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Unequal Loss Protection: Graceful Degradation of
Image Quality over Packet Erasure Channels Through

Forward Error Correction
Alexander E. Mohr, Student Member, IEEE, Eve A. Riskin, Senior Member, IEEE, and

Richard E. Ladner, Member, IEEE

Abstract—We present the unequal loss protection (ULP)
framework in which unequal amounts of forward error correction
are applied to progressive data to provide graceful degradation
of image quality as packet losses increase. We develop a simple
algorithm that can find a good assignment within the ULP
framework. We use the Set Partitioning in Hierarchical Trees
coder in this work, but our algorithm can protect any progressive
compression scheme. In addition, we promote the use of a PMF
of expected channel conditions so that our system can work with
almost any model or estimate of packet losses. We find that when
optimizing for an exponential packet loss model with a mean loss
rate of 20% and using a total rate of 0.2 bits per pixel on the
Lenna image, good image quality can be obtained even when 40%
of transmitted packets are lost.

Index Terms—Joint source/channel coding, lossy image trans-
mission, lossy packet networks, packet erasure channel, packet
loss, priority encoding transmission, Reed–Solomon coding,
unequal loss protection.

I. INTRODUCTION

T
HE INTERNET is a widely deployed network of com-

puters that allows the exchange of data packets. In

traversing the network, a packet is sent from computer to

computer until it arrives at its destination. However, when

the number of packets sent exceeds transmission capacity,

packets are discarded at random, causing loss of data and most

likely decoding failure if the lost data are not retransmitted.

Each packet can be assigned a unique sequence number, so

it is known which packets are received and which are lost. If

the underlying transport protocol does not assign a sequence

number, one or two bytes of the payload can be used to provide

one. When each packet has a unique sequence number, the

receiver can sort the packets according to their transmission

order and any gaps in the sequence are known to be lost packets
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(erasures). The receiver can then take whatever action it deems

best.

In networks in which packets are discarded at random, there

is no way to specify the importance of a particular packet. Usu-

ally, however, the data that we transmit vary in importance. If

we transmit a portrait of a face, for example, data that let us

recognize the person are more important than data that show

the texture of a few strands of hair. If the network is unable to

transmit all of the data, then we would like it to discard the part

describing the hair and retain the part that allows recognition of

the face. Such a network strategy needs to quantify the impor-

tance of different chunks of data and, as channel conditions de-

grade, discard the least important data while retaining the most

important data.

In this paper, we describe the unequal loss protection (ULP)

framework that assigns unequal amounts of forward error cor-

rection (FEC) to images that are compressed with an unmodified

progressive algorithm and are transmitted over lossy packet net-

works without using feedback. After presenting the ULP frame-

work, we give a simple algorithm that can find a good FEC as-

signment within that framework. Our scheme is modular in that

we can use any progressive compression algorithm and have

graceful degradation of image quality with increasing packet

loss rate. We focus on those packet erasure channels without

feedback whose variable loss rates can be expressed as a proba-

bility mass function (PMF). Notable examples are asynchronous

transfer mode (ATM) networks, wireless networks, and UDP-

based transport on the Internet.

II. BACKGROUND

In this section, we report previous work on protecting data

from bit errors and packet losses and detail the elements that

will be used in the next section to construct our ULP frame-

work. We begin with an overview of set partitioning in hierar-

chical trees (SPIHT) [1] and explain ways in which it has been

protected for transmission over nonideal channels. We then re-

view the priority encoding transmission [2] scheme for using

Reed–Solomon codes to protect video.

A. Set Partitioning in Hierarchical Trees

An example of a progressive image compression algorithm

is SPIHT [1], an extension of Shapiro’s Embedded Zerotree

0733–8716/00$10.00 © 2000 IEEE
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Wavelet method [3]. These two new algorithms are a signifi-

cant breakthrough in lossy image compression in that they give

substantially higher compression ratios than prior techniques

including JPEG [4], vector quantization [5], and the discrete

wavelet transform [6] combined with quantization. In addition,

the algorithms allow for progressive transmission [7] (meaning

coarse approximations of an image can be reconstructed quickly

from beginning parts of the bit stream), require no training, and

are of low computational complexity.

The SPIHT algorithm uses the 9/7-tap biorthogonal filter in

the discrete wavelet transform [6]. To take advantage of the self-

similarity among wavelet coefficient magnitudes in different

scales, the coefficients are grouped into tree structures called ze-

rotrees. The organization of wavelet coefficients into a zerotree

is based on relating each coefficient at a given scale (parent) to

a set of four coefficients with the same orientation at the next

finer scale (children). Zerotrees allow the prediction of insignif-

icance of the coefficients across scales (that is, if the parent is

insignificant with respect to a given threshold, its children are

also likely to be insignificant) and represent this efficiently by

coding the entire tree at once.

SPIHT groups the wavelet coefficient trees into sets and

orders coefficients by the highest bit plane of the magnitude.

The ordering information is encoded with a set partitioning

algorithm. This algorithm is fully reproduced at the decoder.

The SPIHT algorithm transmits the wavelet coefficients in bit

plane order with most significant bit plane first. For each bit

plane there are two passes. In the first pass, called the dom-

inant pass, coefficients which are significant with respect to

the current threshold are found and coded using the set parti-

tioning method. In the second pass, the subordinate pass, the

precision of all previously significant coefficients is increased

by sending the next bit from the binary representation of their

values. Such refinement allows for progressive-approximation

quantization and produces a fully embedded code, i.e., the

transmission of the encoded bit stream can be stopped at

any point and a lower rate image can still be decompressed

and reconstructed. Additionally, a target bit rate or target

distortion can be met exactly.

B. Joint Source/Channel Coding Using SPIHT

Joint source/channel coding is an area that has attracted

a significant amount of research effort. Despite the fact that

Shannon’s separation theorem [8] states that for a noisy

channel, the source and channel coders can be independently

designed and cascaded with the same results as given by a

joint source/channel coder, complexity considerations have led

numerous researchers to develop joint source/channel coding

techniques. To date, most of this effort has been for fixed rate

codes because they do not suffer from the synchronization

problems that occur with variable rate codes [9]–[11]. (Notable

exceptions that have considered joint source/channel coding

schemes for variable rate codes include work on reversible

variable length codes that can be decoded in both directions

[12]. However, these codes can still have problems with

synchronization.)

SPIHT yields high compression ratios, but images com-

pressed with SPIHT are vulnerable to data loss. Furthermore,

because SPIHT produces an embedded or progressive bit

stream, meaning that the later bits in the bit stream refine earlier

bits, the earlier bits are needed for the later bits to even be

useful. However, SPIHT’s impressive performance is leading

researchers to consider transmitting images compressed with

SPIHT over lossy channels and networks.

C. Prior Work on Transmitting SPIHT over Noisy Channels

Sherwood and Zeger [13] protected images compressed with

SPIHT against noise from the memoryless binary symmetric

channel with rate-compatible punctured convolutional (RCPC)

codes [14] with good results. They extended this work to images

transmitted over the Gilbert–Elliott channel (a fading channel)

in [15]. In the latter case, they implement a product code of

RCPC and Reed–Solomon codes and find that this outperforms

the work in [13] even for the binary symmetric channel.

Rogers and Cosman were the first to consider the transmis-

sion of images compressed with SPIHT over packet erasure

networks [16]. They used a fixed-length packetization scheme

called packetized zerotree wavelet (PZW) compression to

transmit images compressed with a modified SPIHT over lossy

packet networks. The algorithm does not use any channel

coding. They implemented a scheme to fit as many complete

wavelet trees (i.e., one coefficient from the lowest frequency

wavelet subband along with all its descendants) as possible

into a packet. The algorithm degrades gracefully in the pres-

ence of packet loss because the packets are independent. If a

packet is lost, they attempt to reconstruct the lowest frequency

coefficients from the missing trees of wavelet coefficients by

interpolating from neighboring low frequency coefficients that

have been correctly received by the decoder. To simplify their

algorithm, they used fewer levels of wavelet decomposition

and removed the arithmetic coder from the SPIHT algorithm.

The modification of the SPIHT algorithm caused a decrease of

about 1.1 dB in the PSNR for the Lenna image coded at 0.209

bits per pixel for the case of a channel without losses.

These two schemes were combined into a hybrid scheme in

[17]. The authors consider the case where, in addition to packet

loss, packets can arrive with bit errors in them. They use channel

coding to correct bit errors and PZW to conceal packet losses. If

they cannot correct all of the bit errors in a packet, they consider

the packet to be erased. The hybrid scheme shows resilience to

packet loss, bit errors, and error bursts. It is still based on the

modified SPIHT algorithm used in [16], which does not perform

as well as the original SPIHT algorithm.

In recent work, Chande and Farvardin presented an unequal

error protection algorithm for progressive transmission over bit

error channels [18]. They assume that the bit stream can only be

decoded up to the first uncorrectable error. They suggest max-

imizing the average useful source coding rate as an optimiza-

tion criterion, because a longer prefix of the bit stream yields

higher reconstructed image quality when decoded [18]. They

use RCPC codes for bit errors. They use a dynamic program-

ming approach to find the optimal code policy for each bit rate.
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Their scheme shows gains over equal error protection of up to

0.6 dB.

D. Reed–Solomon Codes

Systematic Reed–Solomon (RS) codes can be used to gen-

erate FEC. RS codes are effective at recovering from erased

symbols when the locations of the erased symbols are known.

When packets either arrive perfectly intact or are completely

discarded, we can consider RS codes that are optimized for era-

sures [19]. These maximum distance separable block codes are

denoted by a pair , where is the block length and is

the number of source symbols. When the code is systematic, the

first of the encoded symbols are the source symbols and the

remaining symbols are redundancy. They have the prop-

erty that an code can exactly recover the source sym-

bols from any size- subset of the total symbols. From an in-

formation theoretic standpoint, that property makes these codes

optimal when exactly symbols are received. This recovery is

possible by treating the source symbols as the coefficients of a

polynomial in a Galois field of size and evaluating it

at a number of additional points, thus creating redundant data

[19], [20].

E. Forward Error Correction for Packet Erasure Channels

Priority Encoding Transmission (PET) [2] is an algorithm that

assigns FEC, according to priorities specified by the user, to

message fragments (also specified by the user) sent over lossy

packet networks. Each of these fragments is protected against

packet losses by added FEC. It defines priorities as the fraction

of transmitted packets that must be received to decode the mes-

sage; thus a high priority is represented by a low percentage

and the message fragment can be recovered if relatively few

packets are received by the decoder. The receiver can recover

the message fragment by interpolation from any subset of the

transmitted packets, so long as it receives a fraction of packets

at least as large as the priority of the message fragment. This

property is a direct result of employing Reed–Solomon codes.

In the PET algorithm, each message fragment is assigned a

fixed position within each packet. In Fig. 1, the first fragment

and its FEC consist of the first bytes of each packet,

the second fragment and its FEC consist of bytes from

( ) to ( ) of each packet, and and consist of the

remaining bytes of each packet. PET determines the value of

for each fragment and the total number of packets , making

the assumption that the number of fragments is much smaller

than the number of bytes in each packet, and constrained by the

user-specified priorities.

The PET algorithm does not specify how to choose the

priorities to assign to the various message fragments: this

assignment is left to the user. Leicher [21] applied PET to

video compressed with MPEG and transmitted over packet loss

channels. He used a simple three-class system in which

was the intraframe (I) frames and had priority 60%, was the

forward-only predicted (P) frames and had priority 80%, and

was the forward–backward predicted (B) frames and had

priority 95%. Thus, he can recover the I frames from 60% of

the packets, the I and P frames from 80% of the packets, and all

the data from 95% of the packets. This is diagrammed in Fig. 1.

Fig. 1. In Leicher’s application of PET to MPEG [21], he applied 60% priority
toM (I frames), 80% priority toM (P frames), and 95% priority toM (B
frames).

Girod, Stuhlmüller, Link, and Horn applied unequal amounts

of Reed–Solomon coding to protect packetized scalable H.263

video, with improved results at higher loss rates over equal or

no error protection [22].

Davis et al. [23] presented fast lossy Internet image transmis-

sion (FLIIT) which is a joint source/channel coding algorithm.

Like PET, it assigns different levels of FEC to different types of

data, but it considers distortion-rate tradeoffs in its assignments.

They begin with a 5-level discrete wavelet transform, create an

embedded bit stream by quantizing each subband’s coefficients

in bit planes, apply entropy coding, and pack the bit stream from

each subband into 64-byte blocks. To do bit allocation, they de-

termine the reduction in distortion due to each block, similar to

work in [24]. They then compare the greatest decrease in dis-

tortion from those blocks with the addition of a block of FEC

data to the already-allocated blocks. They allocate the block of

data or block of FEC that decreases the expected distortion the

most. They only consider three simple cases of assigning FEC

to a block: no protection, protection that consists of one FEC

block shared among a group of blocks, and replication of the

block. They find that, as expected, it is advantageous to apply

more FEC to the coarse/low-frequency wavelet scales and to the

most significant bit planes of the quantization.

The FLIIT algorithm is one of the first pieces of work to ex-

plicitly consider distortion-rate tradeoffs in making FEC assign-

ments for lossy packet networks. However, it is limited by the

coarse assignment of only three levels of protection, and the re-

liance on the compression algorithm they have selected (for ex-

ample, SPIHT can yield a PSNR that is over 1 dB higher than

their algorithm). In later work [25], the FLIIT algorithm was ex-

tended to use more powerful Reed–Solomon-like codes, but it

still relies on their compression algorithm.

III. THE UNEQUAL LOSS PROTECTION FRAMEWORK

While the algorithms in [15]–[17], [23] yield good results

for memoryless and fading channels and for lossy packet net-

works, there are additional ways to transmit compressed images

over lossy networks such that image quality gracefully degrades

with increasing packet loss. Specifically, we will protect images

transmitted over lossy channels with unequal amounts of FEC

in a manner similar to the PET scheme, but we will consider the

effect of each data byte on image quality when assigning pro-

tection.
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Fig. 2. Each of the rows is a stream and each of the columns is a packet. A
stream contains 1 byte from each packet. The numbers 1–32 are data, and the
symbol F is FEC.

In our approach to creating a framework derived from PET to

assign unequal amounts of FEC to progressive data, we remove

PET’s restriction that the number of message fragments be much

less than the number of bytes in each packet. Instead, we use a

number of message fragments equal to the number of available

bytes in each packet and have our algorithm dynamically choose

the length and content of each message fragment. We add FEC

to each message fragment to protect against packet loss such

that the fragment and the FEC form a stream. The message is

divided into streams such that each stream has one byte of

each of packets. In Fig. 2, each of the rows is a stream

and each of the columns is a packet. For a given stream

, for , containing both data bytes and FEC

bytes, as long as the number of lost packets is less than or equal to

the number of FEC bytes, the entire stream can be decoded [2].

Fig. 2 shows one possible way to send a message of 32 bytes of

data (numbers 1–32) and ten bytes of FEC (F). Notice that in the

figure, more bytes of FEC are applied to the earlier parts of the

message and fewer are used for the later parts of the message. For

SPIHT’s embedded bit stream, the earlier parts of the message

should have the highest priority because they are most important

to the overall quality of the reproduction.

Fig. 3 shows the case where one packet out of six is lost, and

five are received correctly. In this case, the first six streams can

be recovered since they contain five or fewer data bytes. The

last stream cannot be decoded since it contains six bytes of data

and no FEC. We point out that bytes 27–29 from the seventh

stream are useful since they were received correctly but bytes 31

and 32 are not useful without byte 30. Similarly, if two packets

are lost, bytes 1–11 are guaranteed to be recovered and bytes

12–15 may or may not be recovered. In messages of practical

length, however, those few extra bytes have only a small effect

on image quality. Analogous to progressive transmission [7],

even if severe packet loss occurred, we could recover a lower

fidelity version of the image from the earlier streams that are

decoded correctly. Each additional stream that is successfully

decoded improves the quality of the received message, as long

as all previous streams are correctly decoded.

A. Formalizing the Framework

In this section, we introduce notation to formalize the ULP

framework. Assume we have a message , which is simply

Fig. 3. Demonstration of how much data can be recovered when one of six
packets is lost. Here, stream 1 is unaffected by the loss, streams 2–6 use FEC to
recover from the loss, and in stream 7, only the bytes up to the lost packet are
useful to the decoder.

a sequence of data bytes to be transmitted. For example, this

could be a still image compressed with SPIHT to 0.5 bits per

pixel. If, instead of sending , we send a prefix of and some

FEC, we can still maintain the same overall bit rate. We let

equal the number of data bytes assigned to stream and let

equal the number of FEC bytes assigned to stream .

We define the redundancy assignment, an -dimensional FEC

vector whose entries are the length of FEC assigned to each

stream, as

For a given , we divide into fragments and de-

fine to be the sequence of data bytes in the th stream.

That is, includes the bytes of message from position

to position ; , with

composed of bytes of stream 1. We denote a prefix

of containing the first fragments for redundancy vector

as

We define the incremental PSNR of stream

PSNR PSNR
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Fig. 4. At each iteration of the optimization algorithm, Q bytes of data can be
added or subtracted to any of the L streams.

The quantity is the amount by which the PSNR increases

when the receiver decodes fragment , given that all fragments

prior to have already been decoded. We set to be the dif-

ference in PSNR between the case in which is received

and the case in which no information is received (a simple gray

field).

Because the data are progressive, we require that

; that is, the FEC assigned to the streams

is nonincreasing with . With this requirement, if can be

decoded, then can also be de-

coded. There is no advantage to having more redundancy in

stream than in stream because the loss of more than

packets would render both streams undecodable.

To determine the FEC vector , we use an estimate of the

channel loss profile that a message is likely to encounter. This

estimate is given by a PMF , such that

is the probability that packets are lost. To simplify later cal-

culations, we determine the probability that or fewer packets

are lost, and thus the cumulative distribution function is

. The quantity is the proba-

bility that receiver can decode stream .

We can now calculate the expected PSNR of the received

message as a function of by summing over the streams

(1)

In designing an algorithm to assign FEC, we seek the that

maximizes subject to a packet loss estimate . Note that

could be image quality measures other than PSNR such as

the mean squared error, useful source coding rate, or perceptual

criteria, all of which fit within this framework.

B. Channel Estimation

In keeping with our modular design philosophy, we assume

the existence of an estimator that outputs a PMF indicating the

likelihood that a particular number of packets is lost, given the

total number of packets to be transmitted. This estimator could

be almost any model of expected packet loss rates: a PMF can

realize uniform, binomial, Zipf, Poisson, exponential, and other

distributions, as well as state-based systems such as Gilbert–El-

liott channels. Furthermore, characterizing networks such as the

Fig. 5. Pseudocode of assignment algorithm. N is the number of packets, and
L is the length of each packet. The variables best, last, and temp are vectors
that store redundancy assignments. Q is the search distance and search value
is an iteration index over that distance.

Fig. 6. Effect of packet loss on PSNR for ULP, ELP, Rogers and Cosman’s
packetized zerotree wavelets [16], and unprotected SPIHT. The two loss
protection results are from an exponential packet loss model with a mean loss
rate of 20%.

Internet is an open and active research topic in the networking

community [27], [28], although we note that an estimator for

the Internet is likely to be quite different from an estimator for a

wireless channel. By requiring the estimator to produce a PMF,

we maintain the relevance of the framework to a variety of ap-

plications and allow new developments in network channel es-

timation to be seamlessly incorporated into our system.

IV. AN ALGORITHM FOR SOLVING THE ULP PROBLEM

The previous section presented a framework that can be used

to assign FEC to the compressed image data. In this section,

we describe an algorithm to find a good FEC assignment

vector. Finding the globally optimal assignment of FEC data

to each of the streams within the ULP framework appears to

be computationally prohibitive for a useful amount of data.
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(a) (b)

(c) (d)

Fig. 7. Image quality at 0.2 bits per pixel total rate for Unequal Loss Protection of Lenna over a channel that has an exponential loss profile with a mean of 20%.
(a) 30% of packets lost. (b) 40% of packets lost. (c) 50% of packets lost. (d) 60% of packets lost.

We therefore developed a local search hill-climbing algorithm

that makes limited assumptions about the data, but is computa-

tionally tractable. As mentioned in Section III-A, we constrain

. Additionally, we assume that a single byte missing

from the progressive bit stream causes all later bytes to become

useless.

We initialize each stream to contain only data bytes, such that

and . In each iteration, our

algorithm examines a number of possible assignments equal to

, where is the search distance (maximum number of FEC

bytes that can be added or subtracted to a stream in one iteration)

and is the number of streams. We determine after adding

or subtracting 1 to bytes of FEC data to each stream (see

Fig. 4), while satisfying our constraint . We choose

the corresponding to the highest , update the allocation

of FEC data to all affected streams, and repeat the search until

none of the cases examined improves the expected PSNR. This

process is detailed more fully in pseudocode (see Fig. 5). Our

algorithm finds a local maximum that we believe is quite close

to the global maximum and, in some cases, may be identical.
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The search distance is a parameter of the algorithm that is

chosen ahead of time. There is clearly a tradeoff: the larger

is, the more likely the algorithm will find a global optimum, but

the algorithm will require more time to run. When the PMF is

well behaved, such as a simple unimodal function, a small

seems to yield excellent results.

Note that for every byte of FEC data that we add to a stream,

one byte of data needs to be removed. When changing the FEC

assignment, we start at the first stream affected by the new allo-

cation, move its last data byte to the next stream, move the last

data byte of this stream to the following stream, and so on. This

causes a cascade of data bytes to move down the streams until

the last data byte from stream is discarded. This part of the

algorithm uses our assumption that the compressed sequence

is progressive, because the data byte that we discard is among

the least important in the embedded bit stream. The algorithm

results in a set of different strength Reed–Solomon codes. The

size of each code would need to be sent to the decoder as side

information and how this would be implemented depends on the

system being used.

V. RESULTS

The algorithm developed in the previous section is applied

to two test images. The first test image is the standard “Lenna”

image and the second is a magnetic resonance image of a sagittal

brain slice.

A. Lenna

For these experiments, we used the standard 512 512 gray-

scale Lenna image compressed with SPIHT. We chose a total bit

rate of 0.2 bits per pixel for the combination of data and FEC

bytes. Because ATM packets have a payload length of 48 bytes

and 1 byte is required for a sequence number, we place 47 bytes

of data in each packet and send 137 packets, giving a total pay-

load size of 6576 bytes, of which 6439 are data. Including the

sequence number, the bit rate is 0.201 bits per pixel. Excluding

it, the bit rate is 0.197 bits per pixel. Convergence of the al-

gorithm is typically reached in about 27 iterations and requires

0.5 s on an Intel Pentium II 300 MHz workstation.

For this example, we use a channel loss model that is an expo-

nential PMF with a mean loss rate of 20%. We justify the expo-

nential shape by noting that packet loss rates are usually small,

but sometimes spike to larger values. Although a 20% mean loss

rate may seem high for current ATM networks, loss rates have

been increasing over time [29]–[31], and such high loss rates

commonly occur with wireless networks and on the Internet at

peak times. We use this PMF to demonstrate that ULP is robust

even in extreme situations.

We maximize the expected PSNR for two cases: ULP

and equal loss protection (ELP), in which the algorithm is

constrained to assign FEC equally among all of the streams.

For ULP, our assignment algorithm resulted in an allocation

with an expected PSNR of 29.42 dB. For ELP, the result was

an allocation with an expected PSNR of 28.94 dB, or 0.48 dB

lower than the ULP assignment result.

As shown in Fig. 6, under good channel conditions (packet

loss rates of up to 32%, which occur 80% of the time) ULP

Fig. 8. Data fraction for each stream (Lenna image). Note that the FEC fraction
is (1—Data Fraction). Stream 1 is the first stream (most important data), and
stream 47 is the last stream (least important data).

Fig. 9. The ULP system is progressive in the number of packets received
(Lenna image).

yields a PSNR that is 0.66 dB higher than ELP. This is because

more bytes are used for data and fewer for FEC. ELP surpasses

ULP when loss rates are 33% to 51%, but those occur with

only 12.5% probability. In addition, ULP degrades gracefully

whereas ELP has a sharp transition at loss rates near 51%. ULP

outperforms ELP a total of 85.5% of the time for this example.

As expected, both of these cases substantially outperform not

using any protection on the data, except when the loss rate is

very low.

At those low loss rates, e.g., below 1%–2%, unprotected

SPIHT will often survive with a significant prefix of the

transmitted data remaining intact and the more-robust PZW

coder [16] will perform slightly better. On the other hand,

the performance of unprotected SPIHT and PZW degrades

rapidly as losses increase, while the addition of FEC allows

protected data to survive at larger loss rates. We also note

that the protected data are affected only by the number of lost

packets, but the reconstruction quality of unprotected SPIHT,

and to a lesser extent PZW, depends upon which packets are

lost. (See [26] for more discussion of this subject.)

We display results of our ULP algorithm in Fig. 7. It shows

the graceful degradation of the image transmitted over a lossy
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Fig. 10. The 256 � 256 magnetic resonance image. (a) The original. (b)
Compressed at 1.0 bit per pixel with SPIHT.

packet network with loss rates of 30%, 40%, 50%, and 60%.

Notice that the image quality remains high at a packet loss rate

of 40% and the image is still recognizable at a loss rate of 50%

(and even at 60% by researchers in the image compression com-

munity).

We show how ULP assigns data and FEC to the data streams

in Fig. 8. Stream 1 is the first stream (most important data from

the SPIHT algorithm) and it has an assignment of 24% data and

76% FEC. Stream 47 is the last stream (least important data)

with 70% data and only 30% FEC. The 47 streams represent 23

different RS code strengths. As expected, the amount of FEC

Fig. 11. Comparison of magnetic resonance image PSNR versus fraction of
packets lost for ULP, ELP, and unprotected SPIHT. The channel loss model is
an exponential with a mean of 10%.

decreases with increasing stream number, as required by our

algorithm.

Finally, we point out that our system does provide progres-

sive transmission, albeit with a delay. Once a number of packets

equal to the number of data bytes in stream 1 is received, we

can begin to decode the image. In Fig. 9, we see that when 33

packets of the ULP-protected Lenna image have arrived, stream

1 can be decoded. Then as additional packets are received, the

additional decoded bytes are used to update the image. Further-

more, the image quality does not depend on which packets are

received or on their order of arrival [26].

B. Magnetic Resonance Image

We next apply the ULP algorithm to a 256 256 magnetic

resonance image of a brain compressed with SPIHT. The orig-

inal image is shown in Fig. 10(a) and a compressed version at 1.0

bits per pixel is shown in Fig. 10(b). In this example, the image

was transmitted in 174 47-byte payloads over a channel with an

exponential mean loss rate of 10%. We chose this lower mean

loss rate to demonstrate that the ULP assignment algorithm is

also effective for less extreme network conditions. The total bit

rate was 1.0 bits per pixel for the combination of data and FEC

bytes. Convergence of the algorithm was typically reached in

about 46 iterations and required 0.08 s of CPU time on an Intel

Pentium II 300 MHz workstation.

In Fig. 11, we show the results of using our algorithm for

both ULP and ELP. Under better channel conditions (packet loss

rates of up to 24%), ULP yields a PSNR of 36.02 dB, which

is 1.08 dB higher than the 34.94 dB result of ELP. As before,

ULP degrades gracefully, whereas ELP would give very poor

image quality if the experienced loss rate were above 33%. ULP

outperforms ELP 94% of the time in this example. Fig. 12 shows

the graceful degradation of the image protected with ULP and

transmitted over a lossy packet network with loss rates of 10%,

20%, 30%, and 40%. Notice that the image quality remains high
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(a) (b)

(c) (d)

Fig. 12. Image quality at 1.0 bit per pixel total rate for Unequal Loss Protection of a magnetic resonance image over a channel that has an exponential loss profile
with a mean of 10%. (a) 10% of packets lost. (b) 20% of packets lost. (c) 30% of packets lost. (d) 40% of packets lost.

at a 30% loss rate and the image is still clearly recognizable as

a sagittal brain slice at the 40% loss rate.

VI. CONCLUSION

We have presented the Unequal Loss Protection framework

and developed a simple algorithm that assigns FEC to provide

graceful degradation of image quality in the presence of packet

loss. Our framework is modular and can input any progressive

compression scheme, any network condition estimator that pro-

duces a PMF, and other ULP assignment algorithms besides the

hill-climbing algorithm presented here. As better progressive

compression algorithms than SPIHT are discovered, they can

be easily incorporated into the ULP framework. We are cur-

rently developing an assignment algorithm that is optimal for

a convex hull approximation of the source data. We also expect

to extend this work to the transmission of video sequences. Fi-

nally, we have used our ULP system to solve the generalized

multiple description problem [26]. Demo programs and data
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files are available from http://isdl.ee.washington.edu/compres-

sion/amohr/ulp/.
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