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We discuss general features of charge transport in non-relativistic classical field theories invariant
under non-abelian unitary Lie groups by examining the full structure of two-point dynamical corre-
lation functions in grand-canonical ensembles at finite charge densities (polarized ensembles). Upon
explicit breaking of non-abelian symmetry, two distinct transport laws characterized by dynamical
exponent z = 2 arise. While in the unbroken symmetry sector the Cartan fields exhibit normal
diffusion, the transversal sectors governed by the nonlinear analogue of Goldstone modes disclose an
unconventional law of diffusion characterized by a complex diffusion constant and undulating pat-
terns in the spatiotemporal correlation profiles. In the limit of strong polarization, one retrieves the
imaginary-time diffusion for uncoupled linear Goldstone modes, whereas for weak polarizations the
imaginary component of the diffusion constant becomes small. In models of higher rank symmetry,
we prove absence of dynamical correlations among distinct transversal sectors.

Field theories provide one of the most invaluable tools
in theoretical physics, with countless applications across
a wide range of disciplines. One of the most renowned
and best studied examples are nonlinear sigma models
(NLSMs) [1–5] and extensions thereof such as Wess–
Zumino–Witten models [6–8], representing field theories
of interacting fields on curved manifolds that transform
as representations of non-abelian symmetry groups. Al-
though sigma models have played a pivotal role in the
studies of Yang–Mills theories and gauge-gravity dualities
[9–11], renormalization group flows [12, 13], topological
QFTs [5, 14] and quantum criticality [15, 16], their dy-
namical properties remain poorly understood, especially
so in thermal equilibrium. One notable exception is the
quantum O(3) NLSM in two space-time dimensions, a
prominent example of an integrable quantum field theory
(QFT) [1, 3, 17, 18] which has attracted a considerable
amount of attention in the context of low-temperature
magnetization transport in Haldane antiferromagnets [5]
(see [19–22]), recently revisited in [23]. Despite many
efforts in the domain of quantum field theories [16, 24],
and recently even in classical isotropic magnets [25–28],
a comprehensive understanding of dynamical properties
of NLSMs in thermal equilibrium is still lacking.
Our study is motivated by the following fundamental

question: consider G-invariant NLSMs with coset spaces
M = G/H as their target manifolds, where isometry
group G is a non-abelian simple Lie group and isotropy
subgroup H ⊂ G identified with stability group of a con-
tinuously degenerate vacuum state. As a consequence of
G-invariance, the system possess conserved Noether cur-
rents. The goal is a general classification of transport
laws in thermal equilibrium states, irrespectively of the
coset structure, Lorentz invariance, dimensionality, and
integrability. In this Letter, we make a key progress in
this direction and classify dynamical two-point correla-
tion functions in equilibrium states at generic values of
background charge densities for a family of classical non-
integrable NLSM in two space-time dimensions.
There is a widespread belief that ergodic (chaotic) in-

teracting systems governed by reversible microscopic dy-

namical laws exhibit normal diffusion, epitomized by the
celebrated Fick’s second law φt = Dφxx [29] (unless sev-
eral conservation laws are nontrivially coupled in which
case nonlinear fluctuating hydrodynamics [30] predicts a
plethora of superdiffusive scaling laws [31]). Here φ is a
real scalar field whose spatial integral is conserved un-
der time evolution, (d/dt)

∫
dxφ = 0. More generally,

one speaks of normal diffusion (in thermal equilibrium)
when asymptotic dynamical structure factors, reading
〈φ(x, t)φ(0, 0)〉 ≃ t−1/zfG

(
(λ t)−1/zx

)
, are characterized

by (i) dynamical exponent z = 2 and (ii) Gaussian sta-
tionary scaling profile fG(ζ) = exp (−ζ2), parametrized
by a real state-dependent (diffusion) constant D = λ/4.
In what follows, we shall explain how in systems with
non-abelian continuous symmetries conserved Noether
charges from the symmetry-broken sectors evade the con-
ventional paradigm of normal diffusion.
Undular diffusion at a glance. The theme of this

paper is an anomalous type of diffusion law we dub as
‘undular diffusion’. To set the stage, we would first like
to offer some basic intuition behind this notion. To this
end, we consider a classical isotropic ferromagnet. The
vacuum (minimum energy configuration) corresponds to
all the spins aligning in the same direction, taking the role
of a local order parameter. The order parameter always
picks a random polarization direction (a unit vector on
a 2-sphere), while the rotational symmetry of the model
implies that the vacuum state is continuously degenerate
and the symmetry is said to be spontaneously broken. It
is widely known that a spontaneous breaking of continu-
ous symmetry is accompanied by soft Nambu–Goldstone
modes; in ferromagents specifically, these are quadrati-
cally dispersing magnons which resolve small fluctuations
about the symmetry-broken ferromagnetic vacuum.
Suppose we would like to understand transport prop-

erties of an isotropic ferromagnet at finite temperature.
Invariance under continuous rotational symmetry implies
that all the components of magnetization are globally
conserved under time evolution. Transport properties of
the model are most commonly extracted from the late-
time relaxation of temporal correlation functions among
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FIG. 1. Dynamical correlation functions in the transversal sector, computed in a non-integrable space-time lattice discretization
of S2 Landau–Lifshitz field theory [32], immersed in a longitudinal magnetic field of magnitude b (pointing in the z- direction).
We display 〈Sx(x, t)Sx(0, 0)〉µ evaluated in a grand-canonical ensemble at infinite temperature and chemical potential µ = 5
(〈Sz〉 ≈ 0.8), shown in absolute value (time-step τ = 1, length L = 1024, average over 7.5 · 105 iterations). Three types of
dynamical patterns can be discerned: (a) elliptic regime (b = −6 · 10−3), (b) parabolic regime of undular diffusion without a
field (b = 0), and (c) hyperbolic regime (b = 6 · 10−3). The characteristic curves resemble conic sections associated with linear
Goldstone modes.

distinct components. In canonical Gibbs states, which
respect the full rotational symmetry of the model there
is no distinction between magnetization components. By
invoking standard hydrodynamic arguments (based on
gradient expansion of local conserved currents), one ex-
pects to find normal diffusion governed by the aforemen-
tioned Fick’s law.
Consider now the grand-canonical ensemble where

rotational symmetry is explicitly broken by inclu-
sion of chemical potentials: one polarization direction
(and thereby magnetization component) becomes distin-
guished, while the remaining two components are pro-
claimed as transversal. The question is whether such a
symmetry breaking scenario ‘at finite density’ has any ef-
fect on transport properties. One may indeed expect the
difference to show up in the transversal sector; it is evi-
dent that in the limit of strong polarization, where ther-
mal fluctuations are dominated by fluctuations near the
ferromagnetic vacuum, one should recover precessional
motion governed by the spectrum of Goldstone modes,
which one can interpret as a diffusion process in imagi-
nary time. Accordingly, it is natural to anticipate that at
any intermediate density (i.e. finite chemical potential)
the diffusive relaxation of transversal correlators acquires
an extra imaginary component, combining into a single
‘complex Goldstone mode’. This is precisely what hap-
pens, as shown in the remainder of the Letter.
Minimal example. We proceed by detailing out

the ‘minimal model’ of undular diffusion: the classical
Landau-Lifhsitz field theory [33, 34] (using subscripts to
designate partial derivatives)

St = S× Sxx + S×B, (1)

written in terms of the unit vector (spin) field S ≡
(Sx, Sy, Sz)T taking values on a 2-sphere, S · S = 1. We

have also included an external magnetic field B = b êz
aligned with the vacuum polarization axis êz = (0, 0, 1)T

to study also ‘dynamical’ breaking of symmetry.
To study dynamics in the symmetry-broken states,

we introduce transversal complex fields S± = Sx ±
iSy. In Fig. 1 we display the dynamical correlator
1
2Re〈S

+(x, t)S−(0, 0)〉µ, averaged with respect to the in-
variant grand-canonical Gibbs state at ‘infinite temper-
ature’ and chemical potential µ with a local probability

density ̺
(1)
µ (S) = (π sinh (µ)/µ)−1 exp

(
µ(1− 2Sz)

)
. To

avoid special features related to integrability of Eq. (1),
we performed our simulations on a non-integrable lattice
discretization, see [32].
In the absence of an external magnetic field we en-

counter undular diffusion, manifesting itself in the form
of a spatially undulating correlation function with a
characteristic diffusive (parabolic) pattern displayed in
Fig. 1b. When the rotational symmetry of the model is
‘dynamically broken’ with an external positive (negative)
magnetic field field,

∫
R
S±(x, t)dx = e∓ibt

∫
R
S±(x, 0)dx,

we observe hyperbolic (elliptic) characteristics, as shown
in Figs. 1a,1c.
The origin of the observed patterns is best explained

by inspecting the vicinity of the ferromagentic vacuum
(|Sz| → 1) where the equation of motion in the transver-
sal sector reduces to a linear theory [32]

[
i∂t ±

(
∂2x − b

)]
S±(x, t) = 0. (2)

Its Green’s function G±(k) = exp
[
∓ωb

mag(k)t
]
describes

magnons with a gapped quadratic (i.e. type-II) disper-
sion law

ωb
mag(k) = D∞k

2 + ib, (3)

written as an imaginary-time diffusion with an imaginary
diffusion constant D∞ ≡ D(µ→ ∞) = i. Characteristics
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FIG. 2. Stationary asymptotic profiles of the transversal Goldstone mode in the non-integrable space-time lattice discretization
of the S2 Landau–Lifshitz field theory [32] without a field (b = 0), displaying (a) real and (b) imaginary components of

limt→∞ |t|1/2〈S+(x, t)S−(0, 0)〉µ/2 as a function of the scaled variable ξ = t−1/2x and U(1) chemical potential µ (using same
parameters as in Fig. 1b). Gray curves mark the prediction of the linear theory, cf. Eq. (2) (in arbitrary units). Dashed blue
lines show best two-parameter fits to Eq. (9).(c) Dependence of real and imaginary components of complex diffusion constant
D on chemical potential µ. Symmetry points H and G designate the U(1)-invariant vacuum and SU(2)-invariant equilibrium
measure, respectively (red dashed line is a guide to the eye).

associated with Eq. (2) are conic sections. Remarkably,
their presence remains visible even in the nonlinear dy-
namic away from the vacuum (i.e. at general values of
µ), as shown in Fig. 1.

In Fig. 2 we display the numerically computed sta-
tionary profiles for the transversal dynamical correlator
(without the field, b = 0) depending on chemical poten-
tial µ. When approaching the vacuum (i.e. at large µ),
the profiles converge towards the prediction of the lin-
ear theory [32] (grey curves in Fig. 2). In the opposite
regime, µ→ 0, the profiles smoothen out into a Gaussian.
In Fig. 2c we extract the complex diffusion constantD(µ)
by fitting the scaling function (given below in Eq. 9).

The above phenomenology offers the following sugges-
tive interpretation: at finite spin density (µ 6= 0), the
late-time relaxation of nonlinearly evolving fields from
the symmetry-broken sector is governed by an uncon-
ventional Goldstone mode which has acquired an extra
diffusive component, characterized by a single hydrody-
namic generalized Fick’s law of diffusion with a complex
diffusion constant D(µ).

To conclude, we remark that that two-point corre-
lations 〈Sz(x, t)S±(0, 0)〉µ and 〈S±(x, t)S±(0, 0)〉µ both
trivially vanish as consequence of the residual U(1) sym-
metry about ez. The only remaining non-zero correlator
allowed by symmetry is therefore the longitudinal one,
〈Sz(x, t)Sz(0, 0)〉µ, which, as expected, undergoes nor-
mal diffusion with real diffusion constant.

Symmetry of higher rank. It is natural to ask
if any new feature can arise in models exhibiting sym-
metries of higher rank. Our next aim thus is to clas-
sify the dynamical two-point correlation functions among
the Noether charges of a class of models invariant under
non-abelian groups of higher rank, comprising multiple
Nambu–Goldstone modes in their spectrum. We mainly
wish to discern whether enhanced symmetry can affect

dynamics in the symmetry-broken sector due to interac-
tion among distinct transversal modes.
Here we shall consider the simplest class of (non-

relativistic) continuous ferromagnets invariant under the
action of unitary Lie groups SU(n + 1), whose target
spaces are complex projective manifolds Mn ≡ CPn.
The latter are naturally parametrized by complex fields
za(x, t) (alongside their conjugate counterparts z̄a), and
for compactness we introduce the vector of affine coordi-
nates z ≡ (z1, . . . , zn)

T on Mn. As a starting point, we
consider the most general effective Lagrangian invariant
under SU(n+ 1) in the form

Leff ≃ LWZ − L
(2)
CPn + higher order terms, (4)

where L
(2)
CPn ≡

∑n
a,b=1 ηabz̄

a
xz

b
x is the second-order term

in gradient expansion parametrized by the unique G-
invariant Riemann (Fubini–Study) metric on CPn, read-
ing explicitly ηab = ((1+ z†z)δab − z̄azb)/(1+ z†z)2, and

LWZ = i(1+z†z)−1(z†zt−z†tz) denotes the Wess–Zumino
geometric term.
To simplify our analysis, we shall discard all the higher-

order terms in Eq. (4). This way, we end up with
non-relativistic classical sigma models on cosets CPn =
G/H, with isotropy subgroup H = SU(n) × U(1) leav-
ing the ferromagnetic vacuum intact (modulo a phase).
Matrix-valued fields M(x, t) on Mn are unitary matri-
ces subjected to a nonlinear constraint M2 = 1, in
terms of which the Hamiltonian reads simply HCPn =

2
∫
dxL

(2)
CPn = 1

4

∫
dxTr

(
M2

x

)
. The equation of motion is

given by a nonlinear PDEs (Landau–Lifshitz field theo-
ries of higher-rank) [27]

Mt =
1

2i
[M,Mxx] + i[B,M ]. (5)

where we have simultaneously adjoining the external field
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HB =
∫
dxTr(BM) which induces dynamical breaking

of conservation laws associated to G.
Longitudinal and transversal fields can be inferred

with respect to the Cartan-Weyl basis of Lie algebra
g = su(n+1) (see e.g. [35, 36], and [32] for details). Weyl
generators, which are indexed by root vectors spanning
the root lattice ∆ of g, are assigned complex Weyl fields
φ±α. To every Cartan generator we associate a real lon-
gitudinal field φi and formally assign to it a ‘zero root’
forming a set ∆0. To obtain the φ-field, one simply traces
the corresponding generator times the matrix M ∈ Mn.
We proceed by introducing grand-canonical Gibbs

states, including generic chemical potentials coupling
to the Cartan charges Qi =

∫
dxφi(x). In such a

state, the original symmetry G = SU(n + 1) gets low-
ered down to the residual symmetry of its maximal
abelian subgroup T = U(1)×n. There are thus n ‘un-
broken’ longitudinal fields φi associated to the Car-
tan generators. On the other hand, the symmetry-
broken sector comprises of nt = 1

2dim(G/T) = 1
2n(n +

1) pairs of canonically-conjugate complex ‘transversal’
modes φ±α. To define a stationary measure invari-
ant under T, we introduce the diagonal ‘torus Hamil-
tonian’ Hµ = − 1

2diag(µ0, µ1, . . . , µn), parametrized by
chemical potentials µi ∈ R (subjected to TrHµ = 0)

and define an invariant normalized measure ̺
(n)
µ dΩ(n)

(
∫
Mn

dΩ(n)̺
(n)
µ = 1), with volume element dΩ(n) on CPn

and density

̺(n)
µ

(M) =
1

Z
(n)
µ

exp
(
Tr(HµM)

)
, (6)

where Z
(n)
µ =

∫
Mn

dΩ(n) exp
(
Tr(HµM)

)
represents the

partition function. One can think of Eq. (6) as the
grand-canonical Gibbs measure at infinite temperature
(known in symplectic geometry as an equivariant mea-
sure). Further details can be found in [32].

By direct analogy to the previous basic case of CP1 ∼=
S2, the mixed correlators 〈φi(x, t)φ±α(0, 0)〉µ and paired
intrasectoral correlators 〈φ±α(x, t)φ±α(0, 0)〉µ once again
vanish as a direct corollary of the T-invariance of the
measure (6). Indeed, this statement remains valid even
in Gibbs states at any inverse temperature β.
The new ingredient now is that models of higher rank

possess additional intersectoral correlations among dis-
tinct transversal (Weyl) fields. A starting point for their
analysis is the following ‘neutrality selection rule’ for
equal-time N -point correlators

σj 6∈∆0∑

j∈{1...N}

σj 6= 0 ⇒ 〈φσ1

ℓ1
φσ2

ℓ2
. . . φσN

ℓN
〉β,µµµ = 0, (7)

which, in conjunction with the commutation relations,
implies (see [32] for proofs) the ‘kinematic’ decoupling of
transversal modes into subsectors, that is

〈φ±α(x, t)φγ∦α(0, 0)〉β,µ = 0. (8)

Consequently, the only dynamical two-point correlation
functions allowed by symmetry are, besides the longi-
tudinal 〈φi(x, t)φj(0, 0)〉µ, the intrasectoral correlations
〈φ±α(x, t)φ∓α(0, 0)〉µ.
Numerical analysis of asymptotic stationary profiles

within each transversal ‘α-sector’ shows that asymptotic
dynamical structure factors are accurately captured by
scaling profiles of undular diffusion

〈φα(x, t)φ−α(0, 0)〉µ =
χα,−α

(4πDα|t|)1/2
e−x2/(4Dα|t|), (9)

characterized by a complex diffusion constant Dα(µµµ)
which recombines the effects of relaxation and preces-
sional motion into a single hydrodynamic mode. In
the strong-polarization limit, we recover the frequency
of the (linear) Goldstone modes, lim|µµµ|→∞ Dα(µµµ) =

iωα(〈φ
j〉vac), whereas in the opposite regime of weak po-

larization lim|µµµ|→0 Dα(µµµ) = Dα ∈ R [37].
Summary. A succinct summary of our results is

given in Table I. Dynamical (connected) two-point cor-
relations functions can be grouped into three classes:

(I) longitudinal correlations 〈φi(x, t)φj(0, 0)〉µ, with
dynamical exponent z = 2 and Gaussian asymp-
totic profiles [38],

(II) transversal ‘α-sectors’ 〈φ±α(x, t)φ∓α(0, 0)〉µ, with
dynamical exponent z = 2 and undulating asymp-
totic stationary profiles (examplified for n = 1 in
Fig. 2),

(III) (i) vanishing mixed and transversal correlations
〈φi(x, t)φ±α(0, 0)〉µ = 〈φ±α(x, t)φ±α(0, 0)〉µ = 0,
and (ii) vanishing intersectoral correlations
〈φ±α(x, t)φγ∦α(0, 0)〉µ = 0.

Properties (I) and (II) have been established based
on numerical observations, while (III-i) is a direct corol-
lary of invariance under the torus subgroup T. Property
(III-ii) follows from the ‘neutrality rule’ (7). Indeed, we
believe (I)-(III) are generic properties of non-integrable
Hamiltonian dynamics invariant under non-abelian com-
pact Lie group G with G/H-valued local degrees of free-
dom (order parameter), averaged with respect to a polar-
ized T-invariant ensemble. In effect, the listed properties
likewise apply to dynamical two-point functions in grand-
canonical Gibbs ensembles at finite temperature, which
will experience an additional ‘smearing’ effect across a
lengthscale comparable to the thermal correlation length.

sector correlators transport

longitudinal 〈φi(x, t)φj(0, 0)〉µ normal diffusion

transversal 〈φ±α(x, t)φ∓α(0, 0)〉µ undular diffusion

〈φ±α(x, t)φ±α(0, 0)〉µ
trivial 〈φi(x, t)φ±α(0, 0)〉µ no transport

〈φ±α(x, t)φγ∦α(0, 0)〉µ

TABLE I. Complete classification of dynamical two-point cor-
relation functions among the Noether fields.
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Conclusion. Focusing on a class of non-relativistic
sigma models invariant under unitary Lie groups, we
have investigated the structure of dynamical correlations
among the Noether charges in an equilibrium state with
broken continuous symmetry. While longitudinal corre-
lations among the Cartan fields expectedly undergo nor-
mal diffusion, we found that dynamics in the transver-
sal (symmetry-broken) sector is governed by unortho-
dox Goldstone modes that satisfy a complexified diffu-
sion law, characterized by dynamical exponent z = 2 and
‘complex Gaussian’ profiles governed by a complex diffu-
sion constant, which we have suggestively named undular
diffusion. The phenomenon is present in a generic non-
integrable (chaotic) dynamics and does not depend on
the microscopic details of the model or particular lattice
discretization.
The main lesson to draw is twofold: (A) the ubiqui-

tous Fick’s law of diffusion, believed to be a hallmark
of chaotic reversible many-body dynamics, can indeed
be violated in systems that support type-II Goldstone
modes, and (B) dynamical systems invariant under non-
abelian Lie group G do not support any dynamical corre-
lations among the conserved Noether currents from dif-
ferent transversal su(2) sectors in grand-canonical Gibbs
equilibrium states. In regards to (A), an alternative view-
point is to argue that undular diffusion is an analytic pro-
longation of the Fick’s law of diffusion into the complex
plane.
We note that classical non-relativistic NLSMs that ap-

pear as the leading term of the gradient expansion of
G-invariant dynamics on hermitian symmetric spaces,
such as Eqs. (67), are commonly found to be integrable

[39, 40]. A salient feature of integrable dynamics (which
can be accurately captured by generalized hydrodynam-
ics [41, 42]) are stable nonlinear modes (solitons), which
render longitudinal correlators ballistic (quantified by fi-
nite charge Drude weights [43–46]) with diffusive correc-
tions [47–50], or even superdiffusive dynamics that takes
place in unpolarized Gibbs states [51, 52], recently ex-
amined in [23, 27, 28, 53–58]. In performing numerical
computation we have always employed appropriate lat-
tice discretizations to ensure that integrability is mani-
festly broken. We have nonetheless verified that even in
integrable discretizations of CPn sigma models (67) [27],
dynamics of transversal models associated with internal
‘precessional’ degrees of freedom still display undular dif-
fusive profiles.
On general grounds one can expect that the phe-

nomenon survives quantization, i.e. to persist in quan-
tum lattice ferromagnets invariant under non-abelian Lie
groups (irrespectively of integrability), and to extend to
higher space-time dimensions.
There are several interesting venues left to be explored,

for instance: (i) develop a quantitative framework to ac-
cess asymptotic stationary profiles that characterize un-
dular diffusion; (ii) extend the analysis to other sym-
metry groups and coset spaces; (iii) infer the structure
of transversal dynamical correlators also in relativistic
sigma models, both in the classical and quantum settings.
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[27] Ž. Krajnik and T. Prosen, Journal of Statistical Physics
179, 110 (2020).
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Supplemental Material

Undular diffusion in nonlinear sigma models

I. PRELIMINARIES

We consider a Hamiltonian dynamical system invariant under a unitary Lie group G = SU(n+1) with matrix fields
M(x, t) taking values on complex projective spaces M ∈ Mn = CPn. The local phase space has a structure of a
quotient space (coset) CPn ∼= G/H, where H = SU(n)× U(1) ⊂ G is the stability subgroup of a vacuum value Σ(n),
that is hΣ(n) h−1 = Σ(n) for h ∈ H. With no loss of generality, we can set the polarization to

Σ(n) = 1− 2Ψ0Ψ
†
0, Ψ0 ≡ (1, 0, . . . , 0)T. (10)

Hermitian matrices M ∈ Mn are then given by adjoint G-orbits of Σ(n),

M = gΣ(n) g−1, (11)

and are subjected to the nonlinear constraint

M2 = 1. (12)

Cartan–Weyl basis. By virtue of Eq. (12), the number of independent components (i.e. scalar fields) of M(x, t)
equals 2n, that is the real dimension of complex manifold Mn. To exhibit the underlying algebraic structure, it proves
most natural to employ the Cartan–Weyl basis of g = su(n + 1). Let Hi, with i ∈ ∆0 ≡ {1, 2, . . . , n}, denote the
generators of the maximal abelian (Cartan) subalgebra,

[Hi,Hj ] = 0, (13)

and X±α the Weyl generators assigned to root vectors ±α ∈ ∆±, spanning the root lattice ∆ = ∆+ ∪ ∆−. The
defining algebraic relations in the Cartan–Weyl basis read

[Hi,X±α] = ±αiX±α, (14)

[Xα,X−α] =

n∑

i,j=1

αi(κ−1)ijH
j , (15)

[Xα,Xγ 6=−α] = Cα,γX
α+γ . (16)

where κij = Tr(HiHj) are matrix elements of the Killing form κ and for Weyl generators we adopted normalization
Tr(XαX−α) = 1 (with generators in the fundamental representation). Weyl generators in the fundamental represen-
tation of su(n+ 1) thus read explicitly

(
Xγ
)
a,b

= δa,kδb,k′ for γ ≡ (k, k′) ∈ ∆. (17)

Cartan and Weyl variables. For computational convenience, we shall avoid a field-theoretical description that
necessitates path-integral techniques and instead provide an explicit lattice formulation. We thereby consider a one-
dimensional lattice of L sites, attaching a local matrix variable Mℓ ∈ Mn to every site ℓ ∈ [1, L]. The global phase
space is accordingly just an L-fold Cartesian product of all local target spaces Mn. Local matrix variables admit the
‘Cartan decomposition’

Mℓ =
n− 1

n+ 1
1+

n∑

j=1

φjℓH
j +

∑

±α∈∆±

φ±α
ℓ X∓α. (18)

Their components,

φiℓ =

n∑

j=1

(κ−1)ijTr(MℓH
j), φ±α

ℓ = Tr(MℓX
±α), (19)

shall be referred to as the Cartan and Weyl fields, respectively.
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Darboux coordinates. Complex projective spaces CPn are examples of toric manifolds. This signifies that they
are diffeomorphic to a product of a real n-torus Tn and an n-dimensional polytope, the standard simplex ∆(n) ⊂ Rn,
CPn ∼= ∆(n) × Tn [60].

Below we outline an explicit construction of canonical (Darboux) coordinates on Mn, which will greatly facilitate
subsequent analytic considerations. Using that elements M ∈ Mn of complex projective spaces can be expressed in
terms of rank-1 projectors, we write

M = 1− 2ΨΨ†, Ψ = (ψ0, ψ1, . . . , ψn)T, Ψ†Ψ =

n∑

i=0

|ψi|2 = 1 (20)

where Ψ are complex homogeneous coordinates of Mn. These can be in turn parametrized in terms of ‘octant
coordinates’ [59]

ψj = νj exp (iϕj), νj ∈ [0, 1], ϕj ∈ [0, 2π). (21)

Canonical variables of Mn are provided by angle coordinates ϕj of Tn and conjugate momenta pj ≡ (νj)2 ∈ [0, 1]
that span the momentum polytope – standard n-simplex ∆(n). In Darboux coordinates, elements of matrix variables
M ∈ Mn are therefore of the form

M j,j′ = δj,j′ − 2 νjνj
′

ei(ϕ
j−ϕj′ ). (22)

Equivariant measure Let T = U(1)n denote the maximal abelian subgroup of G = SU(n + 1). Elements
of T can be parametrized by a set of n + 1 U(1) chemical potentials µi ∈ R subjected to constraint

∑n
i=0 µi = 0.

Introducing µ ≡ (µ0, µ1, . . . , µn), we define the corresponding (diagonal) ‘torus Hamiltonian’ (not to be confused with
the physical Hamiltonian H generating the time evolution)

Hµ =
n∑

i=1

hiH
i = −

1

2
diag(µ0, µ1, . . . , µn). (23)

Here hi ∈ R are understood as chemical potentials coupling to the conserved Cartan charges Qi =
∫
dxφi(x). To

every local phase space Mn we accordingly assign a stationary T -invariant measure, known in the literature as an
equivariant (or Duistermaat–Heckmann) measure

̺(n)
µ

dΩ(n), (24)

where dΩ(n) is the Liouville volume element of Mn whose phase-space integral yields the symplectic volume,

Vol(Mn) =
∫
Mn

dΩ(n), with a T -invariant density ̺
(n)
µ ,

̺(n)
µ

=
1

Z
(n)
µ

eTr(HµM), (25)

where Z
(n)
µ is the partition function at infinite temperature (β = 0)

Z(n)
µ

=

∫

Mn

dΩ(n)eTr(HµM) = πn
n∑

i=0

eµi

∏

j 6=i

(µj − µi)
−1. (26)

In canonical (Darboux) coordinates, the volume element and the equivariant densities factorize into angular and
momentum-dependent parts

dΩ(n) = 2−n
n∏

i=1

dpidϕi, ̺(n)
µ

=

n∏

i=1

exp
(
µip

i
)
. (27)

respectively.
The above construction can be immediately lifted to the entire phase space M×L

n . The separable (infinite-

temperature) equivariant stationary measure is simply a product of local (on-site) measures ̺
(n)
µ,ℓ assigned to a lattice

site ℓ.
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Correlation functions in thermal equilibrium. Let O represent a generic observable on the global phase
space M×L

n . The phase-space average with respect to a grand-canonical Gibbs measure at inverse temperature β and
U(1) chemical potentials µ is given by prescription

〈O〉β,µ = Z−1
µ,β

∫

M×L
n

L∏

ℓ=1

dΩ
(n)
ℓ ̺

(n)
µ,ℓ e

−β H O. (28)

where normalization factor Zµ,β represents the partition function.

Equivariant sampling Sampling the equivariant measure (24) is facilitated by the fact that the complex projec-
tive space factorizes as CPn ∼= ∆(n)×Tn. Recognizing that the density (25) is only a (separable) function of canonical

momenta [see (27)] ensemble averages 〈O〉µ =
∫
Mn

dΩ(n)̺
(n)
µ (M)O(M) can be efficiently computed by embedding

the polytope ∆(n) into a hypercube (Fig. 3) and performing rejection sampling: drawing random momenta pi, from
independent exponential distributions

̺i(p
i) ≃ eµip

i

, i = 1, . . . , n (29)

a configuration is accepted when pΣ ≡
∑n

i=1 p
i ≤ 1 and otherwise discarded. Supplementing p0 = 1− pΣ, and taking

ϕi i.i.d. in [−π, π), fixes M ∈ Mn sampled from measure (24).

p1
p2

p0

0

1

0

1

1

∆
(2)

ϕ2

ϕ1

0 2π

0

2π

T2

FIG. 3. Target space CP2 ∼= ∆(2)×T2 is a product of the momentum simplex ∆(2) (a right isosceles triangle shown in magenta,
obtained by projecting the plane p0 + p1 + p2 = 1 (pink) bounded by the cube (p0, p1, p2) ∈ [0, 1]3 onto the p0 = 0 plane) and
the 2-torus T2 (green) spanned by angle variables.

Lattice Hamiltonians. We shall consider a general form of G-invariant dynamics of matrix variables Mℓ ∈ Mn

with nearest-neighbor interactions, generated by Hamiltonians of the form

H =
L∑

ℓ=2

H
(2)
ℓ,ℓ−1, H

(2)
ℓ,ℓ−1 =

∑

k∈N

ckTr
(
(MℓMℓ−1)

k + (Mℓ−1Mℓ)
k
)
, (30)

where we have assumed free (open) boundary conditions.
Lattice Hamiltonians (30) generate equations of motion[68] of the form

dMℓ(t)

dt
= −i

∑

k∈N

c̃k
(
[Mℓ,Mℓ(Mℓ−1Mℓ)

k + (Mℓ−1Mℓ)
kMℓ−1] + [Mℓ,Mℓ(Mℓ+1Mℓ)

k + (Mℓ+1Mℓ)
kMℓ+1]

)
(31)

whose continuous space-time limit yields integrable PDEs

Mt +
1

2i
[Mx,M ]x = 0. (32)
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II. DYNAMICAL DECOUPLING

We now state our main result. Dynamical two-point correlation functions between any pair of transversal fields
φ±α and φγ from different sectors γ ∦ α are all identically zero,

〈
φ±α
ℓ1

(t)φ
γ∦α
ℓ2

(0)
〉
β,µµµ

= 0, (33)

irrespectively of lattice indices. We in turn demonstrate that such a dynamical decoupling is a property of G-invariant
Hamiltonian dynamics generated by Eqs. (31) in any grand-canonical Gibbs equilibrium state which can be established
on purely kinematic grounds. Using that the Liouville measure is invariant under time evolution, it is sufficient to
show that correlations (33) are all identically zero at initial time, and that all temporal derivatives at t = 0 likewise
vanish:

〈
dkφ±α

ℓ1
(t)

dtk

∣∣∣
t=0

φ
γ∦α
ℓ2

(0)

〉

β,µµµ

= 0, k ∈ Z≥0. (34)

The outlined proof consists of four main steps:

• deriving a ‘neutrality rule’ for phase-space integrals,

• expressing a G-invariant dynamics in the form of nested commutators,

• using algebraic relations to infer the general structure of dynamically-generated terms,

• showing that all admissible terms vanish as a consequence of the neutrality rule.

As a side result, we additionally establish that the imaginary part of static (equal-time) transversal correlations
within each α-sector vanishes

Im〈φ±α
ℓ1
φ∓α
ℓ2

〉β,µ = 0, (35)

provided the Hamiltonian also exhibits symmetry under space inversion.

A. Neutrality rule

Definition (neutral and charged correlations). An equal-time N -point correlator in a grand-canonical Gibbs
state

〈φσ1

ℓ1
φσ2

ℓ2
. . . φσN

ℓN
〉β,µµµ, (36)

with indices σj ∈ ∆0 ∪∆ (regarding Cartan indices as zero vectors) is neutral if and only if

∑

j∈{1...N};σj 6∈∆0

σj = (0, 0, . . . , 0︸ ︷︷ ︸
n

)T. (37)

Otherwise, the correlator is charged.

Theorem (neutrality rule). All charged static correlators are trivial

∑

j∈{1...N};σj 6∈∆0

σj 6= (0, 0, . . . , 0︸ ︷︷ ︸
n

)T ⇒ 〈φσ1

ℓ1
φσ2

ℓ2
. . . φσN

ℓN
〉β,µµµ = 0. (38)

Proof. It turns out that the neutrality property concerns only the angular part of the phase-space integral over a
hypertorus TnL. Owing to

φγℓ = Tr(MℓX
γ) ≃ ei(ϕ

k
ℓ−ϕk′

ℓ ) for γ ∈ ∆, (39)
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we indeed have a bijective correspondence between n(n+1) roots γ ∈ ∆ and double indices (k, k′ ∈ {0, 1 . . . n}; k 6= k).
On the other hand, Cartan fields φi with i ∈ ∆0 do not have a ϕ-dependence. The angular part of the global phase-
space average accordingly reads

〈φσ1

ℓ1
φσ2

ℓ2
. . . φσN

ℓN
〉β,µµµ ≃

∫

TnL

n∏

i=1

L∏

ℓ=1

dϕi
ℓ exp


i

N∑

j=1

(
ϕ
kj

ℓj
− ϕ

k′
j

ℓj

)

, (40)

where each label σj ∈ ∆0 ∪∆ has been assigned a pair of indices (kj , k
′
j) in accordance with Eq. (39); for σj ∈ ∆0,

we can put k′j = kj . Moreover, we have suppressed dependence on the equivariant density
∏L

ℓ=1 ̺
(n)
µ,ℓ which is only

a function of canonical momenta (see Eq. (27)) and is insignificant for the following considerations. Similarly, T -
invariance of Hamiltonian H implies that densities Hℓ,ℓ+1 can only depend on the ‘gradient variables’

τ iℓ ≡ ϕi
ℓ − ϕi

ℓ−1. (41)

This motivates the use of τ iℓ instead of original variables ϕi
ℓ. The latter however provide only n(L − 1) phase-space

variables of TnL in total, and additional n variables are required to ensure invertibility of the variable transformation.
These can be taken as angle sums at the last lattice site

Φi
L ≡ ϕi

L + ϕi
L−1. (42)

This leaves us with a complete basis of nL new variables
(

n⋃

i=1

{τ iℓ}
L
ℓ=2

)
∪ {Φi

L}
n
i=1. (43)

ϕk
L

ϕL−1
k

0 2π

0

2π

Φk
L = −τk

L

Φ
k L
=

4
π
+

τ
k L

Φk
L = 4π − τk

L

Φ
k L
=

τ
k L

τk
LΦk

L

FIG. 4. Integration boundaries in the new variables (43).

By telescoping the terms to the last lattice site, the exponential in Eq. (40) can be rewritten in the form

exp


i

N∑

j=1

(
ϕ
kj

ℓj
− ϕ

kj′

ℓj

)

 = exp


−i

N∑

j=1

L∑

ℓ′
j
=ℓj+1

(
τ
kj

ℓ′
j
− τ

kj′

ℓ′
j

)

 exp


−i

N∑

j=1

(
ϕ
kj

L − ϕ
k′
j

L

)

. (44)

While the first exponential in the RHS of Eq. (44) depends only on τ -variables, the last exponential involves both the

sum and the difference, ϕj
L = 1

2

(
Φj

L + τ jL

)
. The crucial observation at this point is that this term always contains

at least one variable Φk
L whenever the sum over roots in Eq. (37) does not add up to the zero root. Since all the

remaining terms in the angular integral are only functions of τ -variables, integration over Φk
L, taking into account

new integration boundaries, (see Fig. 4) trivializes

∫
dΦk

Le
− i

2Φ
k
L =

∫ 4π−τk
L

4π+τk
L

dΦk
Le

− i
2Φ

k
L +

∫ τk
L

−τk
L

dΦk
Le

− i
2Φ

k
L = 0. (45)

This completes the proof of the neutrality rule (38).
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With an extra requirement that H is also invariant under spatial inversion [69], ℓ 7→ L − ℓ + 1, we also prove the
following:

Theorem (imaginary part of intrasectoral correlations). For Hamiltonian dynamics invariant under spatial
inversion, imaginary components of static 2-point correlators for every conjugate pair of transversal fields all vanish
in a grand-canonical Gibbs ensemble,

Im〈φ±α
ℓ1
φ∓α
ℓ2

〉β,µ = 0. (46)

Proof. The statement can be once again inferred from the angular part of the phase-space integral, reading

Im 〈φ±α
ℓ1
φ∓α
ℓ2

〉 ≃ Im

∫

TnL

n∏

i=1

L∏

ℓ=1

dϕℓ
i e

i((ϕj

ℓ1
−ϕj′

ℓ1
)−(ϕj

ℓ2
−ϕj′

ℓ2
))e−βH , (47)

where (j, j′) corresponds to ±α ∈ ∆. The statement is trivial for ℓ1 = ℓ2, since the integral is manifestly real.

We proceed by assuming, with no loss of generality, that ℓ1 > ℓ2. By telescoping the intermediate angles ϕj
ℓ for

ℓ2 < ℓ < ℓ1, the integral (47) can be brought into the form

1

2i

∫

TnL

n∏

i=1

L∏

ℓ=1

dϕℓ
i (Λ+ − Λ−) e

−βH , Λ± ≡ exp

[
±i

ℓ1∑

ℓ=ℓ2+1

(
τ jℓ − τ j

′

ℓ

)]
. (48)

Recall that the Hamiltonian is only a function of τ -variables (and momenta pℓ). Under the space inversion, τ -variables
flip their sign, τ ℓi → −τ ℓi .
Switching from angle variables ϕi

ℓ to new variables τ iℓ and Φi
L (see (43)), we next consider the integral over τ iℓ .

Each of the two integrals in (48) splits further into an integral over domains D± where τ ℓ1i ≷ 0. By virtue of spatial
inversion symmetry, the Hamiltonian is unchanged when flipping all the signs of the τ iℓ variables. As a consequence
integrals over D± (and likewise D∓) involving Λ± exactly cancel each other out, implying Eq. (46).

B. Dynamics as nested commutators

We proceed by recasting a G-invariant Hamiltonian dynamics in the form of nested commutators. This makes it
possible to utilize the Cartan-Weyl commutation relations. A generic G-invariant dynamics generated by a two-body
local Hamiltonian (30) has the form

dMℓ

dt
= −i

∞∑

k=0

c̃k

([
Mℓ, (MℓMℓ−1)

kMℓ +Mℓ−1(MℓMℓ−1)
k
]
+
[
Mℓ, (MℓMℓ+1)

kMℓ +Mℓ+1(MℓMℓ+1)
k
])
, (49)

where c̃k are scalars trivially related to ck in Eq. (30). It is sufficient to consider only one of the terms, the other
being analogous. With the use of

[Mℓ, (MℓMℓ−1)
kMℓ +Mℓ−1(MℓMℓ−1)

k] = (MℓMℓ−1)
k+1 − (Mℓ−1Mℓ)

k+1 − (MℓMℓ−1)
k + (Mℓ−1Mℓ)

k, (50)

and repeated application of the identity

(MℓMℓ−1)
k − (Mℓ−1Mℓ)

k = (Mℓ−1Mℓ)
k−2 − (MℓMℓ−1)

k−2 +
1

2
[[(MℓMℓ−1)

k−1 − (Mℓ−1Mℓ)
k−1,Mℓ],Mℓ−1] (51)

the dynamics can be recast as a linear combination of nested commutators that contain only single M matrices.
Since dMℓ/dt ∈ g can be expressed in terms of nested commutators involving single matrices M (at arbitrary sites),
the same automatically applies to all the higher time derivatives,

dkMℓ

dtk
= ′′sum of nested commutators′′. (52)
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C. Words of the Cartan-Weyl commutation relations

We now to use the Cartan-Weyl commutation relations (16) to resolve the nested commutators and deduce the
field content of the resulting expression. Since lattice indices play no role in what follows, we can afford to drop them
completely.
Let A ∈ g represent a generic element that appears in the sum of nested commutators. Expanding it in the

Cartan–Weyl basis, we have the following general form

A =
n∑

j=1

CjHj +
∑

γ∈∆

W γX−γ . (53)

Here coefficients Cj (resp. W γ) in front of Cartan (resp. Weyl) generators formally belong to the free commutative
algebra of φ-fields φσ with σj ∈ ∆0 ∪∆, i.e. they are in general linear combinations of ‘words’

cj{σ}φ
σ(1)φσ(2) . . . and cγ{σ}φ

σ(1)φσ(2) . . . , (54)

respectively, of unrestricted length. Precise form of scalar coefficients cj and cγ is of no particular relevance for what
follows.

Multiplication in the free algebra of φ-fields is simply given by concatenation of symbols σj , that is

(
cσ1

{σ}φ
σ(1)φσ(2) . . .

)(
cσ2

{σ}′φ
σ′
(1)φσ

′
(2) . . .

)
= cσ12

{σ}∪{σ}′φ
σ(1)φσ

′
(1)φσ(2)φσ

′
(2) . . . (55)

Here upperscript indices σ1, σ2 and σ12 are associated to Cartan–Weyl basis elements (cf. Eq. (53)) and must not be
confused with indices within a set {σ} = {σ(1), σ(2), . . .} encoding individual words that appear in the coefficients in
Eq. (53).
Any expression involving nested commutators of matrix variablesM ∈ Mn can be successively resolved by repeated

application of the following fusion rule. For every commutator of two words A1 and A2, we have [70]

fusion rule :
[
A1,A2

]
= A12 =

n∑

j=1

Cj
{σ}12

Hj +
∑

γ∈∆

W γ
{σ}12

X−γ , (56)

with ‘fused coefficients’ of the form

Cj
{σ}12

=W γ
{σ}1

W−γ
{σ}2

, (57)

W γ
{σ}12

= Cj
{σ}1

W γ
{σ}2

+ Cj
{σ}2

W γ
{σ}1

+
∑

γ′∈∆;γ−γ′∈∆

W γ′

{σ}1
W γ−γ′

{σ}2
, (58)

which can be easily inferred from Eq. (53) with use of the commutation relations (13)–(16). In this manner, every

nested commutator can be brought into the general form (53), whose Cartan and Weyl coefficients Cj
{σ}final

and

W γ
{σ}final

comprise of ‘fused words’ that have been produced in accordance with the fusion rules (57) and (58).

Now we recall the definition of neutrality. The initial Cartan (resp. Weyl) words, corresponding to a single matrix
variable M , are neutral (resp. charged, with charge γ). As we explain in turn, this property remains intact after
an arbitrary number of elementary fusion steps involving commutators with a single matrix M . This can be proven
by induction with aid of fusion rules (57) and (58), with the initial Cartan and Weyl words, Cj

{σ}initial
, W γ

{σ}initial

providing the base for induction.
The induction step goes as follows: suppose that after a finite number, say k, of applications of the elementary

fusion rule we arrive at two elements A and B from g, respectively characterized by Cartan coefficients Cj
{σ}A

, Cj
{σ}B

and Weyl coefficients W γ
{σ}A

, W γ
{σ}B

. By the first fusion rule (57), the resulting fused Cartan word Cj
{σ}AB

comes out

neutral as we have fused two Weyl words with roots ±γ. Similarly, by the second fusion rule (58), the resulting fused
Weyl word W γ

{σ}AB
will manifestly retain its charge γ; in the first two terms, concatenation of a Weyl word of charge

γ with a neutral Cartan word clearly does not alter the charge of a word, whereas concatenation of Weyl words that
takes place in the last term is restricted by the condition that γ′ and γ − γ′ are both elements of the root lattice,
hence also preserving the overall charge. From this we readily conclude that at (k+1)-th step the Cartan coefficients
remain neutral, while the Weyl coefficient carries charge γ.
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D. Weyl words and intersectoral correlations

We now are finally in a position to establish our main assertion (34). To this end, we note that by virtue of Eq. (52),
any (higher) time derivative of φ±α(t) can be written as

dkφ±α

dtk
= Tr

(
AX±α

)
where A = ′′sums of nested commutators′′, (59)

which projects out the ±α component of the final Weyl word W±α
{σ}final

. In the preceding section we have shown that

such words carry charge ±α. Eq. (34) then reads simply:
〈

dk

dtk
(
φ±α
ℓ1

(t)
)∣∣∣

t=0
φ
γ∦α
ℓ2

(0)

〉

β,µµµ

=
〈
Wα

{σ}final
W

γ∦α
{σ}initial

〉
β,µµµ

= 0, (60)

where the second equality is a simple consequence of the neutrality rule (38): the final Weyl word has charge ±α,
while the initial word cannot carry the opposite charge ∓α as γ ∦ α. Concatenation of the two words therefore
invariably produces a charged word with a vanishing phase-space average. This concludes the proof of Eq. (33) and
finally establishes the dynamical decoupling of transversal sectors.

Remark. The outlined derivation only makes use of (i) the neutrality rule (cf. Eq. (38)) and (ii) algebraic
commutation relations of a simple Lie algebra, without invoking any information that is particular to unitary Lie
algebras su(n+1). Our proof can thus be lifted to other simple Lie algebras G provided an analogous neutrality rule
can be established for equal-time correlators also for other coset spaces G/H.

III. SPACE-TIME DISCRETIZATION VIA TROTTERIZATION

The price for disregarding higher-order terms in the gradient expansion (Eq. 4 of main text) is integrability of
Eq. (32). To exclude non-generic effects, we purposefully destroyed integrability in our numerical simulations. A
simple way to achieve this is via (generically) non-integrable lattice discretizations. Denoting by Mℓ a matrix variable
at site ℓ, we consider a local ‘precession law’ of the form (cf. Eq. (31))

dMℓ

dt
= −i

[
Mℓ,F(Mℓ−1,ℓ) + F(Mℓ,ℓ+1)

]
+ i
[
B,Mℓ

]
, (61)

with Mℓ,ℓ+1 ≡ Mℓ +Mℓ+1 and some appropriate analytic function F . For generic F , the above dynamics is not
integrable. Integrability can however be preserved provided one takes F(M) = M−1 [28].

Efficiency of numerical simulations can be appreciably improved (without affecting transport properties of the
Noether charges, see e.g. [27, 66, 67]) by further breaking invariance under time translation. We achieved this via
non-integrable Trotterization [65] of Eq. (61).

The task at hand is therefore to derive the simplest Trotter discretization of (61) in the form of a brickwork circuit
composed of two-body symplectic maps of the form

M(τ) = UB
F (τ)M(0)[UB

F (τ)]
−1, (62)

where UB
F (τ) denotes the time-propagator for a discrete unit time-step τ . The elementary propagator is obtained as

the solution to the two-body Hamiltonian dynamics

dMℓ

dt
= −i

[
Mℓ,F(Mℓ−1,ℓ)

]
+

i

2

[
B,Mℓ

]
, (63)

evaluated at t = τ , yielding a symplectic map

UB
F (τ) ≡ exp [−iτB/2] exp [iτ F(M)]. (64)

The resulting many-body dynamics, realized as an alternating sequential application of elementary symplectic maps,
is not integrable, not even when F = M−1.
Evaluation of the matrix exponential exp (iτM−1) can in practice be avoided by taking advantage of the Cayley–

Hamilton theorem, which permits one to recast it as a matrix polynomial of degree n. More specifically, for n = 1
(CP1), with Tr(M) = 0, one has

exp
[
iτM−1

]
= cos (τm) I+ im sin (τm)M, m ≡

√
2/Tr(M2), (65)
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whereas for n = 2 (CP2), with Tr(M) = 2, one has:

exp
[
iτM−1

]
=
(
m2

I−M2
) eiτ/2

m2 − 4
+
(
M− 2I

) ∑

σ=±

(
mI±M

) σeσiτ/m

2m(m− σ2)
, m ≡

√
(Tr(M2)− 4)/2. (66)

IV. LINEARIZED THEORY

In this section we show that the non-linear dynamics

Mt =
1

2i
[M,Mxx] + i[B,M ], M2 = 1, (67)

reduce to independent (in each α-sector) linear dynamics near the vacuum (i.e. linear Goldstone excitations), where
the undulation becomes most pronounced.
When one (or more) of the chemical potentials diverges |µµµ| → ±∞ the Cartan fields align with a particular

polarization direction (depending on the vector µµµ) which takes value on G/H; the transversal (Weyl) components
φ±α acquire vanishingly small amplitudes O(ǫ) in a perturbation parameter ǫ. Fluctuations of the Cartan fields are
of the order O(ǫ2) and thus suppressed. To this end, relaxing the nonlinear constraint and ‘freezing’ the longitudinal
fields to their vacuum values, φi(x, t) → 〈φi〉vac ≡ φi(z = 0), the linear theory governing dynamics in the transversal
sector yields nt =

1
2n(n+ 1) independent pairs of imaginary-time diffusion (Schrödinger) equations

(
i∂t ±

r∑

j=1

αj
(
1
2 〈φ

j〉vac∂
2
x − bj

))
φ±α(x, t) = 0. (68)

Dynamics within each α-sectors, for α ∈ ∆, are captured by Green’s functions Ĝ±α(k) = exp
[
∓ωB

α (k)t
]
, characterized

by gapped magnonic dispersion relations

ωB
α (k) = iωαk

2 + iωB
α , (69)

with

ωα ≡ 1
2

r∑

j

αj〈φj〉vac, ωB
α =

r∑

j=1

αjbj , bi =

r∑

j=1

(κ−1)i,jTr(BHj). (70)

This implies real-space dynamics

φ±α(x, t) =

∫
dx′ G±α(x− x′, t)φ±α(x′, 0), (71)

with convolution kernels of the form

G±α(x, t) =

∫

R

dk Ĝ±α(k)e
ikx =

(
4πωα|t|

)−1/2
exp

[
∓i

(
ωB
α |t| −

x2

4ωα|t|
+
π

4

)]
. (72)

Zeros of ReG±α(x, t) (resp. ImG±α(x, t)) lie along conic sections (which degenerate into parabolae at B = 0)

4ωαω
B
α (t2 − 2tBn t) = x2, tBn ≡

π

2ωB
α

(n + 1/4), (73)

with integer (resp. half-integer) n, accurately approximating characteristic lines of transversal correlators (shown in
Fig. 1 of main text).
Eq. (69) suggests that in the absence of an external magnetic field, the complex diffusion constant D±α of the main

text becomes purely imaginary near the vacuum and equal to

lim
|µµµ|→∞

D±α = iω±α = ±
i

2

r∑

j=1

αj〈φj〉vac. (74)

Remark. Note that in the case of CP1 ∼= SU(2)/U(1), Eq. (74) implies that the modulus of the complex diffusion
constant for Goldstone modes equals unity, while the data in Fig. 2 (main text) indicate the value to be substantially
larger. This can be attributed to the fact that the linear theory has been derived for a continuous space-time system,
while we have Trotterized the dynamics onto a discrete space-time lattice with time-step τ = 1.


