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Abstract 7 
8 

The water waves resulting from the collapse of a dam are important unsteady free 9 
surface flows in civil and environmental engineering. Considering the basic case of 10 
ideal dam break waves in a horizontal and rectangular channel the wave patterns 11 
observed experimentally depends on the initial depths downstream (hd) and upstream 12 
(ho) of the dam. For r = hd/ho above the transition domain 0.4-0.55, the surge travelling 13 
downstream is undular, a feature described by the dispersive Serre-Green-Naghdi 14 
(SGN) equations. In contrast, for r below this transition domain, the surge is broken and 15 
it is well described by the weak solution of the Saint Venant equations, called Shallow 16 
Water Equations (SWE). Hybrid models combining SGN-SWE equations are thus used 17 
in practice, typically implementing wave breaking modules resorting to several criteria 18 
to define the onset of breaking, frequently involving case-dependent calibration of 19 
parameters. In this work, a new set of higher-order depth-averaged non-hydrostatic 20 
equations is presented. The equations consist in the SGN equations plus additional 21 
higher-order contributions originating from the variation with elevation of the velocity 22 
profile, modeled here with a Picard iteration of the potential flow equations. It is 23 
demonstrated that the higher-order terms confer wave breaking ability to the model 24 
without using any empirical parameter, such while, for r > 0.4-0.55, the model results 25 
are essentially identical to the SGN equations but, for r < 0.4-0.55, wave breaking is 26 
automatically accounted for, thereby producing broken waves as part of the solution. 27 
The transition from undular to broken surges predicted by the high-order equations is 28 
gradual and in good agreement with experimental observations. Using the solution of 29 
the new higher-order equations it was further developed a new wave breaking index 30 
based on the acceleration at the free surface to its use in hybrid SGN-SWE models.  31 
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1 Introduction 49 
 50 
Dam break flows counts amount the most important types of water waves in civil and 51 
environmental engineering, given the potential impact in terms of risk to human life, 52 
environmental degradation and economical losses. Before conducting real-life 53 
simulations of dam break flows it is mandatory to investigate the behavior of hydraulic 54 
models under idealized conditions, namely for an instantaneous removal of a vertical 55 
barrier in a horizontal channel under potential flow conditions [1]. Most hydraulic 56 
models used to predict dam break waves rely on the Saint Venant equations [2] or 57 
Shallow Water equations (SWE) (Fig. 1a). This is a well-known system of two 58 
hyperbolic equations that produce as part of the dam break flow solution continuous 59 
(rarefaction) and discontinuous (shock) waves [3,4]. The shock wave is called in 60 
hydraulic “surge”, which is as it will be called herein the shock advancing in the 61 
positive x direction over the initially motionless fluid with depth hd [5]. However, 62 
hydraulic experimentation indicates that this dispersionless system of equations is not 63 
able to predict the detailed wave flow patterns for an arbitrary value of the tailwater 64 
flow depth hd.  65 
Let ho be the initial water depth upstream in the reservoir, wave breaking occurs in a 66 
transition zone for the depth ratio r = hd/ho, dependent on various factors as boundary 67 
friction, channel slope, gate opening time, type of failure, among others. A reasonable 68 
interval for threshold ratio is from 0.45 to 0.55 [6-15]. 69 
For r = hd/ho> 0.4-0.55 the dam break surge is undular (Fig. 1b), a feature linked to the 70 
existence of vertical accelerations and non-hydrostatic pressures [14,15]. This feature is 71 
well-known to be out of the capabilities of the SWE, but Boussinesq-type models are 72 
able to replicate such wave motion [16,17], the accuracy of the solution depending of 73 
the terms retained while making an approximate depth-averaging process of the Euler 74 
equations [18]. Most river flood waves resulting from the collapse of a dam are long, 75 
and, thus, we limit this study to the frequent case. The Serre-Green-Naghdi (SGN) 76 
equations are especially well-suited, given that this is an extended (non-hydrostatic) 77 
system of SWE for long waves (weakly dispersive) preserving full non-linearity [19]. 78 
Simulations of dam break waves using the SGN equations do predict undular or 79 
dispersive surges and rarefactions influenced by vertical accelerations. One would be 80 
inclined to discard the SWE for hd/ho > 0.4-0.55 and simply solve the SGN. However, 81 
for r = hd/ho< 0.4-0.55, the undular surge front begins to break (Fig. 1c), and for low r 82 
values such as r = 0.1 the surge is fully broken without any appreciable undulation on 83 
the flow profile [14]. This broken surge is very well predicted using the SWE, given 84 
that the wave front is approximated in the mathematical model as a discontinuity 85 
resulting from the weak solution of the hyperbolic conservations laws [3]. On the other 86 
hand, the SGN equations are unable to mimic wave breaking, and become unreliable for 87 
hd/ho< 0.4-0.55 unless some method to induce the breaking is added. Thus, one would 88 
be inclined to discard the SGN equations for r = hd/ho< 0.4-0.55 and simply solve the 89 
SWE. The consequence of the above discussion is that neither the SWE nor the SGN 90 
can be used (as they are) to predict dam break waves for an arbitrary value of r. 91 
We remark that both the SWE and the SGN equations use a “height-type” method for 92 
determining the position of the free surface based on the depth-averaged continuity 93 
equation, e.g., the flow depth h is a single-valued function of the space coordinate x. It 94 
means that both models lack the ability to reproduce the overturning shape of a breaking 95 
wave [20]. We refer to wave breaking in a depth-averaged framework as the ability (or 96 
lack of it) of a depth-averaged model to mimic wave breaking by transformation of a 97 
wave into a surge. In maritime hydraulics there exists a vast experience working with 98 
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improved Boussinesq-type models with breaking capabilities (see review in [21]). 99 
Basically, three types of techniques are possible in the Boussinesq-type models to 100 
'reproduce' wave breaking: 101 
1. The first option is to incorporate additional terms to represent “rollers” in the free 102 
surface once the inception of wave breaking is reached [22]. Typical of this family of 103 
models is the need to define the roller flow model itself, and a criterion to decide when 104 
the additional roller-type terms in the governing equations are activated.  105 
2. A second possibility is to add to the Boussinesq equations additional terms 106 
representing eddy-viscosity effects in the breaking portion of the wave [23,24]. As 107 
before, one would have to define the mathematical form of these terms, and a logic 108 
condition to decide when these are switched on- and off- during the simulation.  109 
3. The third option, and possibly the most used at this time, is to construct a hybrid 110 
model combining the SGN-SWE equations. The rationale of these models is as follows. 111 
Broken surges and their energy dissipation are well characterized by the shocks 112 
produced by the solution of the SWE [25], while long non-breaking waves are 113 
accurately described by the SGN equations [26]. Thus, the recipe consists in using the 114 
SGN equations as base flow model and switch locally to the SWE in those portions of 115 
the computational domain where wave breaking is detected [27]. Consequently, a 116 
criterion to define the onset of wave breaking is necessary, often requiring case-117 
dependent calibration of parameters [28]. 118 
 119 

  120 
 121 

Figure 1 Ideal dam break waves (a) Dispersive (SGN) and dispersionless (SWE) 122 
solutions, (b) photograph of undular surge (hd/h  0.75) with first wave crest travelling 123 
from left to right, (c) photograph of breaking surge (hd/h  0.4) looking upstream (tests 124 
at hydraulic flume of University of Queensland) 125 
 126 
It is then logical to use SGN-SWE hybrid models, given that a criterion for deciding 127 
when a wave is breaking is needed in any case, but no additional terms are involved into 128 
the governing equations. The criterion for activation of wave breaking is in fact not 129 
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unique, and it is common practice in maritime hydraulics to use various simultaneously 130 
[28,29]. Regretfully, most are based on parameters requiring calibration to the specific 131 
wave problem investigated. Given the vast amount of literature in maritime hydraulics, 132 
this research started at testing the various criteria offered in maritime hydraulics for the 133 
specific problem of dam-break waves in riverine applications. After this preliminary 134 
phase, the fundamental objectives of this research were to answer two fundamental 135 
questions relating to the modeling of undular and broken dam break waves: 136 
 137 
1. Why the SGN equations do not mimic wave breaking? The SGN equations are a 138 
higher-order system of depth-averaged equations, which reduces to the SWE if the non-139 
hydrostatic terms are dropped. Already discussed is the fact that the SWE predict 140 
shocks (broken surges) with great accuracy. As the SWE are embedded into the SGN 141 
equations, one would expect breaking ability of the latter system. Further, the SGN 142 
equations are a very good approximation to the Euler (2D) equations for long waves, 143 
and it is thus unfortunate that breaking waves cannot be explained, at least 144 
approximately, with the SGN equations. The answer to this question will be partially 145 
addressed considering higher-order terms into the depth-averaged non-hydrostatic 146 
equations. 147 
 148 
2. Is it possible to use an acceleration-based wave breaking sensor in SGN-SWE hybrid 149 
models? As demonstrated with detailed 2D simulations by Peregrine et al. [20], a wave 150 
which is about to break experiences a large acceleration in the breaking front, several 151 
times larger than gravity. A condition for the generation of the free jet spilling from a 152 
breaking wave is that the fluid velocity exceeds the phase celerity. Obviously, a large 153 
acceleration is a precursor needed to reach these kinematic conditions. Thus, the 154 
acceleration on the free surface may be an index of wave breaking conditions [30]. 155 
However, this physical index appears to be not tested for wave breaking in hybrid SGN-156 
SWE Boussinesq-type models. The answer to this question will be in part addressed 157 
considering a new wave breaking 'sensor' following Peregrine et al. [20]. 158 
 159 
We remark that the answers to the above two questions are only partially addressed in 160 
this work, given that these are very complex and wide. However, to our knowledge, this 161 
is the first work were these issues are investigated for dam break waves. These two 162 
objectives are systematically developed in the next sections using a set of higher-order 163 
Serre-Green-Naghdi type non-hydrostatic long-wave equations with ability to mimic 164 
wave breaking automatically, and a new acceleration-based wave breaking condition to 165 
its use in the standard Serre-Green-Naghdi equations, where wave breaking is not 166 
automatically accounted for. 167 
Note that dam-break waves are basically long waves originating under shallow water 168 
conditions, and, therefore, short wave modeling, as typical from deep to intermediate 169 
water depths in the ocean environment, was excluded from this research. Thus, 170 
techniques for improving the linear frequency dispersion of the Serre-Green-Naghdi 171 
equations are not considered in ensuing developments. Emphasis of this research is on 172 
the non-linear aspects of Boussinesq-type models, which are dominant during wave 173 
breaking processes. 174 
 175 
2 The Su-Gardner wave breaking equations 176 
 177 
Before presenting the extended equations, the following introductory section presents 178 
the usual fully non-linear and weakly dispersive model, namely the Serre-Green-Naghdi 179 
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equations. The equations and their development are well-known, but this information is 180 
summarised here for convenience. The new developments are presented thereafter as a 181 
generalisation of current tools. 182 
 183 
2.1 First Picard iteration cycle 184 
 185 
In this work Picard’s iteration results are considered for the potential velocity 186 
components (u, w) in the Cartesian (x, z) directions, and fluid pressure p. The 187 
development is well-known [18,31,32], and only the main results are stated here for 188 
introductory purposes. With ψ the stream function and ϕ the potential function, the 1D 189 
unsteady potential flow obeys the Cauchy-Riemann conditions [33,34,35] 190 
 191 

   ,u w
x z z x

      
       

   
.   (1) 192 

 193 
Iteration of the velocity components (u, w) starting with uniform flow (u = q/h; w = 0) 194 
as initial guess produces the following kinematic field for water waves propagating over 195 
horizontal terrain [18,32] 196 
 197 
     xw U z  ,     (2) 198 

    
2 2

6 2xx

h z
u U U

 
   

 
,    (3) 199 

 200 
where h is the water depth, U = q/h the mean fluid velocity, Ux = ∂U/∂x and Uxx = 201 
∂2U/∂x2. An identical result is obtained expanding in power series (u, w) [19,36]. As 202 
demonstrated by Carter and Cienfuegos [36] Eqs. (2)-(3) are a good kinematic model 203 
for long waves. Equations (2)-(3) are the fully non-linear potential velocity components 204 
resulting from the 1st Picard iteration cycle. The pressure distribution p is determined 205 
inserting Eqs. (2)-(3) into the vertical Euler equation as [19,37] 206 
 207 

     
2 2

2d
2

h

x xx xt

z

p w w w h z
g h z u w z g h z U UU U

t x z
                      

 , 208 

           (4) 209 
 210 
where Uxt = ∂2U/∂x∂t and t is the time. We remark that Eq. (4) is only approximate: it 211 
was determined assuming u ≈ U. To produce the Boussinesq-type equations, the 212 
vertically-integrated mass and momentum equations are considered here, namely 213 
[18,19] 214 
 215 

     
0

d 0
h

h
u z

t x

 
 

   ,    (5) 216 

    2

0 0

d d 0
h h

p
u z u z

t x 
  

      
  .   (6) 217 

 218 
The integrals needed in Eqs. (5)-(6) are evaluated as follows [18,37] 219 
 220 
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    2 2

0 0

d , d
h h

u z Uh u z U h   ,    (7) 221 

    
2 3

2

0

d
2 3

h

x xx xt

p h h
z g U UU U


    ,   (8) 222 

 223 
where the usual simplification u ≈ U is implicit [37]. Inserting Eqs. (7)-(8) into Eqs. (5)-224 
(6) yields 225 
 226 

       0
Uhh

t x


 

 
,    (9) 227 

     
2 3

2 2 0
2 3x xx xt

Uh h h
U h g U UU U

t x

  
         

.  (10) 228 

 229 
Equations (9)-(10) are the well-known Serre-Green-Naghdi (SGN) equations for 1D 230 
water waves over horizontal terrain [37,38,39,40]. These equations are extensively used 231 
in maritime hydraulics [19,23,41,42]; see review by Brocchini [21], but much less in 232 
river flow applications [43,44,45,46]. The steady-state version of the equations is 233 
frequently used in flow over channel structures [47,48,49,50]. The SGN equations are 234 
known to be an excellent approximation to the Euler equations for long waves, 235 
excluding wave breaking conditions, as demonstrated by Nadiga et al. [26] for undular 236 
bores propagating over obstacles and Viotti et al. [51] for the runup of long wave 237 
packets impinging on vertical walls. The purpose of this section was to show how 238 
Eqs.(9)-(10) were obtained from Eqs. (2)-(3) assuming u(z) = U = q/h. Note that 239 
Eqs.(9)-(10) are only valid for an ideal flat bottom topography, as they result from (2) 240 
and (3). 241 
 242 
2.2 Velocity and pressure higher-order effects 243 
 244 
The former section conveys a message: Eqs. (9)-(10) are only an approximate depth-245 
averaged model, not only because of Eqs. (2)-(3) are approximations to the exact 2D 246 
velocity field, but, additionally, because the variation of u with z is fully overlooked 247 
once u = U is set as part of the depth-averaging process. It is immediate to realise that 248 
the advection of momentum is not included, and that it may be important in waves near 249 
breaking. Eqs. (9)-(10) are alternatively determined in other works using a rigorous 250 
scaling analysis of dispersion and non-linearity (e.g. in [19]). However, the effect of the 251 
neglected higher-order terms while conducting the depth-averaging process seems to be 252 
unknown. The authors are unaware on any previous work evaluating the impact of the 253 
neglected terms in Boussinesq-type simulations. We reconsider in this section the 254 
potential velocity components (u, w) given by Eqs. (2)-(3), and will use them to perform 255 
integrals without neglecting higher order terms while conducting the depth-averaging 256 
process resorting to Eqs. (5)-(6). 257 
The exact vertical pressure distribution resulting from the 1st Picard iteration cycle is 258 
thus 259 
 260 
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 

 

   

2 3
2 2

2 2 4 2 2 4
2 2

d

   d
6 2
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h

z

h

xt xx xx x

z

x xx xt xx

p w w w
g h z u w z

t x z

h z
g h z U z UU z U z U z z

h z z h z h
g h z U UU U U .


           

  
         

  
   

          
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

  (11) 261 

 262 
The exact momentum and pressure force integrals are then 263 
 264 

  
22 2 5

2 2 2

0 0

d d
6 2 45

h h

xx xx

h h
u z U U z U h U

  
      

  
  ,   (12) 265 

 266 

   
2 3 5

2 2

0

2d .
2 3 45

h

x xx xt xx

p h h h
z g U UU U U


        (13) 267 

 268 
Using Eqs. (12)-(13) the higher-order vertically-integrated x-momentum equation 269 
resulting from the 1st Picard iteration cycle is 270 
 271 

 

   1 1 12 2 2 3 2 5
2 3 15

   Shallow Water Equations           

                                    Serre- Green-Naghdi Equ

0x xx xt xx

Uh
U h g U UU U U .

t x x x
BD

h h h

   
                           




ations                                               

                                                                    Su-Gardner breaking Equations                             


                                  

(14) 272 

 273 
In Eq. (14), two additional terms appeared summed to the x-momentum equation of the 274 
Shallow Water Equations. The first, denoted by D, is the usual dispersion term modeled 275 
by the Serre-Green-Naghdi equations, while the term B is of a higher-order. This term 276 
originated from the variation of u with z. It was originally obtained by Su and Gardner 277 
[38], but they neglected B as compared to D in the final form of their equations, arguing 278 
that it is a higher order term. It will be shown in the next sections that this higher-order 279 
term gives breaking ability to the equations. Given that the term B was discovered by Su 280 
and Gardner [38], we name the higher-order equations as the Su-Gardner breaking (SG-281 
B) equations, in recognition of their pioneering work. Note that Eq. (14) is exact in the 282 
sense that Eqs. (2)-(3) were rigorously used to produce depth-averaged equations. 283 
However, Eq. (14) is still only an approximation to the Euler equations. 284 
To be shown with the numerical simulations is the fact that B can be safely neglected as 285 
compared to D for non-breaking waves. But, for breaking waves, the term B can be of 286 
larger magnitude than D, and thus, cannot be neglected. Note that in a wave profile at 287 
the onset of breaking not all the undulations are under breaking conditions. That is, 288 
typically the front of a surge is breaking while the tailwater waves are undular. It seeds 289 
the idea that a wave motion may not be governed by identical scales locally, and in a 290 
portion of the wave B may be important as compared to D (at the breaking front), 291 
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whereas, in the remaining portion of the flow profile, B is not important as compared to 292 
D (undular waves at the tailwater). 293 
 294 
Equation (14) is based on Eqs. (2)-(3), which are approximate potential velocity 295 
components suitable for modeling long waves. These velocity components imply a local 296 
vertical acceleration based on the depth-averaged velocity U and mathematically given 297 
by ∂w/∂t = ‒(∂2U/∂x∂t)z. The modeled local acceleration is responsible of the term 298 
‒1/3(∂2U/∂x∂t)h3 appearing in D, and thus, determining the linear frequency dispersion 299 
relation hoω2/g=(kho)2/[1+1/3(kho)2] of both the SGN and SG-B equations, where the 300 
linear frequency is ω, k is the wave number and ho the water depth. The dispersive 301 
behavior of a Boussinesq-type model is therefore dependent on the approximation used 302 
for the local vertical acceleration, and, therefore, the simplified theory pursued here 303 
produces a linear frequency dispersion relation valid for shallow flows, typically down 304 
kho < 1.2, [18]. Therefore, the higher-order term proportional to Uxx in Eq. (3) affects 305 
the non-linearity of the SG-B depth-averaged equations, and, thus, the behavior of the 306 
model at wave breaking conditions. Conducting additional Picard iteration cycles it 307 
would be possible to include higher-order corrections into the local acceleration ∂w/∂t, 308 
and, therefore, improve the dispersive properties of the ensuing model. In Matsuno [9] 309 
higher-order equations are presented. In the current work we have used Eqs. (2)-(3) as 310 
the kinematic field to approximate the modeling of long waves, and, therefore, the 311 
higher-order term B appeared into the governing equations. This approximation is fully 312 
consistent from a mathematical standpoint with the Picard iteration technique. 313 
Alternatively to Picard iteration the SGN-type equations can be developed by expanding 314 
the potential function in power series [9]. From this development other terms of the 315 
same order in the scaling analysis emerge. These would appear also in the next Picard 316 
iteration cycle. In our approximate treatment of the problem we have retained the results 317 
of the full 1st Picard iteration cycle. In this work, therefore, we limit the development to 318 
shallow-water conditions, typical of dam break waves, thereby excluding the modeling 319 
of short waves.  320 
 321 
2.3 Scaling analysis 322 
 323 
The importance of the higher-order term B will be qualitatively discussed here based on 324 
a scaling analysis. Let us define the scaled variables (with hat) 325 
 326 

    
   1 2 1 2

h x U t H
h , x , U , t ,

H L LgH H g
     ,  (15) 327 

 328 
where the shallowness scaling parameter is ε = H/L, with H and L as representative 329 
vertical and horizontal length scales [52]. Our scaling analysis applies for long waves, 330 
as considered in the paper.  331 
 332 
Using Eqs. (15) into Eq.(14) produces 333 
 334 
       1 1 12 2 3 2 3 5 2 5

2 3 15 0x xx xt xxh h
Uh

U h U UU U U
t x x x

h  
              

, (16) 335 

 336 
where hats are dropped for simplicity's sake. Let us compare the higher order of B (term 337 
proportional to ε5) to D (term proportional to ε3). If ε is sufficiently small, B can be 338 
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neglected as compared to D. If ε is not small then B may play an important role in the 339 
wave motion. 340 
 341 

  342 
Figure 2 Undular surge with breaking front (a) Definition sketch (b) Laboratory 343 
observation at the University of Queensland, with surge propagation from left to right 344 
and light breaking at the first wave crest (b) Dordogne River tidal bore at Luchey 345 
(France) on 30 October 2015 - note the wave breaking on the left 346 
 347 
Let us consider an undular surge with a breaking front (Fig. 2). At the surge front the 348 
breaking portion of the wave involves a roller of horizontal extension L and vertical 349 
thickness H = H2‒H1 (Fig. 2a). At this wave, the scaling ε is a measure of the average 350 
free surface slope of the breaker, which is usually steep. Keeping this result in mind, it 351 
is expected that B will be important in breaking portions of a wave, where the average 352 
slope of the front increase (and hence ε), and unimportant elsewhere. This scaling 353 
reasoning will be verified below in the section with numerical simulations. It is 354 
accepted that a wave breaks in a depth-averaged framework if a threshold free surface 355 
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slope ∂h/∂x is exceeded, among other conditions, as in [29]. Therefore, ε is a natural 356 
scaling to investigate waves at the onset of breaking. 357 
 358 
The shallowness parameter ε = H/L was used by Stoker [52, pp.28-32] and Friedrichs 359 
[53] to derive by a perturbation method the hydrostatic Saint Venant theory and 360 
Boussinesq equations. The specific choices of H and L are free, and, in our case, we 361 
related them to the conditions at a wave front. The shallowness parameter there can be 362 
considered a measure of the average free surface slope of a breaking wave. Note that in 363 
water wave modeling two parameters are usually selected for a scaling analysis of the 364 
equations of motion [19], the first, ho/L, where ho is the static water depth and L is the 365 
wave length, and the second is A/ho, where A is the wave amplitude. The parameter ho/L 366 
is used to visualize the importance of the dispersive features of the model, such that for 367 
long waves it is a very small quantity. In contrast, A/ho is used as a measure of non-368 
linearity, being important in waves close to breaking. In this paper the model equations 369 
considered are weakly dispersive given the restriction to the modelling of long waves. 370 
Thus, only non-linearity was accounted for in the higher-order correction term B. 371 
Therefore, the scaling analysis conducted here started by assuming long wave 372 
conditions thereby normalizing using the shallowness parameter, with our specific 373 
choices of the scales for interpretation of the local conditions at a wave front. 374 
 375 
Note that the term B is essentially a non-hydrostatic higher-order term, which, however, 376 
is not affecting the linear dispersion relation of the SG-B equations. In [9] it is 377 
demonstrated that this term scales with (ho/L)4, as well as other dispersive terms that 378 
originated in the series expansion. Consideration of a second Picard iteration cycle 379 
would account for higher-order terms. Investigation of these terms could be a means of 380 
further improving the behavior at wave breaking conditions. 381 
 382 
3 Hybrid modeling SGN-SWE 383 
 384 
Prior to conducting a numerical solution of the SG-B equations, we elaborate below an 385 
hybrid SGN-SWE model. This will be used as reference to test how the new equations 386 
works in dam break wave problems. 387 
 388 
3.1 Solution strategy 389 
 390 
Consider the SG-B equations [Eqs. (9) and (14)] written in vector form as 391 
  392 
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           (17) 394 
 395 
where U is the vector of unknowns, F is the flux vector and S the source term. Dropping 396 
B, the SGN equations read 397 
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  398 
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 400 
An hybrid SGN-SWE model solves Eq. (18) in the whole computational domain. When 401 
breaking is detected, the dispersive term D is deactivated there and the SWE are solved 402 
in this portion of the wave profile, e.g., 403 
 404 

   
12 2
2

       
,

                

.

  ,

Uhh

Uh U h g

t x

h

 

 
 

 


         

U F 0

U F
    (19) 405 

 406 
The hybrid application of Eqs. (18)-(19) requires determining a criterion for the onset of 407 
breaking in the depth-averaged framework. 408 
 409 
3.2 Breaking conditions 410 
 411 
Several conditions are used in the literature to decide if a portion of a wave profile is 412 
about to break in Boussinesq-type phase resolving simulations. Here we follow the 413 
detailed work by Kazolea et al. [29], who used a hybrid criteria summarized below. A 414 
first physical condition states that a wave breaks if the velocity of vertical displacement 415 
of the free surface exceeds a fraction γ of the long wave phase celerity [29]: 416 
 417 

      1 2h
gh

t





.    (20) 418 

 419 
The parameter γ is not universal and ranges from 0.35 to 0.65, depending on the 420 
physical problem simulated. A second criterion is [29] 421 
 422 

      tan c

h

x





,    (21) 423 

 424 
which states that a wave begins to break once the local free surface slope exceeds a 425 
limiting inclination, with ϕc as the critical front angle. The value of ϕc is not universal, 426 
and typically ranges from 14º to 33º, depending on the wave motion simulated. Further, 427 
once a roller is identified on a wave, its Froude number F may be defined as (Fig. 2): 428 
 429 

       1 221
2 18 2 1 1H H   

 
F ,   (22) 430 

 431 
by analogy with the hydraulic jump in translation [1,52]. Despite the analogy between 432 
undular hydraulic jumps and undular surges, we do not pursue it here, following Montes 433 
[54]. Based on experimental observations, an undular surge breaks in the interval 1.5 ≤ 434 
F ≤ 1.8 [5,55,56,57,58], such that outside its upper limit the wave is fully broken. Other 435 
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works suggested a rather lower limit for the onset of undular surge breaking as Flim = 436 
1.2 [59]. Therefore, a wave is broken only if the Froude number of the roller is above a 437 
limiting value Flim, e.g., 438 
 439 
     limF F .     (23) 440 
 441 
The three physical conditions stated, namely Eqs. (20), (21) and (23), must be applied to 442 
determine in which portion of the computational domain Eq. (19) is solved instead of 443 
Eq. (18). No calibration of the parameters was attempted in this work. In all our 444 
simulations, the default mean typical values are γ = 0.5, tanϕc = 0.5 and Flim = 1.3. Other 445 
models for solving the SGN equations use artificial dissipation introduced into the 446 
numerical scheme to mimic breaking, instead of defining numerical rollers by resorting 447 
to the above physical conditions. Examples are the use of artificial viscosity by 448 
Mohapatra and Chaudhry [43] or the upwinding of Ux by Castro-Orgaz and Cantero-449 
Chinchilla [46]. In this work we only consider hybrid models with wave breaking 450 
activated by physical conditions.  451 
 452 
3.3 Roller definition 453 
 454 
Before presenting the numerical scheme, common to Eqs. (18) and (19), the 455 
methodology to determine the portions of the computational domain governed by each 456 
equation is explained below following Kazolea et al. [29]: 457 
 458 
1. The computational domain is divided into cells of width Δx; Eqs. (20) and (21) are 459 
checked in each cell. If either of the two conditions is satisfied, the cell is marked as 460 
breaking (dispersive terms switched-off). 461 
 462 
2. Breaking cells are clustered to avoid the effects of dispersion acting between breaking 463 
cells which are very close. For this purpose, breaking cells at a distance equal or less 464 
than 4Δx are grouped into larger rollers. The stencil used to discretise dispersive terms 465 
has a width of 2Δx (second-order central finite differences), and we thus used a double 466 
length to group breaking cells and form rollers.  467 
 468 
3. Once a roller is defined on the wave profile, its extension L and heights H1 and H2 469 
(Fig. 2) are determined. If F < Flim, the roller may not be physical, and their cells are 470 
considered again as non-breaking (dispersive terms switched-on back). 471 
 472 
4. If F > Flim, the length of the numerical roller is incremented to satisfy a minimum 473 
value determined as Lmin = Λ(H2‒H1), with Λ typically ranging from 3 to 10. If Λ is too 474 
low the stability of the hybrid model is degenerated by the action of dispersion in non-475 
breaking cells adjacent to rollers which are not strong enough to produce the breaking 476 
wave. In all our simulations we used Λ = 10. For comparison, experimental 477 
observations in stationary hydraulic jumps yielded Λ = 4.4 [60], although re-analysis of 478 
large scale breaking wave experiments, including tidal bores, suggests that Λ may be as 479 
high as 8 [28]. 480 
 481 
4 Numerical scheme 482 
 483 
The numerical method is common to all models and consists in a finite-volume finite-484 
difference scheme based on Castro-Orgaz and Cantero-Chinchilla [46]. A brief 485 
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summary of the main aspects follows. An alternative form of Eq. (17) is obtained after 486 
some algebra by using the chain rule of calculus and the depth-averaged continuity 487 
equation, 488 
 489 
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 495 
Equations (24) are the SG-B equations. Setting B = 0 one gets the SGN equations, 496 
whereas for C = B = 0 and σ = Uh the SWE are regained. The system of Eqs. (24) is 497 
solved using a finite volume-finite difference method based on the MUSCL-Hancock 498 
scheme, which is second-order accurate in space and time. First, the source term Sd is 499 
neglected. The integral form of Eq.(24) then reads for the advection step [3] 500 
 501 

     adv
1 2 1 2

k

i i i i
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x
 
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
W W F F .   (28) 502 

 503 
Here ∆t and ∆x are the step sizes in the t and x axes, respectively, k refers to the time 504 
level, i is the cell index in the x-direction, and Fi+1/2 is the numerical flux crossing the 505 
interface i+1/2 between cells i and i+1. A piecewise linear reconstruction is conducted 506 
within each cell, and the minmod limiter is applied to avoid spurious oscillations near 507 
discontinuities. The numerical flux is computed using the HLL approximate Riemann 508 
solver, and the Courant-Friedrichs-Lewy number CFL is limited below unity for 509 
stability of the explicit scheme. Once the result of Eq. (28) is available, the value 510 
obtained for the flow depth is final, but the auxiliary variable σ must be updated to 511 
include the effect of Sd. A predictor-corrector finite-difference scheme to incorporate Sd 512 
in the solution is accomplished. The predictor step is 513 
 514 
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advp

i i

i

D B
t

x
 

  
     

,   (29) 515 

 516 
where all the spatial derivatives are approximated using second-order central finite 517 
differences. Once p

i  is available at each cell, the non-hydrostatic velocity field is 518 
obtained by solving the Helmholtz-type Eq. (25), in the sense there is a non-vanishing 519 
source term in addition to the Laplacian of the depth-averaged velocity field, using 520 
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central finite differences. The resulting system of equations is tridiagonal and easily 521 
invertible by resorting to the Thomas algorithm [61]. The corrector step is given by 522 
 523 

     1 adv ,
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i i

i

D B
t

x
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   (30) 524 

 525 
which is adopted as the final step and involves identical operations to the predictor 526 
phase. The numerical accuracy of the solver for wave propagation was investigated 527 
using solitary wave propagation tests [45], where the numerical errors were analysed for 528 
variations in Δx and CFL. The model successfully passed the tests and produced 529 
accurate numerical propagations as compared to the analytical counterparts. The 530 
second-order central differences used to compute Uxx produce high frequency 531 
oscillations in the estimated B, that affected the stability of the model given the stringent 532 
test posed by the dam break problem. A five point moving average was applied to the 533 
computed Uxx prior to estimate B, thereby removing the numerical noise and resulting 534 
stable computations in all our simulations. For application of the SGN-SWE hybrid 535 
model the conditions given by Eqs. (20)-(21) are checked in each cell in discretized 536 
form after solving the SGN equations. Breaking portions on the free surface are then 537 
identified taking into account Eq. (23), and the SWE solved in those subdomains. 538 
 539 
5 Performance of the Su-Gardner higher-order equations 540 
 541 
5.1 Dam-break waves 542 
 543 
The experimental data of Ozmen-Cagatay and Kocaman [62] at various normalized 544 
times T = t(g/ho)1/2 starting at abrupt gate removal are considered in Fig. 3 for a dam 545 
break wave test with r = hd/ho = 0.1 in a horizontal channel. Its upstream water depth is 546 
ho = 0.25 m, the flume width is 0.3 m and the downstream water depth for this series is 547 
hd = 0.025 m. Simulations are conducted using a fine mesh with CFL = 0.1 and Δx = 548 
0.01 m in all the models tested to reduce truncation errors. However, computations were 549 
found to be stable for the typical values CFL = 0.4-0.5. Left panels of the figure contain 550 
the comparison of the SGN and SG-B equations. It can be observed that the SGN 551 
equations produce for all times a solitary-like dispersive surge, which is not attenuated. 552 
On the other hand, the SG-B equations produce wave breaking progressively. Note the 553 
large differences between both models at T = 8.9, where the surge predicted by the SG-554 
B equations is fully broken. Although the shape of the wave predicted by the SG-B 555 
equations is not in precise agreement with experiments during the breaking process, the 556 
fact that this wave breaking is automatically conducted by the physical system of 557 
equations without any external condition to force it is considered a significant salient 558 
result. Previous depth-averaged models proposed in the literature use wave breaking 559 
sub-models (roller type terms, eddy-viscosity terms, local switch to SWE) resorting to 560 
calibrated conditions to detect the onset of wave breaking. Note that the effect of B on 561 
the rarefaction wave is negligible. The rarefaction waves are accurately described by the 562 
SGN equations, as previously found by Castro-Orgaz and Chanson [63]. Given that the 563 
only difference between the simulations using the SGN and SG-B equations is that B is 564 
accounted for in the latter system, the important role of B in breaking waves is 565 
confirmed. The right panels contain a comparison of the SGN equations with the hybrid 566 
SGN-SWE model. During initiation of motion, wave breaking predicted by the hybrid 567 
model is excessive, whereas for T = 4.01 onwards the predicted surge is similar to that 568 
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determined with the SG-B equations. The interesting result is that the SG-B equations 569 
are able to produce a broken surge similar to that obtained with the hybrid SGN-SWE 570 
model without invoking any empirical parameter, whereas the latter model requires the 571 
use of a 3-parameter breaking module. The comparison is not aimed at discarding the 572 
use of the efficient hybrid SGN-SWE model, but rather, at opening alterative paths to 573 
implement wave breaking and exploring what is missing in the SGN to allow breaking 574 
capabilities. As a consequence of the present results, the variation of the velocity profile 575 
u with z shall be accounted for in the depth-averaged equations to allow wave breaking 576 
mimicking. 577 
The experimental data of Ozmen-Cagatay and Kocaman [62] for a dam break wave test 578 
with r = hd/ho = 0.4 is considered in Fig. 4, and a germane comparison between the 579 
various models is presented. In this test it is clearly observed (left panels) that the 580 
degree of "breaking" introduced by the SG-B is less than that observed in the 581 
experiments, as noted from the results at T = 8.9. However, the hybrid SGN-SWE 582 
model is likewise underestimating the wave breaking, producing results again in close 583 
agreement with the SG-B equations. 584 
 585 
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 586 
Figure 3. Comparison of numerical simulations with experimental data (Ozmen-587 
Cagatay and Kocaman [62]) for a dam break wave with r = 0.1 using: the SG-B and 588 
SGN equations (Left panels) and the hybrid SGN-SWE and SGN equations (right 589 
panels) 590 
 591 
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 592 
Figure 4. Comparison of numerical simulations with experimental data (Ozmen-593 
Cagatay and Kocaman [62]) for a dam break wave with r = 0.4 using: the SG-B and 594 
SGN equations (Left panels) and the hybrid SGN-SWE and SGN equations (right 595 
panels) 596 
 597 
Let us discuss the breaking ability of the SG-B equation system. Consider Fig. 5, where 598 
a snapshot of the undular surge simulated with the SGN equations for r = 0.1 at T = 8.9 599 



 18

is presented. For this (non-breaking) wave, the same figure contains a plot of the 600 
dispersion term D modeled in the SGN equations, as well as the breaking term B 601 
neglected. Upon comparing D with B it is noted that the neglected term is of higher 602 
magnitude than the modeled term! It means that B shall be retained in depth-averaged 603 
non-hydrostatic models for waves near breaking conditions. The former simulations 604 
confirmed that this term is responsible of wave breaking mimicking. Basically, for non-605 
breaking waves D is the dominant term, and the solution of the SGN equations is nearly 606 
identical to that of the SG-B equations. As the wave progressively approaches breaking 607 
(reducing r in our case) the term B increases in magnitude and partially suppress the 608 
effect of D. For breaking waves, the sum D+B tend to be a small quantity, thereby 609 
indicating that the solution of the SG-B system will be dominated by the underlaying 610 
SWE component embedded on them. It further confirms that in a breaker the scaling ε = 611 
H/L is conceptually approached by the average slope of the breaking front, such that the 612 
effect of B progressively augments as the free surface slope increases. 613 
 614 
  615 

  616 
Figure 5. Snapshoot of undular surge simulated with the SGN equations for r = 0.1 at T 617 
= 8.9 showing the dispersion term D modeled in the SGN equations and the neglected 618 
breaking term B 619 
 620 
Simulations of the Serre-Green-Naghdi equations do converge to analytical solutions 621 
during solitary wave propagation tests as both Δx and CFL are reduced. In the hybrid 622 
model SGN-SWE, however, the mesh cannot be refined without bounds, given that 623 
strong oscillations appears at the switching portion of the SGN and SWE sub-models. 624 
The SGN-SWE hybrid models are widely used in ocean research [21], but the 625 
generation of numerical instabilities during mesh refinement is a challenging difficulty 626 
precluding the establishment of fully grid-converged solutions, as discussed by Kazolea 627 
and Ricchuito [64]. In the case of the SG-B equations the discretization of the higher 628 
order term B was sensitive to significant refinement of the mesh down the minimum 629 
values Δx = 0.01 m (Δx/ho = 0.04) and CFL = 0.1 used. Further refinement of the mesh 630 
increased the high-frequency noise transmitted to the solution by the discrete central 631 
approximation to the derivative ∂2U/∂x2, forcing to introduce a stronger filter to the 632 
signal to grant stability of the model. Fully converged solutions are therefore difficult 633 
and open to further research. 634 
An obvious consequence of the breaking ability of the SG-B equations is that solitary 635 
wave solutions are not likely to exists for arbitrary values of F. Investigation of the 636 
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solitary wave solutions of the SG-B equations is important because of it will highlight 637 
how the undular wave front of a dam break wave is expected to evolve in time under the 638 
action of the new wave breaking term. Solving the steady-state version of the SG-B 639 
system it was found that the upper bound for existence of solitary wave solutions is F ≈ 640 
1.397 (Appendix), which is in remarkable agreement with the experimental value for 641 
apparition of some breaking at the first crest of an undular surge F = 1.3-1.4 [5,55,56]. 642 
Wave breaking starts to manifest progressively in the SG-B equations for F > 1.397. A 643 
consequence of this finding is that waves of permanent shape with equilibrium between 644 
dispersion and non-linearity, e.g., solitary waves, cannot be expected for F > 1.397. In 645 
this case the SG-B equations tend to transform any solitary-like wave into a shock 646 
(Appendix). 647 
 648 
Figure 6 shows a comparison of the SG-B equations with the experimental data by 649 
Stansby et al. [65] at several instants after removal of the gate from the flume. The 650 
upstream depth in the experiments was ho = 0.1 m and r = 0.45. A lag of t = 0.04s was 651 
considered in the mathematical model to account for the gate opening time, given that 652 
the initiation of motion is instantaneous in the numerical flume. The comparison shows 653 
a fair reproduction of experiments by the numerical model, albeit with less intensity of 654 
breaking, as previously described in Fig. 4. 655 
 656 
The solution of the SG-B at T = 15 for r = 0.7, 0.5 and 0.2 is presented in Fig. 7 for 657 
comparison purposes with the 2D simulations by Mohapatra et al. [66] using the Euler 658 
equations. Computations were again conducted using Δx= 0.01 m and CFL = 0.1. The 659 
rarefaction wave predicted by the SG-B equations is in excellent agreement with 2D 660 
results for all values of r. The undular surge agrees well with 2D results for r = 0.7. For 661 
lower values the SG-B equations progressively produce wave breaking. Note that the 662 
amplitude of the leading wave is in good agreement with 2D results for the broken wave 663 
generated with r = 0.2. The major discrepancy between 1D and 2D results is in the 664 
secondary waves, which are more damped in the 2D simulations. 665 
 666 
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   667 
Figure 6. Comparison of numerical simulations using the SG-B equations with 668 
experimental data (Stansby et al. [65]) for a dam break wave with r = 0.45 669 
 670 
 671 
 672 
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 673 

   674 
Figure 7. Comparison of the SG-B equations at T = 15 for r = 0.7, 0.5 and 0.2 with the 675 
2D simulations by Mohapatra et al. [66] solving the Euler equations. 676 
 677 
5.2 Undular Favre waves 678 
 679 
The ability of the SG-B model to propagate undular bores was tested using the 680 
experiments on Favre waves generated in a laboratory flume after a fast partial gate 681 
opening [67]. Computations were conducted using Δx= 0.025 m and CFL = 0.1. 682 
Experiments reported there were conducted in a flume 1 m wide and 26.15 m long, with 683 
an initial water depth of 0.251 m. The evolution of the undular bore was measured using 684 
water level gauges positioned at several distances from the gate (see Fig. 8). The bore 685 
Froude number of these experiments [Eq. (22)] is F = 1.104. Note that the comparison 686 
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of the depth-hydrographs predicted by the SG-B equations at several positions with the 687 
experimentally measured Favre waves is generally good (Fig. 8), although the first 688 
experimental wave is a bit delayed as compared to simulations. 689 

 690 

 691 
Figure 8. (a)-(f) Comparison of the depth-hydrographs predicted by the SG-B equations 692 
at several positions with the experimentally measured Favre waves (F = 1.104) by 693 
Soares-Frazão and Zech [67], (g) computed free surface profile at t = 18 s 694 
 695 
5.3 Undular Tidal bore 696 
 697 
Chanson [55] conducted experiments on undular tidal bores in a 0.5 m wide, 12 m long 698 
rectangular and horizontal flume. A radial gate at the tailwater portion of the flume (x = 699 
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11.15 m) was used to create the desired (initial) steady subcritical flow. A fast closing 700 
of a tainter gate close to and upstream of the radial gate produced an undular surge that 701 
propagated in the upstream direction. Depth-hydrographs were measured with acoustic 702 
displacement meters at several positions (see Fig. 9). A run for discharge Q = 0.019 703 
m3/s, ho = 0.191 m (subcritical initial conditions) and F = 1.11 is considered in the 704 
figure, were computations using the SG-B equations are compared with observations. 705 
Computations were conducted using Δx= 0.01 m and CFL = 0.1. Gate closing was 706 
activated at t = 27.4 s in the mathematical model. In general predictions are in fair 707 
agreement with observations, with the exception of the secondary waves at x = 8 m (Fig. 708 
9a), possibly due to the highly dispersive effects of these rather short waves. 709 
 710 

 711 
Figure 9 (a)-(d) Comparison of the depth-hydrographs predicted by the SG-B equations 712 
at several positions with the experimentally measured tidal bore (F = 1.11) by Chanson 713 
[55], (e) computed free surface profile at t = 32.4 s 714 
 715 
6 Serre-Peregrine wave breaking sensor 716 
 717 
Peregrine et al. [20] conducted 2D simulations of breaking waves and found that, at the 718 
onset of breaking, acceleration several times larger than gravity occurs on the face of 719 
the wave (Fig. 10a). The finding was recently confirmed in physical and 3D CFD 720 
numerical experiments [30,68]. The free jet spilling from the breaking wave involves a 721 
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fluid velocity on the free surface in excess of the phase celerity. The large acceleration 722 
is therefore a precursor of extreme kinematic conditions at the onset of breaking. Thus, 723 
we question now if the free surface acceleration is a viable index of wave breaking in 724 
Boussinesq-type models. 725 
 726 

 727 
Figure 10. Wave breaking (a) sketch of the onset of wave breaking (adapted from [20]), 728 
(b) determination of free surface acceleration (c) snapshot of undular surge simulated 729 
with the SGN equations for r = 0.1 at T = 8.9 showing the free surface acceleration 730 
sensor α 731 
 732 
Consider Fig. 10b, where the normal acceleration component for a water particle on the 733 
free surface is sketched. For non-breaking conditions the particle must remain on the 734 
free surface. Therefore, breaking is initiated if the acceleration normal to the free 735 
surface an becomes negative, e.g., 736 
 737 
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 739 
where θ is the free surface inclination, R the free surface radius of curvature, and Vs the 740 
particle velocity at the free surface. Equation (31) was originally stated by Serre [37] 741 
and discussed for steady hydraulic jumps. The particle velocity components at the free 742 
surface are from Eqs. (2)-(3) 743 
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 746 
Expressing θ and R as functions of hx and hxx, and normalizing using g, Eq.(31) produce 747 
the Serre-Peregrine acceleration-based breaking sensor α as 748 
 749 
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 751 
where the breaking condition states that α becomes negative. The new proposed 752 
breaking sensor is physically-based and, as observed from Eq. (33), there is not a 753 
reference value to be calibrated for a specific wave motion. Consider Fig. 10c, where 754 
the snapshot of the undular surge simulated with the SGN equations for r = 0.1 at T = 755 
8.9 is presented (see Fig. 5). For this (non-breaking) wave included in the same figure is 756 
a plot of the breaking sensor α, revealing its large (negative) values at the surge front. 757 
The behavior of the acceleration index seems to be well correlated to the breaking factor 758 
B. Therefore, it is of interest to investigate if α is a viable index for detecting wave 759 
breaking in Boussinesq models. 760 
 761 
Figures 11 and 12 are analogue to Figs, 3 and 4 using in the hybrid SGN-SWE model 762 
Eq. (33) to activate breaking instead of Eqs. (20), (21) and (23). Comparing Fig. 11 with 763 
Fig. 3 and Fig. 12 with Fig. 4 it is appreciated that the results using the acceleration 764 
based breaking sensor [Eq. (33)] are very similar to those using the Eqs. (20), (21) and 765 
(23). Thus, the free surface acceleration is a possible index to detect wave breaking 766 
conditions, without involving calibration of a reference value for the α index. 767 
 768 
The above wave breaking criterion is based upon ideal fluid considerations. In high-769 
velocity turbulent water flow, the interactions with the atmosphere may yield to surface 770 
breaking and self-aeration [69,70]. The conditions for the inception of surface breaking 771 
may be related to the turbulence in the water phase. It is basically recognized that air 772 
entrainment occurs when the tangential Reynolds stress acting next to the air-water 773 
interface is large enough to overcome the surface tension [70,71,72]. Ultimately, wave 774 
breaking in large geophysical systems such as tidal bores and tsunami surges is likely to 775 
be a combination of both ideal and turbulent fluid flow processes. 776 
 777 
As early described by Peregrine et al. [20] a breaking wave involves a fluid velocity on 778 
the free surface in excess of the phase celerity. This breaking condition was extensively 779 
investigated by Barthelemy et al. [73] considering the local energy flux velocity at a 780 
breaking crest, and from their work a kinematic condition for the onset of wave 781 
breaking to test in our 1D numerical experiments is 782 
 783 
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,   (34) 784 

 785 
where us is the horizontal velocity component at the wave crest, cw is the water wave 786 
celerity and Fk a kinematic Froude number. Note that Fk,lim is not unity. For 787 
implementation of this criterion in a Boussinesq-type model we follow Bacigaluppi et 788 
al. [74], thereby using Eq. (34) instead of Eq. (22) in the computational sequence of the 789 
hybrid SGN-SWE model. Therefore, a numerically-detected wave breaking is 790 
considered physical only if Eq. (34) is satisfied. Bacigaluppi et al. [74] presented 791 
computational results for their ocean research problems using Fk,lim = 1 and Fk,lim = 0.75. 792 
Here we consider the threshold value of 0.85 following Barthelemy et al. [73], which is 793 
rather close to an average of the values considered by Bacigaluppi et al. [74]. For a 794 
given wave tracked, us is easily evaluated using the first of Eqs. (32) in a finite-795 
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difference form. However, an estimation of cw is needed. Assuming that the wave crest 796 
is not deformed, its celerity is estimated from [74] 797 
 798 

 799 
Figure 11. Comparison of numerical simulations with experimental data (Ozmen-800 
Cagatay and Kocaman [62]) for a dam break wave with r = 0.1 using: the SG-B and 801 
SGN equations (Left panels) and the hybrid SGN-SWE with Serre-Peregrine 802 
acceleration sensor, kinematic sensor and SGN equations (right panels) 803 
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 804 

 805 
Figure 12. Comparison of numerical simulations with experimental data (Ozmen-806 
Cagatay and Kocaman [62]) for a dam break wave with r = 0.4 using: the SG-B and 807 
SGN equations (Left panels) and the hybrid SGN-SWE with Serre-Peregrine 808 
acceleration sensor, kinematic sensor and SGN equations (right panels) 809 
 810 
 811 
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 814 
which is discretized using the flow conditions at the wave crest and trough as 815 
 816 
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 818 
Simulations using the kinematic sensor given by Eq. (34) implemented in the hybrid 819 
SGN-SWE model (instead of the roller-based Eq. (22)) to physically accept a 820 
numerically-detected breaking wave, are inserted in the right panels of Figs. 11 and 12. 821 
As observed, simulations are very similar to those using the acceleration-based sensor 822 
and the SGN-SWE model with the rolled-based sensor. Thus, the kinematic sensor is an 823 
equally valid index to define the onset of wave breaking using Boussinesq-type models. 824 
 825 
7 Transition from undular to breaking surge using different models 826 
 827 
In this section we simulate dam break waves for different values of r and hence of F. 828 
We define F resorting to Eq. (22), using the flow depth of the undisturbed flow hd as H1, 829 
and the water depth behind the bore determined by the analytical solution of the SWE 830 
given by Stoker [52] as H2. This water depth is a function of hu solving the 831 
corresponding Riemann problem, thus F = F(r=hd/hu). The analytical solution of the 832 
SWE is considered in the figure for reference. 833 
 834 
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 835 
Figure 13. Evolution of the wave breaking as function of r(F) using the various models 836 
tested (results displayed at T = 8.9) 837 
 838 
Left panels of Fig. 13 compare the SGN, SWE and SG-B equations for F ranging from 839 
1.71 to 3.13. The wave breaking ability of the SG-B equations is clearly observed. Note 840 
that the damping is progressive. At F = 1.88 the wave is reasonably close to fully 841 
broken. Therefore, one may state that the transition from undular to broken bores using 842 
the SG-B occurs in the domain F ≈ 1.4-1.9. This is fairly close to the experimental 843 
domain, which is F = 1.5-1.8 [5,55]. Right panels of Fig. 13 compare the SGN, SWE 844 
and hybrid SGN-SWE equations, using Eqs. (20)-(23) (red lines) and the Serre-845 
Peregrine acceleration-based sensor (green lines). The hybrid models generally produce 846 
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a faster transition to fully broken bores, as observed for example for F = 1.71. Results of 847 
both hybrid models are again similar, with exception of a phase shift noted at F = 1.71. 848 
 849 

  850 
Figure 14. Comparison of tidal bore predicted by SG-B and SGN equations with 851 
experiments (Leng and Chanson [56]); F = 1.6 852 
 853 
Finally, it should be noted that none of the models tested produce perfect results for all 854 
flow conditions. In fact, a critical outlook to the SG-B requires to stress that the 855 
introduction of breaking is rather slow and gradual. Consider a tidal bore measured by 856 
Leng and Chanson [56] in a 0.7 m wide, 19 m long rectangular and horizontal flume. A 857 
radial gate at the tailwater portion of the flume (x = 18.1 m) was used to create initial 858 
steady subcritical flow. A fast closing of a tainter gate produced a surge that propagated 859 
in the upstream direction. A run for discharge Q = 0.101 m3/s, ho = 0.172 m (subcritical 860 
initial conditions) and F = 1.6 is considered in figure 14, where it is observed that the 861 
surge is broken. For this Froude number one would not expect a fully broken surge from 862 
the SG-B equations, based on the results presented in Fig. 13. A simulation using the 863 
SG-B equations is compared with observations in the figure using Δx= 0.01 m and CFL 864 
= 0.1. For reference, the same computation was accomplished solving the SGN 865 
equations. Note by comparing the SG-B and SGN equations that the former system 866 
clearly produces breaking in the solution. In fact, the prediction of the first wave crest is 867 
reasonably good. Note that the experimental flow profile was obtained averaging data 868 
from many repetitions [56]. The maximum first wave crest elevation recorded during 869 
the repetitions is 0.33 m, which is rather close to the value predicted by the SG-B 870 
equations. In contrast, the SGN poorly predict the first wave crest. The main failure of 871 
the SG-B equations in this test is in the prediction of the secondary waves, where the 872 
degree of breaking introduced is clearly below that indicated by experiments. However, 873 
it is clear as well that the SG-B equations produce a significant improvement as 874 
compared to the SGN equations. Therefore, the SG-B equations are able to produce a 875 
gradual transition from undular to broken bores, although the transition is rather slow. 876 
Given that the solution is accomplished based on ideal fluid flow computations, without 877 
resorting to any turbulent parameterization, it is logic to expect the deviations from 878 
experiments observed in Fig. 14. Another important case involving long wave non-879 
hydrostatic flow modelling is the impact on a wall of a long-wave packet constructed 880 
using linear waves [51]. In most cases tested by Viotti et al. [51] the solution obtained 881 
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by the SGN model is in good agreement with the full Euler equations. For a 3-wave 882 
packet of amplitude 15% of the initial water depth at rest ho, the wave amplitude at the 883 
wall after impact was close to 82% of ho, that is, close to the onset of wave breaking. 884 
Simulations conducted with the SGN and SG-B equations solvers produced in this 885 
research showed minor variations. This was expected, given that the simulation 886 
conducted is at the onset of wave breaking, and, as previously discussed, one of the 887 
deficiencies of the SG-B model is that breaking is very slowly introduced, such at the 888 
onset of breaking the effect of B is weak. 889 
 890 
8 Conclusions 891 
 892 
In this work the undular and broken surges originating from the dam break flows in a 893 
horizontal channel were investigated, and the following conclusions were obtained: 894 
 895 

● A new set of depth-averaged non-hydrostatic equations was obtained 896 
rigorously taking into account the variation of u with z while conducting the vertical 897 
integration process. The result is an x-momentum equation containing a higher-order 898 
term, as given by Picard’s iteration. The equations are called herein the Su-Gardner 899 
breaking (SG-B) equations. Numerical solution of the improved set of equations 900 
demonstrated that the new higher-order term acquires importance in breaking waves. As 901 
a result, the improved equations are able to represent the transition from undular to 902 
broken surges automatically without the need of any external forcing. For non-breaking 903 
waves the SG-B equations yields almost identical results to the Serre-Green-Naghdi 904 
(SGN) equations. For broken waves, SG-B equations generate similar results to those 905 
obtained with SGN-SWE hybrid models. The transition from undular to breaking bores 906 
in the SG-B model occurs in the interval F = 1.4-1.9, very close to the experimental 907 
observations F =1.5-1.8. Although there is some difference, it should be noted that the 908 
breaking activation and transition process from undular to broken surge is fully 909 
analytical in the SG-B equations, being triggered by the governing equations 910 
themselves. It makes the model free from calibration parameters, whereas the SGN-911 
SWE hybrid models rely on breaking modules depending on the parameters tan(ϕc), γ, 912 
and Flim.  913 
 914 

● A new wave breaking sensor for use in hybrid SGN-SWE models was 915 
developed based on the acceleration at the free surface. Numerical results demonstrated 916 
that the predictions using this single index are similar to those based on the 3-917 
parameters tan(ϕc), γ and Flim. The Serre-Peregrine acceleration-based wave breaking 918 
index does not involve calibration parameters, making the approach simple for 919 
implementation. 920 
 921 
The purpose of this research was exploring why the SGN equations do not break and the 922 
role of a new sensor for SGN-SWE hybrid models based on the free surface 923 
acceleration. Results demonstrated that the introduction of higher-order terms, 924 
originating from the variation of u with z into the SGN equations, confers to the system 925 
breaking mimicking ability. It seeds the idea that modeling the velocity profile is a key 926 
issue to produce improved Boussinesq models valid (continuously) for both breaking 927 
and non-breaking waves. Further research is needed to generalise our results to flows 928 
over uneven beds and sediment transport. It was additionally observed that the 929 
acceleration at the free surface may be a suitable index to apply hybrid SGN-SWE 930 
models, given the similar results to other criteria actually used. 931 
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Appendix: Solitary wave solutions 932 
 933 
An important non-hydrostatic free surface flow is the solitary wave. Such travelling 934 
wave of permanent form is only possible when a balance between non-linearity and 935 
dispersion is achieved. In this section the existence of solitary wave solutions for the 936 
higher-order SG-B model is investigated. A wave of permanent form is steady for an 937 
observed traveling on the wave. Thus, the steady version of Eq. (14) reads 938 
 939 

      21 1 1 12 2 2 4 2 2 2
2 3 15 21 4 4xx x xx x x xx o oM gh U h hh h hh h h hh gh         

 
F , (37) 940 

 941 
where M is the momentum function, hxx = d2h/dx2, hx = dh/dx and (ho, Fo) refers to the 942 
water depth and Froude number of the undisturbed supercritical current. Manipulation 943 
of Eq. (37) permits to write it in the form a(hxx)2+bhxx+c = 0. Therefore, hxx = 944 
[‒b+(b2‒4ac)1/2]/(2a). This second-order ODE can be easily solved transforming it into 945 
a pair of first-order ODEs to determine the profiles of h and hx. Before conducting 946 
numerical simulations it shall be noted that real solutions do not exists for b2‒4ac < 0, 947 
which settles an upper limit of Fo for existence of solitary waves. A 4th-order Runge 948 
Kutta scheme was used to compute the solitary wave solution for defined values (ho, Fo) 949 
at x = 0. The value of hx was fixed by choice to 0.001 to deviate the flow from uniform 950 
flow conditions. For a solitary wave 951 
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 954 
where H is the maximum wave elevation (solitary wave crest) above the undisturbed 955 
depth ho. Figure 15a contains the computed free surface profile for Fo = 1.118 (H/ho = 956 
0.2), which is close to those conditions used for the Favre waves simulated in Fig. 8. 957 
The numerical solution of the SG-B equations is compared there with the analytical 958 
solution of the SGN equations [18,36]. It is the solution of the reduced equation [18,75] 959 
 960 
     1 1 12 2 2 2 2

2 3 21 xx x o oM gh U h hh h gh        F ,   (39) 961 
 962 
which is obviously obtained from Eq. (37) neglecting the contribution of B. It can be 963 
verified comparing both solutions that for this case the effect of B is negligible. By 964 
numerical experimentation it was determined that solitary wave solutions ceased to exist 965 
at Fo ≈ 1.397 (H/ho = 0.951), given that b2‒4ac < 0 for higher values. Breaking of 966 
undular surges is often activated in Boussinesq models by checking the value of H/ho at 967 
the surge front. The accepted approximate threshold condition for breaking in the SGN 968 
equations is H/ho = 0.8 [27], resulting Fo = 1.341, which is rather close to the value 969 
obtained using our generalized SG-B equations. For Fo > 1.397 the SG-B will introduce 970 
breaking in the solution. 971 
 972 
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 973 
Figure 15. Solitary wave for Fo = 1.118 (H/ho = 0.2) (a) Steady flow computations, (b) 974 
unsteady flow computations 975 
 976 
Now, let us check that the numerical solution of Eqs. (17) produces a travelling wave of 977 
permanent form. The procedure was as follows. The solitary wave analytical solution of 978 
the Serre-Green-Naghdi equations was set as an initial condition in the SG-B model, 979 
with the crest located at x = 0 for t = 0. The previous wave with H/ho = 0.2 is 980 
considered. Obviously, this is not exactly the solitary wave solution of the SG-B model. 981 
When the numerical model is run the wave will evolve in time, producing imperceptible 982 
changes given the weak effect of B. Fig. 15b shows the numerical solution of the SG-B 983 
equations at t = 20 s, and the analytical solution of the SGN equations. Note that 984 
differences are imperceptible. The numerical model produces a stable wave of 985 
permanent form, which is the solitary wave solution of the SG-B equations. Now, let us 986 
check the breaking ability of the SG-B equations. Following the same procedure, a 987 
solitary wave of H/ho = 1.5 (Fo = 1.581) was routed and the results displayed at t = 5 s 988 
in Fig. 16. As expected, this value is above the previously detected threshold of 989 
breaking, and the numerical simulation transform the input solitary wave into a wave 990 
with a significantly reduced maximum height and steeper wave front, both features 991 
clearly resembling the wave breaking mimicking implicit in the SWE. For illustrative 992 
purposes the same simulation was conducted using the SWE, thereby transforming the 993 
solitary wave into a triangular wave with a shock front. The hybridised character of the 994 
SG-B equations between the SGN and SWE is beautifully observed in this comparison. 995 
 996 

   997 
Figure 16. Routing of a solitary wave of Fo = 1.581 (H/ho = 1.5): comparison of the 998 
SWE and SG-B equations 999 
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