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The unique nanometer-sized helical structure in SmC∗
α may sometimes evolve continuously to the micrometer-

sized one in SmC∗; conceivably ferroelectric SmC∗
α is to be unwound by an applied electric field. By

drawing electric-field-induced birefringence contours in the field-temperature phase diagram and by studying

the superlattice structure of the field-induced subphase with resonant x-ray scattering, we established that an

applied field unexpectedly stabilizes the well-known antiferroelectric four-layer biaxial subphase as well as the

other prototypal ferrielectric three-layer one in the SmC∗
α temperature range; the effective long-range interlayer

interaction due to the discrete flexoelectric effect actually plays an important role in stabilizing not only the

biaxial subphases but also the optically uniaxial SmC∗
α subphase, contrary to the notion that the competition

between the direct interactions of the nearest-neighbor layers and those of the next-nearest-neighbor layers

should be required for the nanometer-sized helical structure.

DOI: 10.1103/PhysRevE.100.010701

The discovery of the phenomena of ferroelectricity and

antiferroelectricity in liquid crystals has been reported in

[1,2]. The phenomenon involves frustration of synclinic SmC∗

and anticlinic SmC∗
A at the phase transition point. The clinic-

ity frustration together with long-range interlayer interaction

(LRILI) produces several biaxial smectic subphases, such as

ferrielectric 1/3 with the three-layer unit cell (FAA), antifer-

roelectric 1/2 with the four-layer unit cell (FAFA), etc. [3–5].

Here we designate the subphase as the ratio qT = [F ]/([F ] +

[A]), where [F ] and [A] are the numbers of ferroelectric

and antiferroelectric orderings in the unit cell. Recently, the

definite existence of subphases 1/4 and 2/5 with eight- and

ten-layer unit cells, respectively, was vindicated by studying

electric-field-induced birefringence (EFIB) and microbeam

resonant x-ray scattering (μRXS) [6,7]. This indicates the

importance of the effective LRILI based on the seminal “dis-

crete flexoelectric effect” [8], as any direct LRILI to produce

the ten-layer ordered superlattice structure is hard to consider

in smectics with no long-range positional order. Notice also

that the effective LRILI naturally predicts the nonflat, highly

distorted nanometer-sized helical structure of the biaxial sub-

phases experimentally observed [9,10]. In solid state physics

such extended structures are repeatedly encountered in vari-

ous systems. Actually, the sequential emergence of subphases

used to be understood by using the Ising and/or X -Y models

in magnetism in connection with the Devil’s staircase [11–13].

*Corresponding author: ytakanis@scphys.kyoto-u.ac.jp
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It should be noted, however, that such treatments could not

explain the nanometer-sized helical structure.
In addition to these chiral tilted smectic phases, SmC∗

A and
SmC∗, their orthogonal counterpart SmA also participates in
the frustration and produces the optically uniaxial smectic
subphase SmC∗

α with the nanometer-sized helical structure
of incommensurate pitch, which can sometimes evolve con-
tinuously to the micrometer-sized one in SmC∗ on cooling
[14,15]; conceivably ferroelectric SmC∗

α is to be unwound
by an applied electric field [16]. In fact, Yamashita’s group
analyzed the unwinding process from a standpoint of discrete
soliton excitation and showed its staircase character with
ferrielectriclike states, although they did not take any effects
of LRILI into account [17,18]. In this Rapid Communication
we report that an applied field unexpectedly stabilizes antifer-
roelectric four-layer 1/2 as well as ferrielectric three-layer 1/3
in the SmC∗

α temperature range; these stabilizations indicate
that the same effective LRILI plays an important role in the
formation of SmC∗

α itself, although its nanometer-sized helical
structure is often incorrectly considered to be produced by
the competition between the direct interactions of the nearest-
neighbor layers and those of the next-nearest-neighbor layers
[19]. In other words, it is the discrete flexoelectric effect that
produces a very strong chiral interaction [20].

Samples investigated here were pure MHPOCBC and a

binary mixture of MHPOCBC (80 wt %) with AS657 (20

wt %). The chemical structures of these compounds are given

in Fig. 2 of Ref. [7]. Experimental studies were made by the

complementary methods: EFIB in homeotropically aligned

cells to obtain the field-temperature (E -T ) phase diagram

with birefringence contours and μRXS in homogeneously
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FIG. 1. The EFIB result of pure MHPOCBC: (a) The E -T phase

diagram with the contours of constant birefringence and (b) the �n-E

plots.

aligned (smectic layers almost perpendicular to substrate

plates) planar cells to determine the superlattice structure of

the field-induced subphases. We refer to the previous papers

[6,7] for the experimental details; in particular, we followed

the conventions that the electric field was applied along the

y axis and that EFIB was defined as �n = nx − ny as in the

previous papers.

The EFIB result of pure MHPOCBC shown in Fig. 1(a)

apparently behaves quite differently in the low- and high-

temperature regions of SmC∗
α . Below about 100 ◦C, the

densely populated contour lines almost parallel to the T

axis indicate the field-induced phase transition of SmC∗
α to

ferrielectric 1/3 as pointed out previously [21]. In fact, �n

stays almost zero at fields lower than 0.2 V/μm, increases

rather steeply at around 0.4 V/μm, gradually becomes larger

up to about 2 V/μm, and then increases steeply again, as

can be seen in Fig. 1(b); the steep increases at around 0.4

and 2 V/μm must represent the field-induced phase transi-

tion to 1/3 and unwound SmC∗, respectively. Since the tilt

angle in SmC∗
α is less than about 7◦, it becomes larger with

increasing field even after transition to unwound SmC∗ due
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FIG. 2. The EFIB result of the mixture of MHPOCBC (80 wt %)

with AS657 (20 wt %): (a) The E -T phase diagram with the contours

of constant birefringence and (b) the �n-E plots.

to the electroclinic effect. In the high-temperature region, on

the other hand, we can see some negative closed contours

unexpectedly in Fig. 1(a). In fact, as clearly seen in Fig. 1(b),

�n becomes negative at around 1.6 V/μm for 101.5 ◦C. In

between low- and high-temperature regions there appears to

exist the intermediate one around 100.4 ◦C.

Note that antiferroelectric 1/2 and SmC∗
A are known to

show negative closed contours as the applied field unwinds

the macroscopic helix and makes the averaged tilt plane

approximately parallel to the field [22–24]. Recalling this

characteristic feature prompts us to consider that the nega-

tive closed contours in Fig. 1(a) suggest the emergence of

a field-induced antiferroelectric 1/2 subphase. In order to

confirm that its superlattice structure comprises four-layer

unit cells using μRXS techniques, we needed to add some

Se-containing compound in our accessible facilities. Actu-

ally we prepared the MHPOCBC-AS657 mixture and mea-

sured EFIB. The mixture shows the EFIB results given in

Fig. 2, which do not change much from those of pure MH-

POCBC in Fig. 1. We can see the low- and high-temperature

ranges of SmC∗
α in Fig. 2(a) as well as the characteristic
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FIG. 3. The μRXS result of the mixture of MHPOCBC (80

wt %) with AS657 (20 wt %): (a) The temperature variation of the

SmC∗
α nanometer-sized helical pitch and (b) the field dependence of

superlattice periodicities at �T = 0.7, 3.0, and 3.5 ◦C. Here �T is

the relative temperature measured from the transition point between

SmC∗
A and SmC∗

α ; �T = 0 and the above three �T ’s correspond to

94.2, 94.9, 97.2, and 97.7 ◦C in Fig. 2(a), shown by thin green vertical

lines.

behavior of �n vs E curves in the low- (94.5 and 95.0 ◦C),

intermediate- (95.6 and 96.5 ◦C), and high- (97.2 and 97.7 ◦C)

temperature regions in Fig. 2(b).

Figure 3 summarizes the μRXS peak positions as func-

tions of (a) temperature and (b) applied field in the mixture.

The temperature variation shows that the short pitch of the

SmC∗
α nanometer-sized helical structure elongates gradually

on heating, but that it is smaller than three layers up to

about 1.3 ◦C above the SmC∗
A-SmC∗

α transition temperature.

This short-pitch range of less than three layers corresponds

to the low-temperature range where �n stays almost zero at

fields lower than 0.1 V/μm and increases rather steeply at

around 0.2 V/μm; hence it is natural to conjecture that an

applied increasing field elongates the SmC∗
α short pitch up

to three layers and then changes SmC∗
α into the field-induced

subphase 1/3. It is stably realized in a reasonably wide field

range as seen in Fig. 3(b) and the distortion angle of 1/3

decreases with increasing field, for �n becomes larger in

Fig. 2(b). As shown in Fig. 3, furthermore, we can see that

the SmC∗
α short pitch becomes longer than three layers with

rising temperature but does not seem to exceed four layers;

likewise, an applied increasing field elongates the SmC∗
α short

pitch up to four layers and stabilizes a field-induced subphase

with a four-layer unit cell at least in the high-temperature

region reasonably separated from the transition point to SmA.

Furthermore, because of the similarity between Fig. 1 and

Fig. 2, we can conclude that this field-induced subphase with

a four-layer unit cell is antiferroelectric 1/2.

Now we try to understand theoretically the field-induced

emergence of ferrielectric three-layer 1/3 and antiferroelectric

four-layer 1/2 in the SmC∗
α temperature range. We need to

consider the three-phase frustration among SmC∗
A, SmC∗,

and SmA and the resulting degeneracy lifting by LRILI at

zero field. There are two theoretical approaches to describe

the sequential emergence of biaxial subphases: One is the

phenomenological Landau model reported by Dolganov et al.

[25–27] and the other is the partial molecular model with the

effective LRILI due to the discrete flexoelectric effect [8,28].

The nanometer-sized helical structure of uniaxial SmC∗
α is

often incorrectly considered to be produced by the competi-

tion between the direct interactions of the nearest-neighbor

layers and those of the next-nearest-neighbor layers on the

premise that a very strong chiral interaction could not be

identified [19]; it is questionable whether any direct inter-

actions between nonadjacent smectic layers are practically

strong enough, though. Actually the effective LRILI based

on the discrete flexoelectric effect takes into account the

direct interactions between adjacent layers only, and these

successfully explained the highly distorted nanometer-sized

helical structure of the biaxial subphases; this LRILI can also

apply to understanding the nanometer-sized helical structure

of SmC∗
α [20,29,30], although any systematic detailed study

has not been made yet. Since the aforementioned experimental

facts indicate that the same LRILI must play an important role

in the emergence of not only the biaxial subphases but also

uniaxial SmC∗
α , we use the effective LRILI due to the discrete

flexoelectric effect [8,20,28] in the following.

The short-range interlayer interaction (SRILI) is extended

to treat the three-phase frustration by taking into account

the temperature dependence of the tilt angle � as detailed

in Ref. [31]. In order to reduce the number of parameters to

describe the phase diagram, we regard � itself as an effective

temperature [32], so that the phase transition from SmA

occurs at � = 0 with the transition temperature T0; hereafter

the whole interaction energies are divided by kBT0 and made

dimensionless. For simplicity, the molecular biaxiality is

not taken into account and the nematic and smectic order is

considered perfect; then the free energy for SRILI is a function

of three scalar variables, (n1 · n2), (n1 · e), and (n2 · e), where

n1 and n2 are directors in adjacent layers and e is the

smectic layer normal. In the approximation of the spatially

uniform tilt angle, we have (n1 · e) = (n2 · e) = cos � and

(n1 · n2) = cos2 � + sin2 � cos ϕ12 where ϕ12 = ϕ2 − ϕ1

is the difference between the corresponding azimuthal

angles that specify the orientation of the tilt planes. The

free energy pertaining to synclinic SmC∗ is expanded in

spherical invariants preserving the lowest order nonpolar

terms, i.e., quadratic in n1 and n2. Since conventional
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dispersion and steric interactions between mesogenic

molecules generally promote SmC∗, only two terms in the

expansion with coefficients V1 = v
‖

1/kBT0 and V3 = v
‖

3/kBT0

are effective; here Veff = −(3V1 + V3) > 0 characterizes the

SmC∗ stability and V1,eff = V1/Veff is the Maier-Saupe type

effective interaction parameter.

Anticlinic SmC∗
A is stabilized by interlayer orientational

correlations between transverse molecular dipoles located

in the flexible chains, which are also written as nonpolar

terms up to quadratic in n1 and n2 [31]; hence the SmC∗
A

stability is specified by the dimensionless dipole moment

μ = d⊥/{(2kBT0)1/2(R
‖

12)3/2}, where d⊥ and R
‖

12 are the trans-

verse dipoles and the distance between them of neighboring

molecules in adjacent layers. In this way the free energy

for SRILI can be written in the dimensionless form with

two parameters r = μ/Veff , the relative stability ratio between

SmC∗
A and SmC∗, and V1,eff as

− (1 − r sec6 �) cos ϕi,i+1

− tan2 �
(

− 3
2
V1,eff + 1

4
r sec6 �

)

cos2 ϕi,i+1. (1)

The total free energy at zero field in the dimensionless form

F0 is obtained by adding to Eq. (1) the LRILI terms given

in Eq. (62) of Ref. [8] for any t-layer biaxial subphase or

the corresponding term given in Eq. (A.7) of Ref. [20] for

uniaxial SmC∗
α ; the strength ratio of LRILI to SRILI is now

written as R = χcf cp/(kBT0Veff ) instead of χcfcp/B to allow

for appropriate nondimensionalization. The total free energy

contains only six dimensionless parameters; in addition to the

already explicitly mentioned four, (i) r, (ii) �, (iii) R, and (iv)

V1,eff < 0, there are two parameters originally introduced by

Emelyanenko and Osipov [8]: (v) g the molecular positional

correlation in adjacent layers and (vi) cf/cp the ratio of the

flexoelectric and piezoelectric coefficients. By using the first

two parameters as the abscissa and ordinate of the phase

diagram, we can draw the r-� phase diagram, checking which

subphase obtained above, biaxial or uniaxial, has actually the

lower total free energy. Notice that R has the same sign as

cf cp and that their sign determines the handedness of the

nanometer-sized helical structure; cf cp < 0 corresponds to the

right-handed helix and vice versa.

The previous investigations suggest g ≈ 0.2 and cf/cp ≈

−1 [8,28]. Trial calculations were made rather systematically

for the remaining parameter value combinations of R =

−0.02 to − 0.2 and V1,eff = −1 to − 50. We drew plenty of

r-� phase diagrams and chose Fig. 4 almost uniquely that can

successfully reproduce the experimental results summarized

in Figs. 1–3. The tilt angle � represents the effective tem-

perature and the subphase emerging sequence of a particular

compound or mixture is given by a r = const line. The solid

line curve running from an upper right (0,1) point to a lower

left (40,0.2) point in Fig. 4(a) represents the boundary be-

tween exactly anticlinic SmC∗
A and exactly synclinic SmC∗ for

R = 0; all the biaxial subphases are degenerate into the solid

line curve as no LRILI is taken into account. When it comes

to R �= 0, degeneracy is lifted and biaxial subphases emerge

in the “slug-shaped” finite area around the solid line curve as

illustrated in Fig. 4(a). When the line crosses the slug-shaped

biaxial subphase area in its body part [see Fig. 4(a-1)], we can
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FIG. 4. Summaries of calculated results for parameter values of

cf/cp = −1, g = 0.2, R = −0.02, V1,eff = −2: (a) The r-� phase

diagram and (b) the SmC∗
α (SmC∗ and SmC∗

A) helical pitch vs � for

r = 0.2–1.2 at a step of 0.1. Insets (a-1) and (a-2), and (b-1) are

expanded plots in the specified �-r and �-p spaces, respectively.

see the standard phase sequence:

SmC∗
A − 1

5
− 1

4
− 1

3
− 2

5
− 3

7
− 1

2
− SmC∗,

although 1/5, 1/4, 2/5, and 3/7 may or may not emerge

depending on the parameter values. In the upper head part

of the slug-shaped biaxial subphase area [for detail, see

Fig. 4(a-2)], on the other hand, the phase emerging sequence is

quite irregular; e.g., any of 1/4, 1/3, 2/5, and 3/7 can singly

emerge between SmC∗
A and SmC∗ (SmC∗

α) for appropriately

chosen parameter values.

Outside the biaxial subphase area, both SmC∗
A and SmC∗,

otherwise purely anticlinic and synclinic since the ordinary

weak chiral interaction is not taken into account, now acquire

the helical structure; in other words, we can say that SmC∗
α

appears when the pitch becomes nanometer sized as explained

below in detail. The helical pitch in the unit of the number

of smectic layers can be obtained from ϕi,i+1 that minimizes

F0 for uniaxial SmC∗
α . Figure 4(b) illustrates some calculated

results for parameters used to obtain Fig. 4(a). Notice that

helical pitches are drawn even in the area of the �-r space
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where SmC∗
α does not have the lowest F0, i.e., even in the

inside of the biaxial subphase area. For a small r(= 0.2, e.g.)

and a large �(= 40◦, e.g.), SmC∗ has a micrometer-sized

pitch (of p = 103); the pitch may become nanometer sized and

SmC∗ is suitably called SmC∗
α for a large r and a small �. In

this approximate calculation the change between SmC∗ and

SmC∗
α is always continuous; experimentally both continuous

and discontinuous changes were observed [14,15]. When the

pitch becomes close to p = 2 for a large �, the phase can be

regarded as SmC∗
A with a macroscopic pitch of 1/{(1/p) −

0.5}, which may be of micrometer size as that of SmC∗ but

the handedness is just opposite [33,34]. For r � 0.96 it does

not cross the biaxial subphase area and SmC∗
A continuously

changes into SmC∗
α ; experimentally no continuous change has

been observed between them.

As � approaches zero, the helical pitch of SmC∗
α becomes

longer for r > 0.931 and vice versa. In particular, as illus-

trated in the inset of Fig. 4(b) the SmC∗
α helical pitch in terms

of the number of smectic layers increases from approximately

2.8 to 3.8 layers with decreasing � from 6.5 to 0◦ at around

r = 0.97, which can almost reproduce the experimentally

observed one given in Fig. 3(a). Now we try to see whether

any of the biaxial three- and four-layer subphases actually has

the free energy less than that of unwound SmC∗ before an

applied field attains the complete unwinding of SmC∗
α ; notice

that there are two four-layer subphases, antiferroelectric 1/2

(FAFA) and ferrielectric 1/2 (FFAA), and only one three-layer

subphase, ferrielectric 1/3 (FAA). The free energy under an

applied electric field F for these subphases as well as un-

wound SmC∗ can be obtained by adding the effective electric

field term as given in Eq. (17) of Ref. [24] to F0 at zero field.

For the sake of simplicity, no electroclinic effect is taken into

account, i.e., � is considered to be independent of E ; then

the coefficient term containing E as a whole can be treated

as a dimensionless effective field E in actual calculations.

In the case of ferrielectric subphases and unwound SmC∗

it is straightforward to obtain the effective free energy F

under an applied field E following the procedures described

in Sec. IV A of Ref. [24]. In the case of antiferroelectric

1/2, on the other hand, we can adopt Eq. (25) of Ref. [24]

and obtain F in likewise. Figure 5 summarizes the calculated

results for the same parameter values used in Fig. 4. For r =

0.97 and � = 6◦, SmC∗
α has lower F0 than any others, 1/3,

antiferroelectric 1/2, ferrielectric 1/2, and unwound SmC∗

at E = 0, but 1/3 comes to have F lower than F0 of SmC∗
α

at E = 0.02 and stays lowest up to E = 0.08, and then F

of unwound SmC∗ becomes lowest. When � = 4◦ for r =

0.97, on the other hand, antiferroelectric 1/2 comes to have

the lowest F among other biaxial phases, 1/3, ferrielectric

1/2, and unwound SmC∗, in a reasonably wide range of

up to E = 0.05. Since an applied field could not reduce F

of antiferroelectric 1/2 sufficiently, however, F0 of SmC∗
α

stays lower than F of antiferroelectric 1/2 in the whole E

range.

In this way the present simplified model preliminarily

explains that an applied field stabilizes the well-known

antiferroelectric four-layer 1/2 biaxial subphase as well

as the other prototypal one, ferrielectric three-layer 1/3, in

the temperature range of optically uniaxial SmC∗
α . At the

same time, the frustration among SmC∗
A, SmC∗, and SmA

FIG. 5. The calculated free energy F vs an applied effective field

E for unwound SmC∗, antiferroelectric 1/2, 1/3, and ferrielectric 1/2

at (a) � = 6 and (b) 4◦; the free energy F0 for SmC∗
α is also shown.

The parameters used are the same as in Fig. 4 and r = 0.97.

and the degeneracy lifting due to the effective LRILI based

on the discrete flexoelectric effect well describes the overall

picture of the resulting not only biaxial but also uniaxial

subphases. Notice that, in the context of the present model,

F of antiferroelectric four-layer 1/2 is higher than that of

SmC∗
α even in the presence of the electric field. Since the

difference is relatively small, however, a number of weak

factors may reverse the difference. In particular, there is a

well-known dielectric contribution to F which has not been

taken into account because it is quadratic in the field. This

contribution is negative and is approximately proportional to

the birefringence of the smectic phase in the plane of the lay-

ers. Thus this contribution reduces F of the antiferroelectric

four-layer 1/2 biaxial subphase. In contrast, it practically does

not affect F of SmC∗
α because it is uniaxial. Notice also that

at small tilt angles the birefringence is quadratic in the tilt

angle and hence the dielectric contribution is rather small. On

the other hand, the term which distinguishes between ferro-

and antiferroelectric order is also quadratic in the tilt angle.

Therefore the dielectric contribution may in principle drive

F of antiferroelectric four-layer 1/2 below that of SmC∗
α and

thus explain the experimentally observed stabilization of an-

tiferroelectric four-layer 1/2 in the external electric field. Re-

garding the discontinuous change between SmC∗
A and SmC∗

α

experimentally observed, Sandhya et al. [35] pointed out the

importance of the higher order terms in the (aforementioned)

expansion of the free energy pertaining to synclinic SmC∗;

it is expanded in spherical invariants preserving the lowest

order nonpolar terms containing cos ϕi,i+1 and cos2 ϕi,i+1 as

in Eq. (1). The expansion is a reasonable approximation near

the minima at around ϕi,i+1 = 0◦ and 180◦; since the change

from SmC∗
α to SmC∗ or SmC∗

A would occur far apart from

these two minima, however, the higher order terms must play a

crucial role. We suspect that this higher-order-term effect must

also help to reduce F of the field-induced antiferroelectric

four-layer 1/2 subphase efficiently.
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