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ABSTRACT

Summary: We develop a novel unsupervised deconvolution method,

within a well-grounded mathematical framework, to dissect mixed

gene expressions in heterogeneous tumor samples. We implement

an R package, UNsupervised DecOnvolution (UNDO), that can be

used to automatically detect cell-specific marker genes (MGs) located

on the scatter radii of mixed gene expressions, estimate cellular pro-

portions in each sample and deconvolute mixed expressions into cell-

specific expression profiles. We demonstrate the performance of

UNDO over a wide range of tumor–stroma mixing proportions, validate

UNDO on various biologically mixed benchmark gene expression

datasets and further estimate tumor purity in TCGA/CPTAC datasets.

The highly accurate deconvolution results obtained suggest not only

the existence of cell-specific MGs but also UNDO’s ability to detect

them blindly and correctly. Although the principal application here in-

volves microarray gene expressions, our methodology can be readily

applied to other types of quantitative molecular profiling data.

Availability and implementation: UNDO is available at http://biocon-

ductor.org/packages.

Contact: yuewang@vt.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Tumor–stroma interactions serve as both a major confounding

factor and an underexploited information source in studying

tumor and microenvironment (Junttila and de Sauvage, 2013).

Although analyzing tumor cells in their microenvironment pro-

vides the most relevant context, mixed expressions cannot be

resolved directly by global profiling (Clarke et al., 2008).

Experimental solutions to isolate pure cells are inconvenient

and have many limitations (Hoffman et al., 2004). Current com-

putational alternatives perform basically a supervised

deconvolution (Ahn et al., 2013; Clarke et al., 2010; Gosink

et al., 2007; Yoshihara et al., 2013), where the required a priori

information is often inaccurate or context dependent, thus

greatly limits supervised approaches.
Supported by a well-grounded mathematical framework, we

argue that both cell-specific expression profiles and mixing pro-

portions can be estimated in a completely unsupervised mode

from two or more heterogeneous samples using raw measured

gene expression values. Fundamental to the success of our ap-

proach is the geometric identifiability of cell-specific marker

genes (MGs) warranted by (i) non-negativity of gene expression

values and (ii) co-definition of distinct phenotypes and cell-

specific MGs.

The UNsupervised DecOnvolution (UNDO) R package

adapts and extends recent unsupervised deconvolution frame-

work in the literature (Chen et al., 2011). Using UNDO to dissect

tumor–stroma mixed gene expressions, we show that (Fig. 1)

(i) the scatterplot of mixed cell expression profiles is a com-

pressed version of the scatterplot of pure cell expression profiles;

(ii) resident genes on the two radii of scatter sector are cell-

specific MGs, and furthermore, the two radius vectors defined

by the MGs coincide with mixing proportions. Accordingly,

UNDO first detects MGs on the two radii of the scatter sector

in tumor samples, then estimates cell proportions using standar-

dized average expression values of MGs and finally uncovers

pure cell expression profiles by matrix inversion. We demonstrate

the performance of UNDO on both synthetic and benchmark

real gene expression datasets with highly accurate deconvolution

results. We further apply UNDO to estimate tumor purity in

three datasets from TCGA (The Cancer Genome Atlas)/

CPTAC (Clinical Proteomic Tumor Analysis Consortium) and

obtain highly comparable results with the estimates by BACOM

2.0 and ABSOLUTE based on somatic copy number data

(Carter et al., 2012; Yu et al., 2011).

2 DESCRIPTION

2.1 Methods and software

We adopt the linear latent variable model of raw measured

expression data, given by (bold font indicates column vectors),
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where stumor(i) and sstroma(i) are the gene expression values in

pure cells, xsample1(i) and xsample2(i) are the gene expression

values in heterogeneous samples and ajk are the mixing propor-

tions with a11+ a12= a21+ a22 (after signal normalization). Our

method is built on a linear mixture of normalized raw measured

data without log transformation (Ahn et al., 2013). We further

adopt the concept of cell-specific MGs (Yoshihara et al., 2013),

i.e. genes whose expressions are exclusively enriched in a particu-

lar cell population, or mathematically s(iMG-tumor)� [�i 0]
T and

s(iMG-stroma)� [0 �i]
T. As raw measured gene expression values

are non-negative, when cell-specific MGs exist for each cell type,

the linear latent variable model (1) is identifiable using two or

more mixed expression profiles, supported by the following

newly proved theorems:

THEOREM 1 (scatter compression). Suppose that pure cell expres-

sions are non-negative and x(i)= a1stumor(i)+ a2sstroma(i) where a1
and a2 are linearly independent, then, the scatterplot of mixed

expressions is compressed into a scatter sector (Fig. 1a, the set

of light blue cross) whose two radii coincide with a1 and a2.

THEOREM 2 (unsupervised identifiability). Suppose that pure cell

expressions are non-negative and cell-specific MGs exist for each

constituting cell type, and x(i)= a1stumor(i)+ a2sstroma(i) where a1
and a2 are linearly independent, then, the two scatter sector radii a1
and a2 of mixed expressions can be readily estimated from marker

gene expression values.

(See Supplementary Information for the formal proofs.)

Supported by the newly proved theorems, the UNDO algo-

rithm performs the following major steps (Fig. 1c):

(1) preprocessing: quality control and removal of the minim-

ally expressed genes whose norm is less than a pre-fixed

positive small real number and outlier genes whose norm

is bigger than a pre-fixed positive large real number on

normalized raw data;

(2) dimension reduction when the sample number is larger

than two;

(3) marker gene detection: identify the indices of cell-specific

MGs located around the two radii of scatter sector that

correspond to the genes with minimum/maximum ratio

between the two mixed samples (Fig. 1a–1b, the set of

orange diamond);

(4) estimate tumor–stroma proportions using marker gene

expressions;

â1=
1

nMG�tumor

X
i2MG�tumor

x ið Þ

kx ið Þk
;

â2=
1

nMG�stroma

X
i2MG�stroma

x ið Þ

kx ið Þk

ð2Þ

where MG-tumor and MG-stroma are the index sets of

MGs, and nMG-tumor and nMG-stroma are the numbers of

MGs, for tumor and stroma, respectively; and jj.jj denotes

the vector norm;

(5) estimate cell-specific expression profiles using matrix

inversion.

More details on UNDO method, algorithm, parameter

settings and alternative schemes are given in Supplementary

Information.

2.2 Experimental validation and case study

We use five complementary evaluation criteria and the ground

truth to assess the performance of UNDO method and algo-

rithm. To assess the accuracy of cell proportion estimates, we

use both Pearson correlation coefficients and E1 index (Moreau,

2001). To evaluate the accuracy of the estimated cell-specific

expression profiles, we calculate the Pearson and concordance

correlation coefficient (rp and rc) between the estimated expres-

sion profile and ground truth over both ‘marker genes’ (correct

and rigorous way) and ‘all genes’ (can be misleading due to sig-

nificant number of housekeeping genes). To assess the match/

mismatch of membership/rank between the MGs detected from

pure versus mixed expressions, we use Venn diagrams and

Spearman’s rank correlation coefficient.
To validate UNDO method and algorithm, we reconstituted

tumor–stroma mixed expressions by multiplying pure expres-

sions by pre-designed proportions. Solely using mixed

expressions, UNDO accurately estimated the MGs, mixing pro-

portions with rp=0.99, cell-specific expression profiles with

rp=0.99 and rc=0.99 (see Supplementary Information).
We then tested UNDO algorithm on biologically mixed

expressions from two breast cancer cell lines (MCF7-tumor

Fig. 1. (a) The scatterplot of mixing gene expression profiles (MCF7 and

HS27 cell lines), which forms a scatter sector (a sector-shaped distribu-

tion). (b) The scatterplot of recovered pure cell gene expression profiles

(MCF7 and HS27 cell lines). (c) The flowchart of UNDO algorithm
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and HS27-stroma). The mRNA extracted from the individual
cell lines are mixed with pre-specified proportions. Such mixtures

mimic the actual biological samples with varying abundances
of the constituent subsets from one another. UNDO method
again accurately estimated the cell mixing proportions with

E1=0.0778 (rp=0.99) and cell-specific expression profiles
with average rp=0.99 and rc=0.98 between the deconvoluted
expression profile and the measured expression profile in the
pure cell lines (Fig. 2). The highly accurate deconvolution results

obtained suggest not only the existence of cell-specific MGs but
also UNDO’s ability to detect them blindly and correctly.
We further assess UNDO’s ability to detect differentially

expressed genes (DEGs) without deconvolution. We compared
the ranked DEGs indices detected by UNDO directly from
mixed expressions, with the ‘gold standard’ reference DEGs

identified from pure cell expressions, using Venn diagram,
Spearman’s rank correlation coefficient (rrank=0.92) and
receiver-operating characteristic curve (AUC=0.85). See
Supplementary Information for more results on testing UNDO

against ground truth and the estimates by BACOM 2.0 and
ABSOLUTE on benchmark and TCGA/CPTAC datasets.

3 DISCUSSION

The UNDO software delivers a completely unsupervised
deconvolution method for dissecting tumor–stroma mixed gene

expressions (Supplementary Table S4). Tested on many bench-

mark datasets, UNDO is effective at detecting cell-specific MGs

and DEGs and estimating cell proportions and cell-specific

expression profiles. We expect UNDO method, with a

Bioconductor R package, to be a useful tool for extracting cell-

specific molecular signals in studying tumor–stroma interactions

in many biological contexts. Though the UNDO method cur-

rently works for two-source mixtures only, it is principally

applicable to the situation where tumor or non-tumor tissue is

assumed to have a common composition of cellular subtypes

across the tumor samples.
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Fig. 2. (a) The scatterplot of the estimated versus true gene expression

profile of MCF7 cell line. (b) The scatterplot of the estimated versus true

gene expression profile of HS27 cell line
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