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Abstract

Large-scale face datasets usually exhibit a massive num-

ber of classes, a long-tailed distribution, and severe label

noise, which undoubtedly aggravate the difficulty of train-

ing. In this paper, we propose a training strategy that treats

the head data and the tail data in an unequal way, ac-

companying with noise-robust loss functions, to take full

advantage of their respective characteristics. Specifically,

the unequal-training framework provides two training data

streams: the first stream applies the head data to learn dis-

criminative face representation supervised by Noise Resis-

tance loss; the second stream applies the tail data to learn

auxiliary information by gradually mining the stable dis-

criminative information from confusing tail classes. Con-

sequently, both training streams offer complementary in-

formation to deep feature learning. Extensive experiments

have demonstrated the effectiveness of the new unequal-

training framework and loss functions. Better yet, our

method could save a significant amount of GPU memory.

With our method, we achieve the best result on MegaFace

Challenge 2 (MF2) given a large-scale noisy training data

set.

1. Introduction

Deep convolutional neuron networks (DCNNs) have

achieved great success in computer vision [11,12,18,19,29],

significantly improving the state of art in face recogni-

tion [6, 7, 21, 28, 36, 37, 39]. Besides the evolving architec-

tures, large-scale training datasets play a crucial role in deep

face recognition. It is worth to point out that real-world face

datasets are usually large-scale and exhibit a long-tailed dis-

tribution, which present three challenges for model train-

ing. First, there exists extremely imbalanced identities in
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such a large dataset, in which some identities have sufficient

samples, while for other hundreds of thousands identities,

only very few samples are available. Second, there is sig-

nificant noise inherent in the long-tailed face datasets. As

reported in [35], the label noise percentage increases dra-

matically as the scale of data growing, and million level

datasets typically would even have a noise ratio higher than

30%. Third, with a massive number of identities, the fully-

connected layer connected with softmax loss will become

extremely large, thus the GPU memory will be congested

and the batch-size will be lowered, which will make the

training loss difficult to converge [34].

The three challenges, i.e. extremely unbalanced data,

million level identities, and inherent noise, undoubtedly ag-

gravate the difficulty of training. The experiment of Zhang

et al. [44] indicates that, a model trained on the whole long-

tailed dataset will perform worse than that trained on a spe-

cific proportion of the whole dataset (cutting 50% tail in

their work). The phenomenon indicates that, it would be

sub-optimal to train on the whole face dataset without con-

sidering characteristics of the data. The tail identities can-

not provide an accurate description with limited number of

training samples, thus the feature space of them will be

squeezed by the head identities. Moreover, overfitting to

noise would further deteriorate the model [35].

Unfortunately, current training methods cannot stably

make full use of discriminative information in the long-

tailed noisy dataset. Due to this complicated situation

of long-tailed noisy face dataset, traditional methods, e.g.

re-sampling [3] and cost-sensitive weighting [17], are no

longer feasible. Some recently proposed solutions at-

tempted to alleviate long-tailed problem by compensating

the tail data [41, 43, 44]. Although they can treat the head

and tail data equally, these methods may by easily affected

by the label noise. Thus, we dedicate to tackling the long-

tailed problem in deep face recognition, improving the re-

sistance of training models to noise, exploring effective
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Figure 1. The unequal-training framework based on the long-tailed dataset and the corresponding loss functions, provides two training data

streams to the model: the first stream, based on the head data, is used for training relative discriminative face representation supervised by

a noise-resistant loss which incorporates a hypothetical training face representation in feature space; the second stream, based on the tail

data, is used to learn the stable inter-class discriminative information by mining hard identities, adding them gradually in an iterative way

and enhancing the feature space by dispersing them.

method to use the accurate information as much as possi-

ble to strengthen the model.

In this paper, we propose an unequal training method

to treat the head data and the tail data differently, which

can take full advantage of discriminative information sta-

bly. The head identities with abundant samples are suit-

able to characterize the intra-class variability while the large

number of tail identities could offer abundant inter-class in-

formation. Specifically, the unequal-training strategy based

on the long-tailed dataset and the corresponding loss func-

tions, provides two training data streams to the model: (1)

the first stream, based on the head data, is used for training

relative discriminative face representation supervised by a

noise-resistant loss; (2) the second stream, based on the tail

data, is used to learn the stable inter-class discriminative in-

formation by hard identities mining. Based on the initial

model of the first stream, the mining procedure gradually

enhances model stably by iteratively mining the most valu-

able inter-class information. The main contributions of this

paper can be summarized as follows:

1. We delve into the long-tailed noisy dataset, and pro-

pose an two-stream unequal-training framework that deals

with the head data and the tail data differently. To the best of

our knowledge, this is the first work in the deep face recog-

nition literature to deal with different parts of long-tailed

noisy data separately according to the identity distribution.

Besides, our framework also saves a large proportion of

GPU memory compared to the classical cross-entropy soft-

max loss.

2. We analyze the characteristics of the label noise in the

long-tailed face dataset, and propose the corresponding loss

functions to deal with the noise in the head and tail data re-

spectively. For the noisy tail data, we propose an iterative

way to gradually train the tail data, in which the hard iden-

tities mining makes sure the most stable information could

be preserved.

3. Extensive experiments on CASIS-Webface [42],

MegaFace Challenge 2 (MF2) [24], LFW [15], Cross-Pose

LFW (CPLFW) [45] and [40] datasets have demonstrated

the effectiveness of our unequal-training framework and

new loss functions. In particular, our method achieves the

state-of-the-art result on MegaFace Challenge 2 (MF2) [24]

given a large-scale noisy training data set.

2. Related Work

Deep learning has brought great success to face recog-

nition recently and the major focus in face recognition has

become to learn a discriminative feature space by supervis-

ing networks using effective loss.

The Contrastive loss [6], Triplet loss [28] and Quin-

tuplet loss [13] learn feature representations using pair

samples. This type of loss functions get rid of supervi-

sion of softmax loss so that it could save GPU memory

in large-scale training. However, they may suffer from

time-consuming mining of hard examples and this circum-

stance often occurs when the training data expand dramati-

cally. Another euclidean metric learning methods are based

on classification, such as Centerloss [39], Rangeloss [44],

and Marginal loss [8]. They usually serve as an auxil-

iary loss for softmax loss aiming at learning a more dis-

criminative feature space. A more powerful type of loss

function is large margin softmax loss, mainly containing

SphereFace [21](L-Softmax [22]), CosFace [36] and Ar-

cFace [7], which significantly boost the face recognition.
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However, both classification-based euclidean metric learn-

ing and Large margin softmax prefer more uniform and suf-

ficient training data. Besides, when enlarging the training

identities to million level, the GPU memory becomes con-

gested and the batch size is lowered.

The long-tailed problem in face recognition is reminis-

cent of the conventional class imbalance problem that has

been comprehensively studied in classical machine learn-

ing [2, 10], but significantly differs from conventional class

imbalance problem in two aspects: first, the long-tailed data

in face recognition is large-scale, with millions of identi-

ties; second, the long-tailed data is inherently noisy. Thus,

traditional methods such as data re-sampling [3] and cost-

sensitive weighting [17] are no longer feasible here.

There are only a few works making preliminary attempts

to investigate the long-tailed effect in deep face recognition.

Quintuplet loss [13] reduces the class imbalance inherent

in the local data neighborhood, enforcing both inter-cluster

and inter-class margins. Rangeloss [44] reduces overall

intra-personal differences and enlarges inter-personal dif-

ferences in one mini-batch, promoting tail data by local re-

finement. Center invariant loss [41] balances feature spaces

of different training identities by aligning the centers of

each identity. A feature transfer approach [43] proposed by

Xi et al. also promotes the tail to balance training data, by

generating feature-level samples through transfer of intra-

class variance from head data.

Previous works discover that feature space of tail identi-

ties is squeezed by head identities. Worse still, bad spitting

of the feature space leads to a bad generalization ability. Re-

searchers have racked brains trying to promote the tail data

so that all the data are treated equally. Although they can

treat the head and tail data equally, these methods may by

easily affected by the label noise. Furthermore, noisy train-

ing samples of a tail identity could bring more risk com-

pared with those of a head identity at the same level noise,

which reflects that tail identities and head identities may be

affected differently by noise.

Therefore we argue that whether we should expect that

all the data contribute equally to the feature space. Why not

leverage identities with different samples respectively ac-

cording to their characteristics? Wang et al. [38] propose to

leverage the head tail to build a reliable model, then use the

information from the tail in an unsupervised way to improve

the robustness of the original model, which is a similar work

to us. The difference is that our method concentrates more

on the difference of the two part data while they focus on

leveraging the general knowledge of them.

3. The Approach

We first provide an overview of the proposed unequal-

training framework, shown in Figure 1. Our approach con-

sists of three steps:

(1) Splitting the training dataset - Given a long-tailed face

training dataset, we split the dataset into the head data and

the tail data according to the distribution. The head data

is defined as the largest portion of majority identities, on

which we could train the model using softmax-based loss

better than on other portions and even on the whole long-

tailed dataset. Correspondingly, the rest of the long-tailed

dataset is defined as the tail data. The head data and the tail

data will provide two training data streams to the model.

(2) Constructing a noise resistance model - Training with

the whole long-tailed data will deteriorate the model in-

evitably. It is a reasonable compromise between abundance

and balance of identities to learn relative discriminative face

representation using the head data which could character-

ize the intra-class variability. Relatively discriminative face

representations are learned on the head data supervised by

a noise resistance loss which incorporates a hypothetical

training face representation in feature space.

(3) Joint training with the tail data - Finally, we re-train

the model with two stream data: the first stream, based on

the head data, is used for stabilizing the face representa-

tion supervised by a noise-resistant loss; the second stream,

based on the tail data, is used for enhancing the model by

learning the stable inter-class discriminative information.

We mine hard identities, add them gradually in an iterative

way and enhance the feature space by dispersing them.

3.1. Constructing a noise resistance model

In this section, we introduce the detailed process of

learning relative discriminative face representation using

the head data.

The head data is relatively abundant and balanced so that

people will naturally think that softmax-based loss, includ-

ing classical softmax and large margin softmax, could be

employed to train a base model. softmax-based loss is effec-

tive, yet quite remarkably, it could be deteriorated severely

by training with contaminated dataset according to recent

research [35]. Considering the existence of considerable

and evenly distributed noise in the head data, we have to

enhance the robustness to the noise of softmax-based loss.

First we analyze the types of noise in the training set, and

the differences between noisy training data and correctly

labeled data, so that we could distinguish noisy data from

clean ones. There are mainly three types of noise shown in

Figure 2 in the face traning dataset. (1) Label flips, where

the image has been incorrectly labeled as another identity of

the training dataset. (2) Outliers, where the image has been

incorrectly labeled as the identity i of the training dataset.

The image actually does not belong to any identities of the

training dataset, but it is highly similar-looking as another

identity j of the training dataset so that in the training pro-

cess it is predicted by the model as identity j. (3) Entirely

dirty data, where the image has been incorrectly labeled
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as an identity of the training dataset. But the image actu-

ally does not belong to any of the identities of the training

dataset as the second type noise. It even does not belong to

any identities in face recognition. The difference between

entirely dirty data and the second type outliers is that en-

tirely dirty data could not be classified as any identities of

the training dataset in the training process.

Figure 2. Three types of noise in face training dataset. The pre-

dicted class probabilities P of training data could be used for

screening the third type noise, “Entirely dirty data”, because P of

third type noise is still extremely small when the model is trained

sufficiently. The first and second type noisy labels are likely to

be eventually highly inconsistent with model predictions when the

model is trained relatively sufficiently, and these predictions de-

serve more trust.

We use some models trained on the head data for noise

analysis, which is illustrated in Figure 2. We gain two

insights. First, when the model is trained relatively well,

the predicted class probabilities P of training data could be

used for screening the third type noise, “Entirely dirty data”.

Because P of third type noise is extremely small when the

model is already trained sufficiently, while this characteris-

tic does not occur in other types of noise or the clean train-

ing data. Second, although we can not distinguish the first

and second type noise from correctly labeled training data

just by the predicted probabilities P , we find another way to

mitigate them. Inspired by [27], we find that in the training

process, model predictions of the first and second type noise

are likely to be eventually highly inconsistent with origin la-

bels. While these model predictions deserve more trust as

the base model improves over time.

All things considered, we try to mitigate the damage of

three types data noise by adapting learning criteria dynam-

ically. First, the effect of the entirely dirty training data,

which we referred to as the third type noise before, is elim-

inated thoroughly by blocking the gradient of them. Mean-

while if the training data is not entirely dirty, we place more

trust in the model prediction by incorporating a hypothet-

ical training label (a hypothetical W in the feature space),

i.e. the hypothetical training label is a convex combination

of the origin label with probability ρ and the current predict

class with probability 1− ρ.

Formally, the Noise Resistance (NR) loss is defined as:

LNASB=−
1

N

∑N

i=1

(

α(Pyip
) log (Pyi)+β(Pyi) log

(

Pyip

))

,

(1)

where N is the number of training samples in a batch, Pyi

is the predict probability of “true” class and Pyip
is that of

the current predict class, α(P ) and β(P ) control the degree

of combination:

α(P ) =

{

ρ, P > t

0, P ≤ t
, β(P ) =

{

1− ρ, P > t

0, P ≤ t
. (2)

The hyperparameters in NR loss, ρ and t are set piecewise

in the training process. That is, ρ is set to 1 and t is set to 0

at the beginning of training, and when the model is trained

relatively sufficiently so that it could distinguish noise it-

self, ρ is reduced slightly and t is set to a small value. Pyi

and Pyip
take different forms when NR loss is combined

with different loss functions. In Specifically, in the Noise

Resistance Softmax loss (NRS):

Pyi
=

e
WT

yi
xi+byi

∑n

j=1 e
WT

j xi+bj
, Pyip

=
e
WT

yip
xi+byip

∑n

j=1 e
WT

j xi+bj
, (3)

where xi ∈ R
d denotes the deep feature of the i-th samples,

yi is the “true” training label and yip is the current predict

label.

yip = argmax
yj

eW
T
j xi+bj

∑n

k=1 e
WT

k
xi+bk

. (4)

The feature dimension, d is set as 512 following [7, 21, 36,

39, 44]. Wj ∈ R
d denotes the j-th column of the weights

W ∈ R
d×n in the last fully connected layer, n is the identi-

ties number in the head data, and b ∈ R
d is the bias term. In

Noise Resistance Large-margin Softmax loss, e.g. the Noise
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Resistance CosFace [36] (NRC),

Pyi
=

es(cos θyi−mC)

es(cos θyi−mC) +
∑n

j=1,j 6=yi
es cos θj

,

Pyip
=

e
s cos θyip

es(cos θyi−mC) +
∑n

j=1,j 6=yi
es cos θj

,

(5)

and the Noise Resistance Arcface [7] (NRA),

Pyi
=

es(cos(θyi+mA))

es(cos(θyi+mA)) +
∑n

j=1,j 6=yi
es cos θj

,

Pyip
=

e
s cos θyip

es(cos(θyi+mA)) +
∑n

j=1,j 6=yi
es cos θj

,

(6)

where ‖xi‖ is re-scaled to the hypersphere radius s, mA and

mC are the additive angular margins. We use mA = 0.5,

mC = 0.35, and s = 64 following settings in [7, 36].

3.2. Joint training with the tail data

Since a relatively discriminative model have been

learned on the head data, we further consider enhancing this

model by exploring the complementary information in the

tail. Delving into the tail data is confronted with the chal-

lenge mainly in three aspects: (1) There exits a large num-

ber of identities in the tail data. (2) Each tail identity only

contains rarely samples. (3) More unfortunately, a consid-

erable portion of them is noisy.

Considering these challenges, our primary motivation

for avoiding the corresponding undesirable effects in the

tail, is to extract the most credible information of the tail

to enhance the face representation learned from the head

data. Therefore, we devise a simple yet effective Center-

dispersed Loss to deal with the tail: extract features of tail

identities using the base model supervised by the powerful

head data; then add the tail data gradually in an iterative

way and disperse these identities in the feature space so that

we can take full advantage of their modest but indispensable

information.

To be more specifically, Center-dispersed (CD) Loss can

be formulated as:

LCD = min
1

m(m− 1)

∑m(m−1)

k=1
Si,j

2. (7)

Si,j is the similarity between identity i and j in mini-batch,

where the most hard m identities are mined from a candi-

date bag to construct a mini-batch for efficiency.

Si,j =

(

Ci

‖Ci‖

)T (

Cj

‖Cj‖

)

. (8)

The overall cost is the mean of the similarity. Ci and Cj

represent identity i and j. An identity is fomulated as the

Algorithm 1 The joint training process in the second stage

Input:

The head data Dh, the tail data Dt, base model

(θResNet,Wfc).
Output:

The model (θResNet,Wfc).
Global parameters:

Hyperparameter in Noisy Resistance (NR) loss ρ, t.

Mini-batch size (NR) s1.

Weight of Center-dispersed (CD) Loss η. Number of

identities in a mini-batch (CD) m, in a candidate bag

(CD) M . Samples of an identity n. So mini-batch size

(CD) s2 = m× n, Candidate bag size (CD) s = M × n.

Initialization at the beggining of an epoch:

// Constructing queues Q1 for NR and Q2 for CD.

Q1=Q2={}.
for xi in Dh do

if Pyip
> t then

Q1.append(xi).

end if

end for

for IDi in Dt do

Randomly select n samples {x1, · · · , xn} of IDi.

Q2.append({x1, · · · , xn}).
end for

shuffle Q1 and Q2.

Optimization in an epoch:

while Q1 is not empty do

B1←Take out a mini-batch with s1 samples in Q1.

LNASB (1), ∇LNASB ← B1.

(θResNet,Wfc)← ∇LNASB

end while

while Q2 is not empty do

C1 ←Take out a candidate bag with M identities in

Seq2, extract their features using θResNet.

listID={ID1,· · ·, IDM}←Calculate and sort Sk
i,j (8)

in C1.

B2←Constructing a mini-batch with first m identities

in listID. // Hard Identities mining

LCD (7),∇LCD← B2.

θResNet← η∇LCD.

end while

center of normalized features, which can be relatively ro-

bust even to moderate noise:

Ci =
1

n

∑n

t=1

xt

‖xt‖
, n 6 ni, (9)

where xt is feature of the t-th sample randomly selected

from the tail identity i, the feature representation is learned

from the head data, identity i has ni samples and we ran-

domly select the fix number n samples to form a mini-batch.

7816



To avoid the feature space is damaged recklessly by the

tail, the head data should always perform its responsibilities

in stabilizing the model. Hence the second stage need joint

training in a multi-task style, as shown in Figure 1. The

CNN architectures of the two tasks are exactly the same,

and the weights are shared. We summarize process of the

second training stage in Algorithm 1 to precisely describe

the joint training and the hard identity mining for the tail

data.

4. Experiment

4.1. Experimental settings

Training Data. We evaluate our methods by per-

forming experiments on two training dataset: (1) CASIA-

WebFace [42] and its two type of long-tailed variants; (2)

MegaFace Challenge 2 (MF2) [24].

Networks. Two backbone architectures are used in

the following experiment. We adopt the network setting

ResNet50 which was used in Arcface [7] for better conver-

gence speed and stability. The block setting of this network

is the “BN [16]-Conv-BN-PRelu-Conv-BN” structure, and

the output setting is“BN-Dropout [30]-FC-BN”. For fair

comparison, we also use another network similar to [21],

which has 64 convolutional layers and is based on resid-

ual units [11]. The models are trained with SGD algorithm,

with fixed momentum 0.9 and weight decay 0.0005. In our

experiment, the batch size is set to 360 for both the head

data and the tail data. In the first training stage, the learning

rate starts from 0.1 and is devided by 10 when the perfor-

mance plateaus. While in the second stage, the learning

rate is fixed to the last value in the first stage, the weight of

CD loss starts from 1 and is increased gradually. The num-

ber of identities in the candidate bag is set to 600 training

on variants of CASIA-WebFace and 3600 on MF2 [24] re-

spectively. The hyperparameter ρ is set to 0.9, t is set to 0

training on variants of CASIA-WebFace and 0.007 on MF2

respectively. All the network, data iterator and the loss layer

are implemented on MxNet [5].

Data Preprocessing. Following [7,21,36,39,44], we use

MTCNN detecting face area and five landmarks. Then we

adopt five landmarks for similarity transformation to nor-

malize face images. After that we obtain the cropped faces

which are resized to be 112 × 112. Each pixel (in [0,255])

in RGB images is normalized by subtracting 127.5 then di-

viding by 128. For data augmentation, horizontally flip with

a probability of 50% and transformation to monochrome

augmentation with a probability of 20% are used.

Testing. For testing, features of original image and the

flipped image are concatenated together to compose the fi-

nal face representation as [7,36] do. The similarity score is

the cosine distance of features.

Figure 3. The distribution of imbalanced training datasets we used.

“WebFace” refers to CASIA-WebFace [42], which performs actu-

ally a fusiform distribution. “WebFace+” are variants of CASIA-

WebFace [42], which is composed of WebFace [42] and MS-

Celeb-1M [9]. Both WebFace+ and MF2 behave long-tailed dis-

tributions.

4.2. Experiment on CASIA­WebFace and its long­
tailed variants

CASIA-WebFace [42] is a dataset collected from IMDb

website. The original CASIA-WebFace dataset contains

0.49M photos from 10,575 celebrities. CASIA-WebFace

contains 9.3-13.0% noise according to research in [35].

Actually, CASIA-WebFace is an imbalanced database per-

forming a fusiform distribution. The identity distribution of

CASIA-WebFace is shown in Figure 3.

According to statistics, if we regard identities who have

more than 10 images as the head identities, then there are

99.72% of identities have relatively sufficient images for

training. To get a long-tailed training datset as testbed, be-

sides head identities of CASIA, we add some tail identi-

ties using images from MS-Celeb-1M [9]. We experiment

under two experiment settings, with low shot identities as

the tail and with one shot identities as the tail. Correspond-

ingly, two datasets are obtained, denoted as “WebFace+(low

shot)” and “WebFace+(one shot)”. The ratio of the head

and the tail identities for both WebFace+(low shot) and

WebFace+(one shot) is 10K:60K. The only difference be-

tween them is that the tail identities of WebFace+(low shot)

each have 3 images while only 1 images for WebFace+(one

shot). The identity distribution of WebFace+(low shot/one

shot) is shown in Figure 3. Eventually, both WebFace+(low

shot) and WebFace+(one shot) have 70K identities, with

WebFace+(low shot) containing 0.67M images, and Web-

Face+(one shot) containing 0.55M images respectively. Be-

sides, we keep the noise level in the two variants of CASIA-

WebFace.

For comparison, we train models on the original CASIA-

WebFace, WebFace+(low shot) and WebFace+(one shot)

under supervision of softmax Loss, CosFace(LMCL) [36]

and ArcFace [7]. Then we compare them with our method

on the three datasets. In details, all the models are trained

using the aforementioned ResNet50. The hyperparameters

of softmax Loss follow SphereFace [21], while others fol-

low the settings of original paper.
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Training Data→ WebFace WebFace+tail(one shot) WebFace+tail(low shot)

Method↓ LFW CPLFW YTF LFW CPLFW YTF LFW CPLFW YTF

Softmax Loss 99.25 83.72 94.74 99.37 83.32 95.10 99.15 83.10 94.94

Ours(NRS+CD) 99.28 83.75 95.00 99.40 84.75 95.78 99.40 84.97 95.58

CosFace(LMCL) [36] 99.55 87.67 95.52 99.47 87.85 96.12 99.50 87.25 95.60

Ours(NRC+CD) 99.43 87.92 95.64 99.48 88.18 96.12 99.47 88.00 95.98

ArcFace [7] 99.52 87.20 95.60 99.55 86.32 93.82 99.40 88.15 94.96

Ours(NRA+CD) 99.55 87.53 95.50 99.53 88.03 96.04 99.55 88.22 95.76

Table 1. Results on the controlled experiments by varying training datasets and training methods.

Method Nets Layer Data LFW YTF

DeepFace [33] 3 6 4M 97.35 91.4

FaceNet [28] 1 14 200M 99.63 95.1

VGG Face [26] 1 16 2.6M 98.95 97.3

DeepID2+ [32] 25 - 0.3M 99.47 93.2

Baidu [20] 1 10 1.3M 99.13 -

Center Face [39] 1 7 0.7M 99.28 94.9

Noisy Softmax [4] 1 8 WebFace+ 99.18 94.88

Rangeloss [44] 1 28 1.5M 99.52 93.7

Augumentation [23] 1 19 1.5M 98.06 -

Center invariant loss [41] 1 22 WebFace 99.12 93.88

Feature transfer [43] 1 - 4.8M 99.37 -

Softmax Loss 1 64 WebFace 97.88 93.1

Softmax Loss+Contrastive [31] 1 64 WebFace 98.78 93.5

Triplet Loss [28] 1 64 WebFace 98.70 93.4

L-Softmax Loss [22] 1 64 WebFace 99.10 94.0

Softmax+Center Loss [39] 1 64 WebFace 99.05 94.4

SphereFace(A-Softmax) [21] 1 64 WebFace 99.42 95.0

CosFace(LMCL) [36] 1 64 WebFace 99.33 96.1

Ours(NRC+CD) 1 50 0.55M 99.48 96.12

Ours(NRA+CD) 1 50 0.55M 99.53 96.04

Table 2. Comparison of the proposed unequal-training method

with state-of-the-art method in face recognition community.

We test models on three popular face datasets, LFW [15],

Cross-Pose LFW (CPLFW) [45] and YTF [40]. LFW [15]

dataset contains 13233 face images from 5749 different

identities. CPLFW [45] dataset is a derivative dataset of

LFW, addressing cross-pose chanllenge in face recogni-

tion. YTF [40] is a database of face video collected from

YouTube, which consists of 3,425 videos of 1,595 different

people. We follow the unrestricted with labeled outside data

protocol on all the test datasets.

Result and discussion. The results are shown in Ta-

ble 1. We can see that long-tailed noisy training dataset

may impair softmax, CosFace(LMCL) [36] and ArcFace [7]

more or less. The reasons why they perform poorly on long-

tailed noisy settings may be imbalance of decision bound-

aries caused by long-tailed distribution and inaccuracy of

decision boundaries caused by label noise.

On the contrast, our method could still gains benefit on

the long-tailed noisy training dataset mainly for three rea-

sons: (1)The unequal-training frame offer the head data

and the tail data respectively for two paralleled represen-

tation space, avoiding the imbalanced decision boundaries.

(2)The hypothetical face representation of a noisy sample in

NR loss (refer to Figure 1) mitigate the negative effects of

noisy samples to optimization of deep model. (3)The center

of normalized features in proposed CD loss, which is the

most credible information in the tail data, is relatively ro-

bust to noise. Furthermore, except for FaceNet [28] trained

on 200M data, our method is shown to outperform all the

previous methods listed in Table 2.

4.3. Experiment on MegaFace Challenge 2 (MF2)

Our final target is to obtain the state-of-art performance

on a real world long-tailed noisy dataset, MegaFace Chal-

lenge 2 (MF2): Training on 672K identities [24], which re-

quires all algorithms to be trained on the same data with

672K identities and 4.7M photos, and tested at the million

scale.

The training dataset in MF2 is from the massive collec-

tion of Creative Commons photographs released by Flickr,

where most of photos are common people. MF2 is exactly

an extremely unbalanced training set, where the each iden-

tity contains at most 2,469 images, at least 3 images and av-

erage 7 images per identity, 88.42% of identities have less

than 10 images. The identity distribution is shown in Fig-

ure 3. Moreover, according to research in [35], MF2 con-

tains up to 33.7-38.3% noise. This suggests that real-world

collected datasets are more prone to long-tailed distribution,

only limited identities apear frequently while other hun-

dreds of thousands identities have very few samples, with

significant noise inherent in the whole dataset.

Apart from the training dataset, MF2 contains gallery set

and probe set. The gallery set is a subset of Flickr photos.

The probe sets has two existing databases: FaceScrub [25]

and FGNet [1]. According to [24], there is no overlap be-

tween the gallery set and the training set, or between the

gallery set and the probe set. We use both FaceScrub and

FGNet as probe sets to evaluate the performance of our

method.

Evaluate our method. To find the proper percentage for

the head data, by reference to the distribution of training

dataset, we train models on different data where each iden-

tity have more than 8, 9, 10 images respectively. The mod-

els are trained using the aforementioned ResNet50. The re-

sults are shown in Table 3, we select MF2(> 9 images/id,

2.3M images and 100K identities) as the head data in the

next experiment, denoted as MF2-h9. Correspondingly,
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Training data
FaceScrub

Rank1 acc.

FGNet

Rank1 acc.
LFW

MF2(> 10 images/id, 2.1M images and 86 K identities) 76.24 55.51 99.57

MF2(> 9 images/id, 2.3M images and 100K identities) 78.97 58.26 99.58

MF2(> 8 images/id, 2.4M images and 121K identities) 78.32 57.14 99.57

Table 3. We select MF2(> 9 images/id, 2.3M images and 100K identities) as the head data, denoted as MF2-h9. The rest of the data is the

tail data, denoted as MF2-t9. “Rank1 acc.” refers to the rank-1 face identification accuracy under 1M distractors on MF2.

Training data and Method
FaceScrub

Rank1 acc.

FaceScrub

ver.

FGNet

Rank1 acc.

FGNet

ver.
LFW

Softmax(Rolling, MF2-h9+MF2-t9) 42.87 52.75 17.96 10.21 98.03

Softmax(MF2-h9) 54.72 66.41 27.71 25.01 98.85

NRS(MF2-h9) 55.38 65.33 26.90 20.14 98.95

NRS(MF2-h9)+CD(MF2-t9) 57.50 66.08 31.96 31.56 99.05

Arcface(Rolling, MF2-h9+MF2-t9) 75.25 85.29 52.67 54.67 99.28

Arcface(MF2-h9) 78.97 88.07 58.26 59.24 99.58

NRA(MF2-h9) 79.52 88.55 59.89 60.09 99.45

NRA(MF2-h9)+CD(MF2-t9) 80.02 89.93 60.39 60.99 99.52

Table 4. Face identification and verification evaluation on MF2(ResNet50). “Rank1 acc.” refers to the rank-1 face identification accuracy

under 1M distractors and “ver.” refers to face verification TAR(True Accepted Rate) at 10−6 FAR(False Accepted Rate).

Method Protocol Rank1 Acc. Ver.

SphereFace(A-Softmax) [21] Large 71.17 84.22

CosFace(LMCL) [36] Large 74.11 86.77

Rangeloss [44] Large 69.54 82.67

LMLE [13] Large 74.76 87.78

CLMLE [14] Large 76.26 89.41

Ours(ResNet64) Large 78.12 88.03

Table 5. Comparison with 64-layer ResNet results. “Rank1 acc.”

refers to the rank-1 face identification accuracy under 1M distrac-

tors and “ver.” refers to face verification TAR(True Accepted Rate)

at 10−6 FAR(False Accepted Rate).

Method Protocol Rank1 Acc. Ver.

3DiVi Large 57.05 66.46

NEC Large 62.12 66.85

GRCCV Large 75.77 74.84

Yang Sun Large 75.79 84.03

CosFace(LMCL) [36] Large 74.11 86.77

Ours(ResNet50) Large 80.02 89.93

Table 6. Comparison with top results on MF2 Leaderboard.

“Rank1 acc.” refers to the rank-1 face identification accuracy un-

der 1M distractors and “ver.” refers to face verification TAR(True

Accepted Rate) at 10−6 FAR(False Accepted Rate).

identities containing less than 9 images in MF2 are specified

as the tail data, which is denoted as MF2-t9. We perform

our unequal-training framework supervised by NRS(A) and

CD loss, by finetuning from base models trained on MF2-

h9.

For comparison, we train rotating softmax and Arcface

models on all the training data of MF2, which is split

equally into 8 subset with about 80K identities. This train-

ing methods are inspired by Model C in [24], but we en-

hance these methods by training all the data equally and

adding the training epoch. The result of models trained

using ResNet50 are shown in Table 4. Models trained on

the head data outperform than those trained on all the long-

tailed data, which is consistant with empirical investigation

in [44]. While our method delve more correct information

in the long-tailed dataset, achieving extra improvement over

models training on both classical softmax and large margin

softmax.

Comparison with existing methods. For comparison

with existing state-of-art methods tackling long-tailed prob-

lem, we train MF2 using the ResNet64 achitecture simi-

lar to [21]. We adopt Batch Normalization [16] because it

is hard to guarantee the convergence stability using strong

constraint loss in large scale dataset. The result is shown in

Table 5, besides, some competitive results on MF2 Leader-

board are also listed in Table 6. The result demonstrates the

superiority of our method in training on real-world long-

tailed noisy face dataset. In particular, our method ob-

tains the top performance on MegaFace Challenge 2 (MF2):

Training on 672K identities [24].

5. Conclusion

In this paper, to address training on long-tailed noisy

dataset, we propose an unequal-training framework and new

supervision loss functions, Noise Resistance (NR) loss and

Center-dispersed (CD) loss. By dealing with the head data

and the tail data respectively according to the distribution,

we take full advantage of their respective characteristics.

Our method achieves the new state-of-the-art performance

on existing face benchmarks.
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