
Unexpected Results in
Automatic List Extraction on the Web

Tim Weninger Fabio Fumarola† Rick Barber
Jiawei Han Donato Malerba†

University of Illinois at Urbana-Champaign
† Università degli Studi di Bari “Aldo Moro”

weninge1@illinois.edu, ffumarola@di.uniba.it, barber5@illinois.edu,
hanj@illinois.edu, malerba@di.uniba.it

ABSTRACT
The discovery and extraction of general lists on the Web contin-
ues to be an important problem facing the Web mining community.
There have been numerous studies that claim to automatically ex-
tract structured data (i.e. lists, record sets, tables, etc.) from the
Web for various purposes. Our own recent experiences have shown
that the list-finding methods used as part of these larger frameworks
do not generalize well and therefore ought to be reevaluated. This
paper briefly describes some of the current approaches, and tests
them on various list-pages. Based on our findings, we conclude
that analyzing a Web page’s DOM-structure is not sufficient for the
general list finding task.

1. INTRODUCTION
Web information extraction can take two forms: (1) extracting in-
formation from natural language text, or (2) extracting information
from structured sources. This work focuses on the latter, namely,
extracting information from lists on the Web. The characteristics of
Web lists vary widely. Consequently, a great variety of computa-
tional approaches have been applied to discover and extract the in-
formation embedded in lists on the Web. These existing approaches
mostly rely on the underlying HTML markup and corresponding
DOM structure of a Web page. Unfortunately, HTML was initially
designed for rendering purposes and not for information structur-
ing (like XML). As a result, a list can be rendered in several ways
in HTML, and it would be hard to find a general HTML-based tool
that is sufficiently robust. In order to cope with this problem exist-
ing approaches make assumptions as to what constitutes a “list” in
the Web page markup.
The reason list extraction has received so much attention is because
it is an important sub-task within information extraction. Several
potential use cases have been introduced in the related literature and
a few publicly available products, such as Google Sets, use list find-
ing technology, albeit at a crude level. Named entity recognition,
disambiguation, and reconciliation could be enhanced by using list
co-occurrences. A proper list extraction technique could also be
used to annotate relationships on the Web and for discovering par-
allel hyperlinks. Initially, we had hoped to use an existing list ex-
traction technique to mine link paths through Web sites, where lists
would be a diverging point for the paths. Because our mining algo-
rithm relied heavily on the proper extraction of Web lists we were
surprised to find that none of the existing list extraction techniques
were able to satisfy our needs in the general case. This paper high-

B

C

A

1

2

3

4

Figure 1: Web page from SIGKDD Explorations. Lettered areas
marked by dotted lines are individual lists. Numbered areas in list
C marked by solid lines are aligned sibling boxes.

lights our specific findings and shows a naive method that unex-
pectedly outperforms existing methods in the general case.
Our observations are based on the rendered, visual Web page in
addition to the underlying HTML markup. Similar to the work by
Gatterbauer et al. [5] we had a difficult time finding an appropriate
definition for a list on the Web. After significant discussion we
settled on a definition based on that of Gatterbauer et al.: A list is
a series of similar data items or data records. A list can be either
one-dimensional or two-dimensional; in both variants, we do not
know the relationships between individual list items except for a
possible ordering of the items [5]. The two-dimensional variant
is typically regarded as a table where the alignment of columns
and rows annotates the logical relationships among groups of data
items.
We regard tables on the Web to be wholly within the set of lists on
the Web, that is, a table is a special type of list. To show that this
is the case, Figure 2 shows a list of past KDD Explorations issues
with two columns: A and B correspond to the issue volume/number

SIGKDD Explorations Volume 12, Issue 2 Page 26



1

2

3

4

5

6

7

8

9

10

11

12

A B

Figure 2: Web page from SIGKDD Explorations. HTML
<TABLE> tags are the structure for the list of issues (A) and pub-
lication dates (B), denoted by solid lines (1–12)

.

and date respectively. Alternatively, we could view a list as a spe-
cial type of table, but we believe that our task is best expressed in
general terms as lists, rather than tables.
Usually, Web lists contain items which are similar in type or con-
tent. By this observation, lists encode important information re-
garding the nature of their items. For example, the Web page shown
in Figure 1 shows three separate lists (surrounded by dashed lines)
labeled A, B and C. Looking closely we see that list A is the menu
of the Web site, list B is a table depicting an editorial board, and list
C is a list containing the table of contents of the current issue. Be-
cause the inherent purpose of a list is to group similar items, we can
infer that the individual items in each list are related, and that the
separate lists on the Web page are interrelated. Annotating these
relationships is a topic for future research, and is dependent upon
the list extraction task1.
Continuing the example from Figure 1, Area C shows four list items
that are vertically aligned. Note that the “Special Issue. . . ” text
should not considered to be an item in the list because it is not
‘similar’ to the other list items. Areas A and B have their own
list items, but they are not explicitly outlined in order to maintain
clarity.
Of course, SIGKDD Explorations is only one academic magazine,
and many similar magazines/journals exist, where similarity is de-
fined not in the content, but in the type of the publication. We
assume that most publications have their own Web page with their
own menu, editorial board and table of contents. If we were able
to effectively and efficiently extract and integrate information from
these lists, then our knowledge bases and databases could be im-
proved. This is not a new idea, and several groups are actively
working on similar and overlapping problems [2; 6; 1; 9]. Yet, most
works use list extraction (in its general sense) as a means to an end.
Therefore, despite the great amount of Web mining research, we
show that existing approaches are inadequate in the general case.
This article highlights some of the most popular list finding algo-
rithms and tests their ability to find general lists on the Web. The

1Rarely, the same logical Web list spans multiple Web pages; these
instances are difficult to detect, and we assume that Web lists are
wholly contained on a single Web page.

extraction algorithms we consider are from:

1. Google Sets [9]
2. WebTables [2]
3. Mining Data Records (MDR) [7]
4. World Wide Tables (WWT) [6]
5. Tag Path Clustering [8]
6. RoadRunner [4]
6. SEAL [10]
7. Visual List Extraction
8. VIsual-based Page Segmentation (VIPS) [3]
9. Visualized Element Nodes Table extraction (VENTex) [5]

An appropriate list finding test set should be large enough so that
we can be statistically confident in our results, and it should con-
tain lists of various sizes and styles. To satisfy this goal we found
107 academic departments from 6 different universities. For each
department we manually extracted the faculty members from their
respective faculty member directory Web pages. Table 1 lists the
universities, departments and correct number of faculty members
displayed on each department’s Web page2. The goal, therefore,
is to use each of the above algorithms to automatically extract the
same information that we gathered manually. Of course, the fac-
ulty member extraction is only one example in the list finding task.
The same methodology can be applied in any domain resulting in
similar outcomes. We chose the faculty member data set because
the lists can be manually labeled quickly and because the list-styles
vary greatly from page to page.

Table 1: Data set for list finding experiments. Each department has
a single list of faculty members to be extracted

University # Depts. # People
Stanford 13 634
Illinois 31 1,573

MIT 22 1,351
Cal Berkeley 20 829

CMU 12 560
Cornell 9 362
Total 107 5,309

The information we manually gathered is usually the name of the
faculty member, and each of the algorithms above return different
representations of the list item corresponding to the name of the
faculty member. For example, the Google Sets method will return
text while MDR will return an HTML subtree. Thus, when judging
the results, we erred on the side of leniency in most questionable
cases. Each result set shows the total number of correct lists found
(i.e. recall), not the specific precision and recall for items in each
list. Note that most of the results are binary, because either the en-
tire list was found or it was not; in the few cases where a single item
was missing or an errant item was included we generally scored the
extraction as being correct.

2. LIST EXTRACTION CASE STUDY
This section describes the results of each algorithm and highlights
the interesting and unexpected details.

2.1 Google Sets
Although the explicit framework for Google Sets has not been pub-
lished in any academic venue, their patent filing adequately de-
2e.g., http://cs.illinois.edu/people/faculty

SIGKDD Explorations Volume 12, Issue 2 Page 27



scribes the underlying framework of their algorithm. Specifically,
the Google Sets framework automatically generates lists of items
based on their frequent co-occurrence in lists on the Web. Of course,
for this to work, Google Sets must first extract items from lists on
the Web. This is done by looking for specific HTML tags, namely
<UL>, <OL>, <DL> and <H1>-<H6> tags, and extracting
the text in the encompassed HTML structure.
We tested the effectiveness of this list extraction technique on the
data set described in Table 1. With these HTML-list patterns we
found several thousand list items, many of which were menu items,
and some of which contained faculty member information.

Table 2: Results for Google Sets extraction
University # <UL> # Extracted Recall
Stanford 4 0 0%
Illinois 6 4 12.90%

MIT 1 0 0%
Cal Berkeley 2 2 10.00%

CMU 1 1 8.33%
Cornell 1 1 11.11%
Total 15 8 7.48%

Table 2 shows the results for the Google Sets extraction technique.
The <OL>, <DL> and <H1>-<H6> tags were not part of any
faculty member list, and the <UL> tag was the structure behind
15 of the lists. Of these 15 <UL>-type lists, only 8 complete
lists were extracted. This means that either (i) the faculty was di-
vided among multiple <UL> lists or (ii) the individual items in
the <UL> list contained errant information (e.g., more than one
faculty member, extraneous information).
Google Sets can still be effective at finding lists en masse because
(if we generalize) 7.48% of all lists on the Web is still a lot of
information. Yet, its extraction technique is not sensitive enough to
pick up general lists. In addition, the data collected with Google
Sets is biased towards certain Web structures and is not guaranteed
to be a uniform sample of Web content.

2.2 WebTables
WebTables extracts information from certain tables on the Web in
order to automatically generate schemas and consolidate the in-
formation contained in these tables into a single, integrated data
source. This work is very closely related to Google’s Fusion Tables
project, and because the WebTables authors – Cafarella, Halevy et
al. – work(ed) at Google we assume that the same techniques are
at least partially responsible for the algorithm underlying Google
Fusion Tables.
WebTables works by extracting tables from the Web based on the
<TABLE> HTML-tag. From this large set of tables some heuris-
tics are used to find only relational tables, that is, Web tables which
contain columns and rows like in a database relation. The authors
estimate that 1.1% of the <TABLE>’s on the Web actually repre-
sent relational information.
For our purposes, we assume that the directories of faculty mem-
bers contain the appropriate form, and, as such, in our tests we look
for table rows that contain a single faculty member. If a whole ta-
ble contains table rows of one faculty member each (ignoring table
headers), then the table is a positive result.
Table 3 shows the results for the WebTables extraction technique.
Although, the <TABLE> tag was the structure behind 70 lists
(65%), only 38.32% complete lists were extracted. The errors were
similar in nature to the errors experienced by the Google Sets ex-
traction: either the rows contained multiple faculty members each

Table 3: Results for WebTables extraction
University # <TABLE> # Extracted Recall
Stanford 9 6 46.25%
Illinois 16 12 38.71%

MIT 15 7 31.82%
Cal Berkeley 15 9 45.00%

CMU 7 3 25.00%
Cornell 8 4 44.44%
Total 70 41 38.32%

or the table rows contained extraneous information.

2.2.1 WWT
World Wide Tables (WWT) is an effort similar to that of WebTa-
bles. The list extraction in WWT is described as using “. . . a group
of heuristics. . . ” [6]. While these heuristics are not explicitly men-
tioned, we infer that they are similar to the techniques of Google
Sets and WebTables in that they use simple HTML-tag patterns for
extraction.
In the Google Sets and WebTables results, we find that strict HTML-
tag matching works in only a very limited set of instances. While
these results are not necessarily unexpected, they provide motiva-
tion for more robust techniques for extracting lists on the Web.

2.3 MDR
One such “robust” technique is the Mining Data Records (MDR)
algorithm [7]. MDR aims to extract records from Web pages by
mining the page’s DOM-structure. MDR is based on two key ob-
servations. First, a set of data records (i.e., list items) typically
appear in a coherent region of a Web page and they are formatted
using similar HTML tags and patterns. This set of records is called
a data region. Second, the records in a data region are typically
rooted in a single parent node.
One major goal underlying the construction and execution of MDR
is that it does not make any assumptions about the type of HTML-
tags used to construct the data records. That is, a <UL>-tag is no
more likely to indicate a list than a <DIV>-tag.
In order to operate effectively, MDR assumes that the individual
records in a data region contain a robust structure which repeats
regularly throughout the data region. This assumption is correct
when a single data record contains a sufficiently-large sub-structure
like in Area C in Figure 1, which contains title and author infor-
mation for each record. However, this assumption fails when the
sub-structure of list elements are small like in Area A in Figure 1,
which only contains a link.

Table 4: Results for MDR extraction
University # Extracted Recall
Stanford 7 53.85%
Illinois 13 40.63%

MIT 6 26.09%
Cal Berkeley 5 27.78%

CMU 3 25.00%
Cornell 0 0%
Total 34 31.78%

We tested the MDR algorithm under the same conditions as the
above experiments. Table 4 shows an overall recall of 31.78%.
We note that the experiments in the original MDR paper obtains
nearly perfect extraction precision and recall; we assume that this is

SIGKDD Explorations Volume 12, Issue 2 Page 28



because the nature of the lists in the experiments conformed to the
data record style. We see in Table 4 that MDR cannot be effectively
used in general list extraction.
Ancillary experiments show that when MDR is applied to a Web
page that does not contain lists – a news article, for example –
data records are sometimes errantly extracted from nuances in the
HTML structure. These “nuances” can typically be attributed to
the appearance of regular/repeating structures in a Web page. For
an example, consider the typical Wikipedia article that contains a
large list of languages on the left-hand side, a table of contents list,
an info-box on the right-hand side, and wiki-links throughout the
page. We find that MDR usually correctly extracts the infobox, but
almost always misses the list of languages and the table of contents.

2.3.1 Tag Path Clustering
The Tag Path Clustering (TPC) algorithm [8] is quite similar to
MDR. TPC looks for frequently reoccurring patterns in the DOM
structure of a Web page in order to detect and extract data records.
Although we were unsuccessful in our attempt to re-implement
TPC, we believe that TPC suffers from the same generalization
problem as MDR because the two algorithms share similar assump-
tions.

2.4 Wrapper Generation
The task of automatically learning rules for Web extraction is com-
monly referred to as “wrapper generation”. In wrapper genera-
tion techniques, two or more Web pages are compared in order
to find common DOM-structures. Information found within these
learned-structures can be extracted and stored. Here we present two
wrapper-based techniques: RoadRunner and SEAL.

2.4.1 RoadRunner
The RoadRunner algorithm [4] is able to quickly learn the structure
of a Web site in order to automatically generate wrappers. These
wrappers have been shown to be effective at extracting content from
a learned Web template. The Flint system [1] shows that this type
of approach can be used to extract structurally repeating objects.
However, it is unlikely that a wrapper can be trained to extract gen-
eral lists from the Web.
In order to test RoadRunner on our data set we would need to train
a wrapper on each individual Web page because each department
directory contains a different template. This, for all practical pur-
poses, defeats the point of automatic list extraction, and therefore
we were unable to provide any experimental evaluation of Road-
Runner.

2.4.2 SEAL
Similar wrapper generation work was performed by Cohen and
Wang for the Set Expander for Any Language (SEAL) project [10].
SEAL is a system similar to Google Sets, but its extraction tech-
nique is essentially a wrapper learner. However, SEAL’s wrapper
learner is quite dissimilar from the wrapper learner in Roadrunner,
in that, SEAL requires one or (preferably) more example texts in
order to learn extraction rules. SEAL, therefore, learns wrappers
and performs list extraction at query time resulting in a rather large
result latency3. Because the list extraction phase in SEAL requires
example texts, we were unable to provide any experimental evalu-
ation of SEAL.

2.5 Visual List Extraction
3A demo of SEAL at http://boowa.com/ usually takes 1
minute per query

Due to the unexpected results from the above list extraction meth-
ods we implemented a naive list extraction method which explores
the visual alignment of objects in a rendered Web page. The re-
sult of the Web page rendering process can be regarded as a set of
boxes. Each rendered box in the resulting page has a position and
size, and can either contain content (i.e., text or images) or more
boxes. Generally, there is a box created for each DOM element4.
Sometimes two or more sibling boxes (boxes with the same parent-
box) are aligned so as to appear as a list. We therefore define a Web
list to be any set of sibling boxes which are visually aligned on a
rendered Web page. This alignment can occur via the x-axis (i.e., a
vertical list), the y-axis (i.e., horizontal lists), or in a tiled manner
(i.e., aligned vertically and horizontally).
Our visual list extraction algorithm uses Java’s Swing HTMLEd-
itorKit library which is capable of rendering HTML source code
into Swing components. Unfortunately, this library is quite old and
is only compatible with HTML 3.2 standards. We found that the
HTMLEditorKit library frequently rendered Web pages differently
than modern browsers, but the resemblance was close enough for
our simple extraction attempt.
The next, and most difficult step, was to reconcile the rendered
Swing components with the appropriate DOM-tag. After mapping
each DOM-tag to the appropriate Swing component, we were able
to find (X,Y) coordinates for each DOM-tag. DOM tags which are
found to be in either vertical or horizontal alignment and contain
the same DOM-parent are considered to be items in a list.
Like MDR and TPC, our visual list extraction method is tag-agnostic
and therefore does not look for specific HTML cues like <TABLE>
or <UL> tags. One potential drawback of this method is that all
of the content of a page needs to be downloaded in order for the
Web page to be rendered, including images, style sheets, etc. This
will certainly cause an increase in total execution time relative to
the DOM-only methods.

Table 5: Results for Visual List Extraction
University # Extracted Recall
Stanford 8 61.54%
Illinois 16 50.00%

MIT 12 60.00%
Cal Berkeley 11 61.11%

CMU 7 58.33%
Cornell 5 55.55%
Total 59 55.14%

We tested the visual list extraction method in the same manner as
the previous algorithms. Table 5 shows that, although the visual
method uses a sub-standard rendering library and a naive alignment
heuristic, it extracts 55.14% of the faculty lists. This result is a 74%
increase over the MDR method and an obvious improvement over
the tag-specific extraction methods of Google Sets and WebTables.

2.5.1 VIPS
VIsion-based Page Segmentation (VIPS) [3] is an existing method
similar to our visual link extraction technique. A compiled imple-
mentation of the algorithm is available on the Web, but our testing
found that VIPS is better suited for detecting blocks of data on
Web pages rather than detecting lists and list elements. For VIPS
4For a demo of Web page boxes download the Google Chrome
browser, open any Web page, right click anywhere on the Web
page, and select “Inspect element” from the menu. Moving the
cursor over each HTML element will highlight the respective box
on the rendered Web page.

SIGKDD Explorations Volume 12, Issue 2 Page 29



to work properly in this setting, its parameters must be manually
tuned to each individual Web page. Because of this we were unable
to collect results from the VIPS algorithm in a consistent manner.
Default parameter settings returned very poor list finding results.

2.5.2 VENTex
The Visualized Element Nodes Table extraction (VENTex) algo-
rithm is able to to find tables by inspecting the rendered Web page
and the corresponding DOM tree [5]. VENTex uses a comprehen-
sive list of heuristics to extract and interpret tables in the Web. So,
while this line of research can extract tables with a reported preci-
sion and recall of 68% and 81% respectively, we are interested in
the broader extraction of Web lists in general. Because of the con-
strained notion of what constitutes a table on the Web, the heuristics
proposed in VENTex are not likely to effectively extract general
lists from the Web.

3. DISCUSSION
The results shown here are unexpected yet promising. Unexpected
because we had hoped that existing techniques would be able to
effectively handle list finding. Our results were especially unex-
pected because our data set of departmental faculty directories con-
tained lists humans can identify with ease.

Table 6: Cumulative Result Comparison
Algorithm # Extracted Recall

Google Sets 8 7.48%
WebTables 41 38.32%

MDR 34 31.78%
Visual Ext. 59 55.14%

We initially developed the visual list extraction technique as a naive
approach and expected it to perform far worse than existing tech-
niques. As we show in Table 6, the visual list extraction performed
the best on average. Tables 2-5 also show that the visual list extrac-
tion consistently outperformed existing techniques across all uni-
versities.
In fairness, the Google Sets, WebTables and WWT techniques were
designed with a different goal in mind. With these approaches the
system assumes that it will not obtain a very high recall. Instead,
the objective was to gather information from an extremely large
data set. Therefore, a 7% list coverage (in the case of the Google
Sets extraction technique) of the entire World Wide Web is still
an extremely large amount of information. But if, by using a vi-
sual extraction technique, we could obtain 55% of the lists on the
Web, then our knowledge bases could be vastly improved, and our
extracted collection would not exhibit the sampling bias of these
current methods.
These experiments contain a set of very different Web lists; there-
fore, we believe our results should be viewed as representative of
the general Web. In our specific domain, by extracting faculty
members from the Web we may be able to create a “who’s-who”
of researchers at any number of topical or hierarchical resolutions.
We would like to reiterate that our working hypothesis was that an
existing technique would work. We invested a lot of time trying
to make the algorithms described above work for our Web mining
purposes. The list extraction method was never a main goal of our
work, but due to the surprising results we initially received, we felt
compelled to reevaluate these methods and present them here.

4. CONCLUSIONS
In this paper we argue that there is a need for a general list extrac-
tion technique, and our experiments show that existing techniques
are not individually capable of filling this need. Most available list
extraction tools are still based on HTML only. HTML was initially
designed for rendering purposes and not for information structuring
(as XML). A list can be rendered in several ways in HTML, and it
would be hard to find a general HTML-based tool which is suffi-
ciently robust. On the other hand, our naive visual list extraction
method shows promising results that, if rigorously defined and im-
plemented, could be used for general list detection and extraction.
Based on our experience and learned intuition, we believe that the
most effective list extraction approach may be found in the inter-
section of DOM pattern finding techniques like MDR and a visual
extraction technique (more robust than the one described above).
Furthermore, we ask interested members of the community to ex-
plore these techniques in order to advance this line of research.

5. ACKNOWLEDGMENTS
We thank Marina Danilevsky for her help on this project. This re-
search is funded by an NDSEG Fellowship to the first author, NSF
grant IIS-09-05215 to the third and fourth authors. The second and
fifth authors are supported by the University of Bari “Aldo Moro,”
and the Project DIPIS funded by Apulia Region.

6. REFERENCES

[1] L. Blanco, V. Crescenzi, P. Merialdo, and P. Papotti. Flint:
Google-basing the web. In EDBT, volume 261, pages 720–
724. ACM, 2008.

[2] M. J. Cafarella, A. Y. Halevy, D. Z. Wang, E. Wu, and
Y. Zhang. Webtables: exploring the power of tables on the
web. PVLDB, pages 538–549, 2008.

[3] D. Cai, S. Yu, J.-R. Wen, and W.-Y. Ma. Extracting content
structure for web pages based on visual representation. In AP-
Web, pages 406–417, 2003.

[4] V. Crescenzi, G. Mecca, and P. Merialdo. Roadrunner: auto-
matic data extraction from data-intensive web sites. In SIG-
MOD, pages 624–624, New York, NY, USA, 2002. ACM.

[5] W. Gatterbauer, P. Bohunsky, M. Herzog, B. Krupl, and
B. Pollak. Towards domain independent information extrac-
tion from web tables. In WWW, 2007.

[6] R. Gupta and S. Sarawagi. Answering table augmentation
queries from unstructured lists on the web. PVLDB, pages
289–300, 2009.

[7] B. Liu, R. Grossman, and Y. Zhai. Mining data records in web
pages. In KDD, pages 601–606, New York, NY, USA, 2003.
ACM.

[8] G. Miao, J. Tatemura, W.-P. Hsiung, A. Sawires, and L. E.
Moser. Extracting data records from the web using tag path
clustering. In WWW, pages 981–990, 2009.

[9] S. Tong and J. Dean. System and methods for automatically
creating lists. US Patent: 7350187, Mar 2008.

[10] R. C. Wang and W. W. Cohen. Language-independent set ex-
pansion of named entities using the web. In ICDM, 2007.

SIGKDD Explorations Volume 12, Issue 2 Page 30


