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1. Introduction

N–heterocyclic carbene copper(I) complexes have received significant attention due
to their use as catalysts, transfer reagents, and for potential medical applications [1]. In
catalysis, NHC-supported copper compounds have been utilized in a wide variety of
transformations [2–7]. A convenient feature of these compounds is that they are often
monomeric when the supporting NHC ligand contains bulky aryl substituents [8,9]. For
this reason, we utilized IPrCuPPh2 (1) in our mechanistic study of copper-photocatalyzed
hydrophosphination [10,11]. We hypothesized that alkene insertion into the Cu–P bond
was the bond-forming step. We have thus far been unsuccessful in isolating an insertion in-
termediate. However, during our study, we unexpectedly formed, isolated, and structurally
characterized the copper alkoxide compound IPrCuOMe (2), formed from the treatment of
1 with methyl acrylate in a process involving C–O bond cleavage.

Compound 2 has been previously synthesized and characterized spectroscopically [5,8,12].
The related IPrCuOR compounds where R = OH [8], OEt [13], and OPh [13], have been
structurally characterized as well. However, to our knowledge, the solid-state molecular
structure of 2 has not been determined via X-ray crystallography. Herein, we report the X-ray
crystal structure of IPrCuOMe (2) (Figure 1).
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1. Introduction 
N–heterocyclic carbene copper(I) complexes have received significant attention due 

to their use as catalysts, transfer reagents, and for potential medical applications [1]. In 
catalysis, NHC-supported copper compounds have been utilized in a wide variety of 
transformations [2–7]. A convenient feature of these compounds is that they are often 
monomeric when the supporting NHC ligand contains bulky aryl substituents [8,9]. For 
this reason, we utilized IPrCuPPh2 (1) in our mechanistic study of copper-photocatalyzed 
hydrophosphination [10,11]. We hypothesized that alkene insertion into the Cu–P bond 
was the bond-forming step. We have thus far been unsuccessful in isolating an insertion 
intermediate. However, during our study, we unexpectedly formed, isolated, and struc-
turally characterized the copper alkoxide compound IPrCuOMe (2), formed from the 
treatment of 1 with methyl acrylate in a process involving C–O bond cleavage.  

Compound 2 has been previously synthesized and characterized spectroscopically 
[5,8,12]. The related IPrCuOR compounds where R = OH [8], OEt [13], and OPh [13], have 
been structurally characterized as well. However, to our knowledge, the solid-state mo-
lecular structure of 2 has not been determined via X-ray crystallography. Herein, we re-
port the X-ray crystal structure of IPrCuOMe (2) (Figure 1). 
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Figure 1. The molecular structure of IPrCuOMe (2), with thermal ellipsoids drawn at the 30%
probability level. Hydrogen atoms are omitted for clarity. Selected bond distances (Å): Cu1–O1,
1.8029(13); Cu1–C2, 1.8590(18); O1–C1, 1.391(3); N1–C2, 1.355(2); N1–C3, 1.388(2). Selected bond
angles (deg): O1–Cu1–C2, 179.03(7); C1–O1–Cu1, 122.26(14); N1–C2–Cu1, 130.44(13); N2–C2–Cu1,
126.04(13); C2–N1–C17, 125.29(15), C2–N1–C3, 111.30(15); C2–N1–C17, 125.29(15).
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2. Results and Discussion

The treatment of a benzene-d6 solution of IPrCuPPh2 (1) with 1.3 equivalents of methyl
acrylate at room temperature resulted in several decomposition products, as determined
via 1H and 31P NMR spectroscopy (Equation (1), see Supplementary Materials for spectra).
This reaction was undertaken as an attempt to observe the potential intermediates during
hydrophosphination catalysis. Unfortunately, the definitive characterization of all products
was not possible from these spectra, but several new signals were observed in the alkyl
region of a 1H NMR spectrum, as well as several in the range δ = −19 to −15 in the 31P NMR
spectrum. In a separate trial with 2.2 equivalents of methyl acrylate, this reaction mixture
was allowed to stand overnight, which resulted in the precipitation of large colorless block
crystals that were identified as IPrCuOMe (2) upon analysis via X-ray diffraction. The
isolated 2 never exceeded 20% of the theoretic yield, and the NMR spectra (Supplementary
Materials) show complex mixtures.
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The solid-state structure of 2 is very similar to IPrCuOEt (3) [13]. The structures of 
both compounds are monoclinic and crystalize in the space group P21/n. The Cu–O1 bond 
length of compound 2 is 1.8029(13) Å, which is similar to 1.799(3) Å measured for the 
corresponding bond in compound 3. Likewise, the Cu1–C2 bond distance of 1.8590(18) Ǻ 
compares favorably to the 1.863(5) Å distance in compound 3. The C2–Cu1–O1 bond angle 
of compound 2 is slightly closer to being linear, at 179.03(7)°, compared to 176.9(2)° in 
compound 3. Finally, the Cu1–O1–C1 bond angle of 2 is slightly smaller than the 128.1(4)° 
bond angle observed in compound 3, a difference attributed to the presence of the addi-
tional carbon in the ethoxide ligand. 

While the reaction of 1 with methyl acrylate failed to provide an identifiable product 
that relates to hydrophosphination reactivity, the study of 1 has been successful in ex-
panding the understanding of photocatalytic hydrophosphination from early to late met-
als [11,14,15]. The observed C–O bond cleavage herein was unexpected, but likely relies 
on the nucleophilicity of the metal–phosphorus bond [16]. Because C–O bond cleavage is 
an important, but challenging strategy for the conversion of biomass-originated organic 
precursors of chemical feedstocks [17–19], the direct activation of these bonds with poten-
tial heteroatom functionalization is an intriguing possibility for efficient chemical conver-
sions. Further exploration of this kind of unique reactivity is underway.  
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Manipulations were performed under a purified nitrogen atmosphere with dried, 
deoxygenated solvents in an M. Braun glovebox. Benzene-d6 was degassed and dried over 
an activated mixture of 3 Å and 4 Å molecular sieves. Compound 1 was prepared by the 
literature protocol [8,11]. NMR spectra were recorded with a Bruker AXR 500 MHz spec-
trometer (San Jose, CA, USA). All 31P NMR spectra were 1H-decoupled and referenced to 
external 85% H3PO4. The resonances in 1H NMR spectra are referenced to the residual 
solvent resonance (C6D6 = δ 7.16). The crystals for X-ray analysis were handled and 
mounted under Paratone–N oil. The X-ray data were collected on a Bruker AXS single-
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The solid-state structure of 2 is very similar to IPrCuOEt (3) [13]. The structures of
both compounds are monoclinic and crystalize in the space group P21/n. The Cu–O1
bond length of compound 2 is 1.8029(13) Å, which is similar to 1.799(3) Å measured for
the corresponding bond in compound 3. Likewise, the Cu1–C2 bond distance of 1.8590(18)
Åcompares favorably to the 1.863(5) Å distance in compound 3. The C2–Cu1–O1 bond
angle of compound 2 is slightly closer to being linear, at 179.03(7)◦, compared to 176.9(2)◦

in compound 3. Finally, the Cu1–O1–C1 bond angle of 2 is slightly smaller than the
128.1(4)◦ bond angle observed in compound 3, a difference attributed to the presence of the
additional carbon in the ethoxide ligand.

While the reaction of 1 with methyl acrylate failed to provide an identifiable prod-
uct that relates to hydrophosphination reactivity, the study of 1 has been successful in
expanding the understanding of photocatalytic hydrophosphination from early to late
metals [11,14,15]. The observed C–O bond cleavage herein was unexpected, but likely relies
on the nucleophilicity of the metal–phosphorus bond [16]. Because C–O bond cleavage is
an important, but challenging strategy for the conversion of biomass-originated organic
precursors of chemical feedstocks [17–19], the direct activation of these bonds with potential
heteroatom functionalization is an intriguing possibility for efficient chemical conversions.
Further exploration of this kind of unique reactivity is underway.

3. Experimental
3.1. General Considerations

Manipulations were performed under a purified nitrogen atmosphere with dried,
deoxygenated solvents in an M. Braun glovebox. Benzene-d6 was degassed and dried
over an activated mixture of 3 Åand 4 Åmolecular sieves. Compound 1 was prepared by
the literature protocol [8,11]. NMR spectra were recorded with a Bruker AXR 500 MHz
spectrometer (San Jose, CA, USA). All 31P NMR spectra were 1H-decoupled and referenced
to external 85% H3PO4. The resonances in 1H NMR spectra are referenced to the residual
solvent resonance (C6D6 = δ 7.16). The crystals for X-ray analysis were handled and
mounted under Paratone–N oil. The X-ray data were collected on a Bruker AXS single-
crystal X-ray diffractometer (Billerica, MA, USA) using MoKα radiation and a SMART
APEX CCD detector, and analyzed with the Bruker software (Billerica, MA, USA). The
CIF was edited with Final CIF [20] and visualization was performed with the Mercury
software [21].
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3.2. Experimental Details

Trial 1: In an N2-filled glovebox, IPrCuPPh2 (22 mg, 0.0345 mmol) and methyl acrylate
(4 mg, 0.046 mmol) were added to ~0.6 mL of benzene-d6 in a J-Young NMR tube with a
PTFE cap, and monitored via 1H and 31P NMR spectroscopy.

Trial 2: In an N2-filled glovebox, IPrCuPPh2 (50 mg, 0.783 mmol) and methyl acrylate
(15 mg, 0.174 mmol) were added to 2–3 mL of benzene-d6 in a scintillation vial and allowed
to stand overnight. The crystals suitable for X-ray crystallography precipitated overnight.

3.3. X-ray Structure Determinations

X-ray diffraction data were collected on a Bruker APEX 2 CCD platform diffractometer
(Mo Kα (λ = 0.71073 Å), Billerica, MA, USA) at 150(2) K. A suitable colorless block crystal of
IPrCuOMe was mounted on a MiTeGen Micromount with Paratone–N cryoprotectant oil.
The structure was solved using direct methods and standard difference map techniques, and
was refined by full-matrix least-squares procedures on F2 by using the Bruker SHELXTL
Software Package [22,23]. All non-hydrogen atoms were refined anisotropically. The
hydrogen atoms on carbon were included in the calculated positions and were refined
using a riding model.

Crystal Data for C28H39CuN2O

(M = 483.15 g/mol): monoclinic, space group P21/n (14), a = 12.430(4) Å, b = 16.815(5) Å,
c = 14.303(5) Å, α = 90◦, β = 110.238(4)◦, γ = 90◦, V = 2805.0(16) Å3, Z = 4, ρcalc = 1.144 g/cm3,
33,207 reflections measured (3.75◦ ≤ 2Θ ≤ 57.51◦) (0.74 Å), 6889 unique (Rint = 0.0520,
Rsigma = 0.0422), which were used in all calculations. The final R1 was 0.0577 (I > 2σ(I))
and wR2 was 0.1042 (all data). The full crystallographic information (as CIF file) is given in
the Supplementary Materials.

Supplementary Materials: The following are available online: 1H, 31P NMR, 1H–31P HMBC NMR
spectra, bond lengths and angles, crystallographic information file (CIF) and CheckCIF report for
compound 2.
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