections. Long-distance functional con-

nectivity, such as we have demonstrated between regions

of prefrontal and parietal association cortex (Chafee &

Goldman-Rakic 2000), or between bilaterally homolo-

gous regions of neocortex, is probably mediated by

specialized white matter tracts. However, short-distance

functional connectivity may be mediated by different

anatomical substrates and confounded to a greater

degree by nuisance sources of spatial covariance between

time-series (including the point spread function of the

scanner and effects of image normalization and interp-

olation). We note the analogous observations that

between-electrode coherence of local field potentials,

measuredatmultiple sites invisual cortex, falls off quickly

as a function of both increasing distance and frequency

(Leopold & Logothetis 2003). Nonetheless, (low-

frequency) band-limited coherence does not decay as

sharply as a function of distance between electrodes

(Leopold et al. 2003). It will be interesting in future

studies of resting state networks to apply novel methods

for EEG/fMRI data fusion that can localize EEG

rhythms, and may be able to elucidate the electrophysio-

logical correlates of coherent, low-frequency fMRI

oscillations (Martı́nez- Montes et al. 2004).

From a methodological perspective, we note that

our method for thresholding the partial mutual

low frequencies, sagittal view
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Figure 6. Long-distance edges in undirected graphs of whole brain functional connectivity at low and high frequencies. Sagittal
views of low (left panel) and high (right panel) frequency graphs, illustrating only left (red) or right (green) intrahemispheric
edges, or bilaterally asymmetric (blue) edges, between regions more than 7 cm apart. This display highlights the frequency
dependence of long-distance intrahemispheric connections between regions of prefrontal and parietal association cortex.
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Figure 7. Dependency of functional connectivity on anatomical distance. Plots of Euclidean distances between centroids of each
pair of regions (x-axis) versus their mean normalized partial mutual information ( y-axis) in low- and high-frequency bands again
demonstrates the importance of low-frequency components in subtending long-range connections, for example between
bilaterally homologous regions (red dots).
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information to define an undirected edge between two
regions is heuristic and does not quantify the prob-
ability of type I error in the resulting graphs.
This reflects the lack of convenient parametric tests
for the null hypothesis that group mean partial mutual
information is zero. Future methodological work may
include development of non-parametric tests, perhaps
based on spatio-temporal wavelet resampling of resting
fMRI time-series in different regions (Breakspear et al.
2004) to sample the null distribution of partial
coherencies between regions. More fundamentally, it
will be interesting to explore the complementary
estimation of (partial) correlations between coefficients
at different scales of the discrete wavelet transform as
an alternative mathematical framework for analysis of
the scaling properties of resting state functional
connectivity (Salvador et al. 2005).

In summary, we have described methods for spectral
analysis of multivariate time-series, and have shown for
the first time how these can be used to construct
frequency-dependent graphs of entire human brain
functional networks. Our results provide preliminary
evidence that there may be interesting differences in the
partial coherency spectrum describing functional con-
nectivity between different regional pairs, which appear
to be related to the anatomical distance between them
and may indicate distinct generative mechanisms for
short- and long-distance resting state correlations in
human fMRI data.
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Brain Project grant from the National Institute of Biomedical
Imaging and Bioengineering and the National Institute of
Mental Health. The Wolfson Brain Imaging Centre is
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