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Unequal arm space-borne gravitational wave detectors
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Unlike ground-based interferometric gravitational wave detectors, large space-based systems will not be
rigid structures. When the end stations of the laser interferometer are freely flying spacecraft, the armlengths
will change due to variations in the spacecraft positions along their orbital trajectories, so the precise equality
of the arms that is required in a laboratory interferometer to cancel laser phase noise is not possible. However,
using a method discovered by Tinto and Armstrong, a signal can be constructed in which laser phase noise
exactly cancels out, even in an unequal arm interferometer. We examine the case where the ratio of the
armlengths is a variable parameter, and compute the averaged gravitational wave transfer function as a function
of that parameter. Example sensitivity curve calculations are presented for the expected design parameters of
the proposed LISA interferometer, comparing it to a similar instrument with one arm shortened by a factor of
100, showing how the ratio of the armlengths will affect the overall sensitivity of the instrument.
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I. INTRODUCTION

One of the differences between laboratory and space l
interferometer gravitational wave detectors is that, in
laboratory, the two arms of the interferometer that is used
detect changes in the spacetime geometry are maintain
nearly equal lengths. Therefore, when the signals from
two perpendicular arms are combined, the laser phase n
in the differenced signals cancels almost exactly. In spac
laser interferometer gravitational wave detector such as
Laser Interferometer Space Antenna~LISA! @1# will have
free-flying spacecraft as the end masses, and precise equ
of the arms is not possible. Other methods must then be u
to eliminate laser phase noise from the system@2–4#. These
methods involve a heterodyne measurement for each s
rate arm of the interferometer and data processing that c
bines data from both arms to generate a signal that is fre
laser phase noise. In a previous paper~@5#, hereafter called
paper I!, the sensitivity curves for space detectors using th
techniques were generated by explicitly calculating trans
functions for signal and noise, as modified by the data p
cessing algorithms. While the algorithms have been sho
@4#, in principle, to eliminate the laser phase noise in
detectors regardless of the lengths of the two arms, the tr
fer functions have previously only been calculated for
case of equal arms@5–8#. In this paper we extend the calcu
lation of the noise and signal transfer functions to the cas
arbitrarily chosen armlengths.

One of the goals of paper I was to provide a unifo
system for evaluating the sensitivity of various configu
tions of space gravitational detectors. This paper extends
capability to configurations in which the armlengths are s
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nificantly different from each other. For example, a propo
by Bernard Schutz at the 2000 LISA Symposium in Gol
Germany@9#, suggested a modification to the current LIS
design in which a fourth spacecraft is inserted in the mid
of one of the legs of the interferometer to produce two ind
pendent interferometers, each with one leg half the length
the other~see Fig. 1!. The goal of such a design was to b
able to cross-correlate the independent interferometer
search for the stochastic cosmic gravitational wave ba
ground. Using the analysis presented here, one will be a
to determine the sensitivity of such an interferometer a
judge the scientific value of the proposed modification.

As in paper I, the analysis begins with the response o
round-trip electromagnetic tracking signal to the passage

FIG. 1. An unequal arm geometry used here assumes two a
of length t and bt, with an enclosed angleg ~the interferometer
opening angle!. Depicted here is the nominal LISA constellation
three spacecraft in an equilateral triangle (b51), and a proposed
extension which places a fourth spacecraft midway down one of
arms (b51/2).
©2002 The American Physical Society01-1
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gravitational wave, as derived by Estabrook and Wahlq
@10#. A gravitational wave of amplitudeh(t) will produce a
Doppler shiftDn in the received frequency, relative to th
outgoing signal with fundamental frequencyn0(t). The shift
is given by

Dn~ t,u,c!

n0
5

1

2
cos~2c!@~12cosu!h~ t !12cosu

3h~ t2t2tcosu!2~11cosu!h~ t22t!#,

~1!

wheret is the one-way light travel time between spacecra
u is the angle between the line connecting the spacecraft
the line of sight to the source, andc is a principal polariza-
tion angle of the quadrupole gravitational wave. It is des
able to work in frequency space, soh(t) is written in terms
of its Fourier transformh̃(v). If the Doppler record is
sampled for a timeT thenh(t) is related to its Fourier trans
form by

h~ t !5
AT

2pE2`

1`

h̃~v!eivtdv, ~2!

where theAT normalization factor is used to keep the pow
spectrum roughly independent of time. Using this definiti
of the Fourier transform, the frequency shift of Eq.~1! can be
written as

Dn~ t,u,c!5
n0AT

2p E
2`

1`1

2
cos~2c!h̃~v,u,f,c!@~12m!

12me2 ivt(11m)2~11m!e2 i2vt#eivtdv,

~3!

wherem[cosu. The quantity that is actually read out in
laser interferometer tracking system is phase, so Eq.~3! is
integrated to find the phase in cycles

Df~ t,u,c!5E Dn~ t,u,c!dt. ~4!

In paper I, a strain-like variablez was formed by dividing
the Df in Eq. ~4! by n0t and the analysis was done usin
this variable. Since both arms had roughly the same lengt
paper I and carried nearly the same frequency, there was
a scale difference between usingDf and usingz as the ob-
servable, and linear combinations ofz were the same as lin
ear combinations ofDf. However, when the two armlength
are different, this is no longer the case, and one mus
careful as to what is taken to be the observable for us
noise-cancelling data analysis.

In the laser phase-noise-cancellation algorithms that
be presented in Sec. II, it isrelative phaseandnot strainthat
can be combined to create laser-noise-free signals. To un
stand how this arises, consider a case where laser signa
two arms are phase-locked to each other, withn1 as the
frequency of the master laser in the first arm andn25xn1 as
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the frequency in the second arm, withx as the ratio of the
two frequencies. Then a phase noise excursiondf1 in the
first arm will produce a phase noise excursionxdf1 in the
second arm. Thus it will be linear combinations ofzi
5f i /n i that will allow the two noise terms to cancel. Ther
fore, in this paper, the gravitational wave observable in
i th arm is defined to be

zi~ t,u,c![
Df i~ t,u,c!

n i

5
AT

4pE2`

1`

dvcos~2c!h̃~v!@~12m!

12me2 ivt(11m)2~11m!e2 i2vt#
1

v
eivt, ~5!

where Eq.~3! has been used to expandDn(t,u,c) and where
arbitrary constant phases have been set to zero in the
gration. It should be noted thatzi is a different observable
than the strain variable that was labeledzi in paper I. It
should also be noted thatzi , as it is now defined, has units o
time, so Eq.~5! gives thetime delayin seconds produced b
the passage of a gravitational wave through the detector

II. SENSITIVITY CURVES

A. Instrument signal

Tinto and Armstrong@2# originally showed that the pre
ferred signal for purposes of data analysis is not the tra
tional Michelson combination~difference of both arms!, but
rather a new combinationX(t), given in the time domain by
@11#

X~ t !5s1~ t !2s2~ t !2s1~ t22t2!1s2~ t22t1!

5z1~ t !2z2~ t !2z1~ t22t2!1z2~ t22t1!

1n1~ t !2n1~ t22t2!2n2~ t !1n2~ t22t1!, ~6!

where si(t) is the data stream from thei th interferometer
arm, composed of the signalzi(t) of interest@given by Eq.
~5!# and the combined noise spectra in each of the inter
ometer arms,ni(t). The armlengths are taken to be unequ
with armlengtht i in the i th arm. This combination is devoid
of laser phase noise for all values of the two armlengthst1
andt2.

In order to construct this combination, the armlengt
must be known to sufficient accuracy and the data sam
with the correct offsets must be available. Details of th
requirement are worked out by Hellings@3#.

To determine the sensitivity using theX(t) variable, it is
necessary to establish a relationship between the ampli
of a gravitational wave incident on the detector and the s
of theX(t) signal put out by the instrument. The noise in t
detector will limit this sensitivity, and must also be include
in the analysis. The part ofX(t) containing the gravitationa
wave signal is@12#
1-2
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L~ t !5z1~ t !2z2~ t !2z1~ t22t2!1z2~ t22t1!. ~7!

The transfer functionR(v), which connects the spectra
density of the instrument outputSL̄(v) with the spectral
density of the gravitational wavesSh(v) in frequency space
is defined via

SL̄~v!5Sh~v!R~v!, ~8!

where the bar over theL in Eq. ~8! indicates an average ove
source polarization and direction. The gravitational wa
amplitude spectral densitySh(v) is defined by

Sh~v!5uh̃~v!u2, ~9!

where h̃(v) is the Fourier amplitude defined in Eq.~2!, so
that the mean-square gravitational wave strain is given b

^h2&5 lim
T→`

1

TE0

T

h~ t !2dt5
1

2pE0

`

Sh~v!dv, ~10!

whereT is the record length. Similarly, the instrumental r
sponseSL̄(v) is defined such that

^L2&5
1

2pE0

`

SL̄~v!dv, ~11!

where the brackets indicate a time average. In the next
tion, the transfer function from the gravitational wave amp
tudeh to the instrument signalL̄ is worked out.

B. Gravitational wave transfer function

Let us take the ratio of the two armlengths in the interf
ometer to be an adjustable parameter,b, taking on values
between 0 and 1, such thatt15t andt25bt. The average
power in the part ofX(t) which contains the gravitationa
wave signal is given by

^L2&5 lim
T→`

1

TE0

T

uLu2dt, ~12!

whereL is defined by Eq.~7!. Using the definition ofz from
Eq. ~5! this can be expanded to yield
06200
e
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^L2&5
1

2pE0

`

dvh̃2~v!
1

v2
@T1~v!1T2~v!22T3~v!#,

~13!

where

T1~u!5cos2~2c1!•4sin2~bu!@m1
2
„11cos2~u!

22cos~u! cos~um1!…22m1sin~u!sin~um1!

1sin2~u!#, ~14!

T2~u!5cos2~2c2!•4sin2~u!@m2
2
„11cos2~bu!

22cos~bu!cos~bum2!…

22m2sin~bu!sin~bum2!1sin2~bu!#, ~15!

T3~u!5cos~2c1!cos~2c2!•4sin~u!sin~bu!h~u!,
~16!

with u5vt, m i5cosui , and where

h~u,u1 ,u2!5@cos~u!2cos~um1!#@cos~bu!

2cos~bum2!#m1m21@sin~u!2m1sin~um1!#

3@sin~bu!2m2sin~bum2!# ~17!

has been defined for convenience. The propagation angleu i
and principal polarization anglesc i are defined with respec
to the i th arm using the geometric conventions of paper
The expression for the power in the detector, as given by
~13!, is a complicated function of frequency and of the o
entation between the propagation vector of the gravitatio
wave and the interferometer, and represents the antenna
tern for the detector.

It is customary to describe the average sensitivity of
instrument by considering the isotropic power, obtained
averaging the antenna pattern over all propagation vec
and all polarizations@13#. Using the definition ofR(v) from
Eq. ~8!, with the average isotropic power computed using
geometric averaging procedure of paper I with Eqs.~14!–
~17!, the gravitational wave transfer function is found to b
R~u!5S t

uD 2H 2sin2~bu!F „11cos2~u!…S 1

3
2

2

u2D 1sin2~u!1
4

u3
sin~u!cos~u!G12sin2~u!F „11cos2~bu!…S 1

3
2

2

~bu!2D
1sin2~bu!1

4

~bu!3
sin~bu!cos~bu!G2

1

p
sin~u!sin~bu!E

0

2p

deE
21

11

dm1~122sin2a!h~u,u1 ,u2!J . ~18!
1-3
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LARSON, HELLINGS, AND HISCOCK PHYSICAL REVIEW D66, 062001 ~2002!
The remaining integral can be evaluated using simple
merical techniques, after relating the angular variables as
scribed in paper I, where

sina5
sing sine

A12m2
2

, ~19!

and

m25m1cosg1sing coseA12m1
2. ~20!

Here g is the opening angle of the interferometer, ande is
the inclination of the gravitational wave propagation vec
to the plane of the interferometer. The complete gravitatio
wave transfer function is plotted in Fig. 2 forb51 ~‘‘equal
arm’’! and Fig. 3 forb50.01 ~‘‘unequal arm’’! examples.

FIG. 2. The dimensionless gravitational wave transfer functi
R/t2, plotted against the dimensionless frequency parameteu
5vt, for a value ofb51.0. The uneven minima shown in th
figure are artifacts of the stepsize of the plot. As can be seen in
~18!, the gravitational wave transfer function goes to zero~a mini-
mum in the figure! wheneveru5p for the b51.0 case.

FIG. 3. The dimensionless gravitational wave transfer funct
R/t2 plotted against the dimensionless parameteru5vt, for a
value ofb50.01.
06200
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As may be seen in the figure, the low-frequency~smallu)
response of the detector to a gravitational wave signal is f
orders of magnitude lower for theb50.01 detector than for
the equal arm detector, implying that the~amplitude! signal
will be two orders of magnitude lower—the detected sign
level is proportional to the length of the shortest arm. Ho
ever, once the period of the gravitational wave falls ins
the light-time of the longest arm,u;1, the equal-arm detec
tor (b51) response begins to fall off while the unequal-a
detector (b50.01) response is roughly flat up to a perio
corresponding to the light-time in the shortest arm.

The dropoff at low frequencies is a result of the fact th
the variableX(t) is formed by subtracting eachzi from itself,
offset by the light time in the opposite arm. Thus, in t
low-frequency limit, the two copies of the signal strong
overlap and the signal is almost entirely subtracted away.
equal arms, the response of the detector is likewise s
tracted to zero when an integer number of wavelengths fit
the arm length, as seen in the high-frequency portion of
b51 curve. For the unequal-arm case, this does not oc
because the subtraction of two versions of the signal in e
arm is done at different light times in the two arms, so wh
ever period signal cancels in one arm will typically not ca
cel in the other. However, as may be seen in theb50.01
case, the response drops sharply to zero at logu.2.5 where
exactly one wavelength fits into the short arm and exac
one hundred fit into the long arm. The point logu.2.5 is
equivalent to f ;100.5 Hz for LISA armlength of ct55
3109 m!.

However, the response of the detector’sX(t) signal is not
the whole story. The ability of a detector to detect a sig
depends on both the signal in the detector and on the c
peting noise. As we shall see in the next section, when
X(t) variable is formed, the noise in each arm is likewi
subtracted away in most of the places where the signal is
~e.g., at low frequency!, so the ratio of signal to noise re
mains high.

C. Noise transfer function using theX„t… variable

The noise sources for LISA may be divided into categ
ries in two different ways. First, a noise source may be eit
one-way~affecting only the incoming or the outgoing sign
at a spacecraft, but not both! or two-way ~affecting both
incoming and outgoing signals at the same time!. A one-way
noise source will have a transfer function of 2, since th
are 2 spacecraft in each leg contributing equal amount
such noise@14#. The transfer function for two-way nois
sources, however, will be more complicated due to the in
nal correlation. A single two-way noise fluctuation in th
central spacecraft of the interferometer will affect the inco
ing signal immediately, and then, a round-trip light-tim
later, will affect the measured signal again in the same w
In the time domain, the effect in thei th arm of a fluctuation
n(t) will be ni(t)5n(t)1n(t22t i). The transfer function
for this time-delayed sum is 4cos2(2pfti). If an end space-
craft has noise that affects both incoming and outgo
beams, it will affect them at almost the same time, cohere

,

q.

n

1-4
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UNEQUAL ARM SPACE-BORNE GRAVITATIONAL WAVE . . . PHYSICAL REVIEW D 66, 062001 ~2002!
and with no delay, giving a transfer function contribution
4. The noise transfer function for a single arm for a two-w
noise source is therefore

414 cos2~2p f t i !. ~21!

Examples of one-way noise are thermal noise in the la
receiver electronics or a mechanical change in the opt
pathlength in the outgoing laser signal before it gets to
main telescope optics. Examples of two-way noise are p
sitic forces on the accelerometer proof mass or ther
changes in the optical pathlength in the main telescope.

A second way in which noise sources may be classifie
by how they scale when there is a change in armlength in
interferometer. The first type of noise in this classificati
scheme is what we call ‘‘position noise,’’ in which the size
the noise in radians of phase is independent of the lengt
the arm. Accelerometer noise and thermal noise in the la
electronics are examples of position noise. The second
of noise is what we call ‘‘strain noise,’’ in which the size o
the noise scales with armlength. Examples of strain no
include shot noise and pointing jitter~if it is dominated by
low power in the incoming beacon!. Position noises may be
either one-way or two-way, but we can think of no two-w
strain noise sources.

The transfer functions that connect the noise in the ins
ment to theX variable depend on the type of noise. We beg
by considering the noise terms in Eq.~6!:

s~ t !5n1~ t !2n2~ t !2@n1~ t22bt!2n2~ t22t!#. ~22!

We then go to the frequency domain, squaring and tim
averaging to relate the mean square noise to its power s
trum:

^s2&5
1

2pE dv 4@ ñ1
2sin2~bu!1ñ2

2sin2~u!#, ~23!

where cross terms~e.g.,ñ1ñ2) have been neglected under th
assumption that noise in the two arms will be independ
and uncorrelated. Note thatñ1

2 is the power spectrum in th

long arm~lengtht) andñ2
2 is the power spectrum in the sho

arm ~lengthbt).
Since the noise in the detectors includes different typ

with different transfer functions, it is not possible to write
single transfer function giving the response of theX variable
to noise, so let us consider the various noise categories o
a time. We first consider position noise, for whichñ2[ñ1

2

5ñ2
2. Then, using Eq.~23!, we find the transfer function fo

one-way position noise to be

R158„sin2~bu!1sin2~u!…, ~24!

where, as we noted above, there is a factor of 2 represen
the noise from the two spacecraft in each arm. Two-w
position noise must include the transfer function from E
~21!, giving

R2516@sin2~bu!„11cos2~u!…1sin2~u!„11cos2~bu!…#.
~25!
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Strain noise scales with armlength, and is hence smalle
the shorter arm, so thatñ2[ñ1

25ñ2
2/b2. Its transfer function

is therefore

Rs58„sin2~bu!1b2sin2~u!…, ~26!

where the factor of 2 for the two spacecraft has again b
included.

When b51, the transfer functions for strain noise an
one-way position noise@Eqs.~24! and~26!# are identical and
have zeros atun5np, wheren is zero or a positive integer
These are exactly the places where theb51 transfer func-
tion for gravitational wave signal~Fig. 2! has its zeros. When
b,1, the situation is more complicated. BothR1 and Rs
share the sin2(bu) term which will go to zero atu50 and at
multiples ofu5p/b. The sin2(u) terms inR1 andRs have
their zeros at multiples of the lower frequency,u5p. In R1,
this term will be larger than the sin2(bu) term at low frequen-
cies, since nearu50, sin2(u).u2, while sin2(bu).b2u2. In
Rs , these terms will be equal in the low-frequency lim

FIG. 4. The noise transfer functions forb51 as functions of the
dimensionless frequency parameteru5vt. Notice that the transfer
function for position noise (R1) is identical to the transfer function
for shot noise (Rs) in the b51 limit.

FIG. 5. The noise transfer functions forb50.01 as functions of
the dimensionless frequency parameteru5vt.
1-5
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LARSON, HELLINGS, AND HISCOCK PHYSICAL REVIEW D66, 062001 ~2002!
because of the factorb2 that multiplies the sin2(u) term.
Thus, in the low frequency limit, the strain noise trans
function will be 2b2 times the one-way position noise tran
fer function. Whenb!1, the transfer function for one-wa
position noise will have sharp drops at multiples ofu5p,
down to the level of its sin2(bu) term. These behaviors ar
shown in Fig. 4 and Fig. 5.

D. Sensitivity curve

The signal to noise ratio is the ratio of the signal power
the detector to the noise power in the detector:

SNR5
ShR

SsRs1S1R11S2R2
. ~27!

where Ss , S1, and S2 are the spectra of strain noise an
one-way and two-way position noise, respectively, andR is
the gravitational wave transfer function given by Eq.~18!.

FIG. 6. The sensitivity curve (SNR51) for b51. Overlayed
are the sensitivity curves for each of the individual noise spe
~acceleration noise, shot noise, position noise!. The noise spectra
are taken to be at the LISA target design values, except pos
noise, which is taken to be 1/10th the LISA value.

FIG. 7. The sensitivity curve (SNR51) for b50.01. Overlayed
are the sensitivity curves for each of the individual noise spectra
in the previous figure.
06200
r

Setting SNR51 and solving forhf[ASh yields the instru-
ment sensitivity curve as defined in paper I:

hf5ASh5ASsRs1S1R11S2R2

R . ~28!

Figures 6 and 7 show the sensitivity curves, compu
using Eq.~28!, for b51 andb50.01 respectively. The nois
values used are taken to be the LISA target design va
~computed as described in paper I!. The shot noise and ac
celeration noise levels are set at the standard LISA values
addition, a flat one-way position noise spectrum is assum
at 1/10th the LISA shot-noise value. Also plotted in Figs.
and 7 are sensitivity curves representing each of the th
components of the total noise, taken one at a time.

III. DISCUSSION

As may be seen in Fig. 7, the low-frequency sensitiv
for unequal arms, being set by the two-way position noise
the accelerometer, is degraded over the equal-arm cas
the ratio of the two arms. In other words, the sensitivity
lowest frequencies is set by the sensitivity of the short
arm. At middle and high frequencies, the situation is mo
complicated. If the dominant noise is strain noise, then
sensitivity is independent ofb in this frequency range. How
ever, if the dominant noise is position noise, then the se
tivity curve at high frequencies will rise in proportion tob,
though its flat floor will extend to higher frequency, from th
1/(2pt) of the equal-arm case to 1/(2pbt) when the arm-
length ratio isb.

The implications of these results for mission design
obvious. If the armlengths are not equal, the low-frequen
sensitivity is degraded by a factor 1/b, the ratio of the arm-
lengths. If the high-frequency noise can be guaranteed to
strain noise, even in the shorter arm, then the high-freque
sensitivity is unaffected by the unequal arms. If the noise
high frequency is dominated by position noise, then the h
frequency sensitivity is degraded by the factor 1/b, but the
sensitivity remains flat up to a frequency 1/(2pbt), where it
turns over and joins the strain noise curve. Thus, as long
the position-noise sources can be kept well below the s
noise and other strain-noise contributions, a change in a
length ratio from strict equality will not degrade the hig
frequency portion of the sensitivity curves. However, as
length of one of the arms is shortened, small position no
sources will become important and eventually dominate.

Let us consider the example of Schutz’s 4-spacecraft c
figuration ~Fig. 1!. Since this configuration will haveb
50.5, the low-frequency sensitivity curve will be a factor
2 higher~hence less sensitive!. The current error budget fo
LISA assumes that the high-frequency portion of the wind
is dominated by position noise approximately three times
shot noise. If this remains the case, then the high-freque
section of the curve will likewise be a factor of 2 higher u
to a frequency twice as high as the LISA sensitivity ‘‘knee
at f 51/(2pt), at which point it would turn up and join the
current LISA high-frequency ramp. The shot noise is det
mined by the power of the laser and by the size and e
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ciency of the optics, and there is nothing beyond brute-fo
improvements in these parameters that will lower the s
noise. The contributions to position noise, on the other ha
are due to optics quality, the attitude control system, Brow
ian noise in the electronics, thermal noise in the optical p
length, etc. These are more complex and are amenab
reduction by careful or innovative engineering design.
these noise sources can be reduced to a fraction of the
noise, not only will the LISA noise floor be reduced by
factor of 4, but the Schutz modification will have high
frequency performance that is undiminished by the reduc
of the length of one arm.

Finally, we describe a totally unfeasible mission des
that is nevertheless interesting for instructive purposes.
us consider a two-spacecraft ‘‘interferometer,’’ where one
the spacecraft contains a fiber optic delay line, of lengt
km, that acts as the second arm of the interferometer. If
distance between the two spacecraft is 53106 km, we will
haveb51026. The use of theX(t) variable will eliminate
laser phase noise, exactly as it does in arms that are m
nearly equal. A rigidly attached reflector at the far end of
fiber-optic line would eliminate accelerometer noise, but,
J
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course, would replace it with thermal fluctuation in the op
cal path length in the fiber. However, a concatenation
fibers with well-chosen thermal pathlength coefficients co
produce a fiber tuned to have a coefficient very near ze
This, combined with multilevel thermal isolation, could kee
this noise source very small. The key to the sensitivity of t
configuration is the position noise. If a way could be fou
to reduce position noise to less than 1026 of the LISA shot
noise, then this two-spacecraft interferometer would have
same sensitivity as a conventional three-spacecraft inte
ometer.
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