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Unexpectedly large surface gravities for acoustic horizons?
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Abstract. Acoustic black holes are fluid-dynamic analogues of general relativistic black holes,
wherein the behaviour of sound waves in a moving fluid acts as an analogue for scalar fields
propagating in a gravitational background. Acoustic horizons, which are intimately related to
regions where the speed of the fluid flow exceeds the local speed of sound, possess many of
the properties more normally associated with the event horizons of general relativity, up to and
including Hawking radiation. Acoustic black holes have received much attention because it would
seem to be much easier to create an acoustic horizon experimentally than to create an event horizon.
Here we wish to point out some potential difficulties (and opportunities) in actually setting up an
experiment that possesses an acoustic horizon. We show that in zero-viscosity, stationary fluid
flow with generic boundary conditions, the creation of an acoustic horizon is accompanied by
a formally infinite ‘surface gravity’, and a formally infinite Hawking flux. Only by applying a
suitable non-constant external body force, and for very specific boundary conditions on the flow,
can these quantities be kept finite. This problem is ameliorated in more realistic models of the
fluid. For instance, adding viscosity always makes the Hawking flux finite (and typically large),
but doing so greatly complicates the behaviour of the acoustic radiation—viscosity is tantamount to
explicitly breaking ‘acoustic Lorentz invariance’. Thus, this issue represents both a difficulty and
an opportunity—acoustic horizons may be somewhat more difficult to form than naively envisaged,
but if formed, they may be much easier to detect than one would at first suppose.

PACS numbers: 0470B, 0470D, 4710, 4715H

1. Introduction

Acoustic black holes are very useful toy models that share many of the fundamental properties
of the black holes of general relativity, while having a very clear and clean physical
interpretation in terms of ordinary non-relativistic fluid mechanics [1–8]. The fundamental
idea is that sound waves propagating in a flowing fluid share many of the formal properties
of massless scalar fields propagating in a general-relativistic curved spacetime. Indeed, the
propagation of acoustic disturbances in a flowing fluid is described by a spacetime metric with
Lorentzian signature, the ‘acoustic metric’, which is built up algebraically out of the density,
velocity and local speed of sound of the fluid. When the flow is such that there is a surface
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where the normal component of the fluid velocity equals the speed of sound, the acoustic
metric possesses the properties that characterize a black hole spacetime in general relativity,
and such a surface is therefore called an ‘acoustic horizon’.

As emphasized in [6, 7], acoustic black holes share all the kinematic aspects of relativistic
black holes, but do not share in the dynamic aspects. In particular, acoustic black holes exhibit
Hawking radiation from the acoustic horizon, giving rise to a quasi-thermal bath of phonons
with temperature proportional to the ‘surface gravity’ (related to the physical acceleration of the
fluid as it crosses the acoustic horizon), but they exhibit no simple analogue of the Bekenstein–
Hawking entropy (since that is a dynamical effect intimately related to the existence of the
Einstein equations in general relativity).

One of the reasons why acoustic black holes are so popular is that it seems that the
prospects for experimentally building an acoustic horizon are much better than for a general
relativistic event horizon. An early estimate can be found in [1], and related comments are
to be found in [6, 7]. Additionally, an impressive body of work has been done by Volovik
and collaborators, who have extensively studied the experimental prospects for building such
a system using superfluids such as 3He and 4He [9–18]. These particular implementations
of acoustic geometry make extensive use of the two-fluid model of superfluidity, whereas in
this paper we will be focusing on a conceptually simpler one-fluid model; accordingly, some
important technical details will differ. For yet another physical implementation of acoustic
geometries, Garay et al have investigated the technical requirements for obtaining an acoustic
horizon in Bose–Einstein condensates [19], and some of the perils and pitfalls accompanying
acoustic black holes have been discussed in Jacobson’s mini-survey [20].

Another attractive feature of acoustic black holes is that they seem to be generic, and
that they illustrate an important aspect of Lorentz invariance. For instance, it is now known,
due to the work of Nielsen and collaborators [21–23], that in renormalizable non-Lorentz-
invariant quantum field theories, Lorentz invariance is often an infrared fixed point of the
renormalization group equations. Thus, Lorentz invariance can emerge as a symmetry in the
low-energy limit even if the underlying physics is not explicitly Lorentz invariant. Similarly,
in acoustic black holes the underlying physics is explicitly classical and Newtonian, but the
physics of sound propagation nevertheless exhibits a low-frequency approximate Lorentzian
symmetry [6, 7].

In this paper we wish to point out a potential difficulty and an opportunity—we shall
demonstrate that there is a regularity issue that becomes serious at the acoustic horizon. Either
the Hawking temperature is formally infinite (which is the generic situation), or there must be
a very precise relationship between an external body force that must be applied to the fluid
as it crosses the acoustic horizon and the extrinsic geometry of the latter. If this condition
is not satisfied the ‘surface gravity’ formally diverges, as well as the corresponding Hawking
temperature. Similarly, the acceleration and density gradient of the fluid at the horizon are
formally infinite. For a specified external force, such divergences are generic, in the sense
that they are present for almost all flows, except—in some cases—for a set of measure zero
that satisfies very special boundary conditions. However, in the case of a constant force
(including zero force), which is perhaps the most interesting one from the point of view of
laboratory simulations, no boundary conditions exist that correspond to an everywhere regular
flow.

On the one hand, this result suggests that detecting the acoustic Hawking effect should be
very easy; on the other hand, it implies that the naive analysis (which demands that both the
vorticity and the viscosity be zero) should in some way be modified near the acoustic horizon,
at least when the external forces are such that a formal divergence will certainly occur. For
instance, adding finite viscosity to the fluid equations is sufficient in order to regulate the
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surface gravity and Hawking temperature for any choice of external force—though finite they
can remain large, and can be much larger than naively expected.

2. Basic equations and assumptions

The acoustic model of Lorentzian geometry arises from the description of the deceptively
simple phenomenon of the propagation of sound waves in a flowing fluid. Let us therefore
recall the fundamental equations of fluid dynamics, i.e. the equation of continuity

∂ρ

∂t
+ �∇ · (ρ�v) = 0, (2.1)

and the Euler equation

ρ�a = �f , (2.2)

where

�a = ∂ �v
∂t

+ (�v · �∇)�v (2.3)

is the fluid acceleration, and �f denotes the force density—the sum of all forces acting on the
fluid per unit volume. We shall assume that the external forces present are all gradient-derived
(possibly time-dependent) body forces, which for simplicity we lump together in a generic term
−ρ �∇
. In addition to the external forces, �f contains a contribution from the pressure of the
fluid and, possibly, a term coming from viscosity. Thus, equation (2.2) takes the Navier–Stokes
form

ρ

(
∂ �v
∂t

+ (�v · �∇)�v
)

= −�∇p − ρ �∇
 + �fviscous, (2.4)

where

�fviscous = η∇2�v +
(
ζ + 1

3η
) �∇( �∇ · �v) (2.5)

represents the force due to viscous processes, the coefficients η and ζ giving the dynamic and
bulk viscosity, respectively [24, 25].

In deriving the acoustic geometry, one usually makes a number of technical assumptions.

• The first assumption is that the fluid has a barotropic equation of state, that is, the density
ρ is a function only of the pressure p, so

ρ = ρ(p). (2.6)

This guarantees that (2.1) and (2.4) are a closed set of equations. We shall consequently
define the speed of sound as

c2 = dp

dρ
. (2.7)

• The second assumption is that we have a vorticity-free flow, i.e. that �∇ × �v = �0. This
condition is generally fulfilled by the superfluid components of physical superfluids.

• A third assumption, often made in the existing literature on acoustic geometries, is a
viscosity-free flow. Although this is quite a realistic condition for superfluids we shall see
that the presence or absence of viscosity can mark a sharp difference in the behaviour of
the phonon radiation from acoustic horizons.
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These assumptions are sufficient conditions under which an acoustic metric can be written.
However, since the following analysis is independent of the introduction of the acoustic
geometry (although motivated by it, of course), we shall try to be as general as possible,
making use of them only progressively, as they are needed in order to have an analytically
tractable system.

3. Regularity conditions at ergo-surfaces

Let us start by establishing a useful mathematical identity. If we write �v = v�n, where �n is a
unit vector and v � 0, then

�∇ · �v = dv

dn
+ vK, (3.1)

where d/dn = �n · �∇ and K = �∇ · �n. If the Frobenius condition is satisfied†, then there exist
surfaces orthogonal to the fluid flow. In this situation, K admits a geometrical interpretation
as the trace of the extrinsic curvature of these surfaces. It must be noted that, although zero
vorticity is a sufficient condition for this to happen, it is not necessary.

We now focus our attention on the component of the fluid acceleration along the flow,
an = �a · �n. This can be obtained straightforwardly by projecting the Navier–Stokes
equation (2.4) along �n:

ρan = −c2 dρ

dn
− ρ d


dn
+ �n · �fviscous, (3.2)

where we have used the barotropic condition.
Next, we rewrite the continuity equation as

∂ρ

∂t
+ v

dρ

dn
+ ρ

(
dv

dn
+ vK

)
= 0, (3.3)

where the identity (3.1) has been used. We can express dv/dn in terms of an noticing that, by
the definition (2.3) of �a,

an = ∂v

∂t
+ v

dv

dn
. (3.4)

Thus, equation (3.3) can be rewritten as

ρan = −v2 dρ

dn
− ρv2K + ρ

∂v

∂t
− v ∂ρ

∂t
. (3.5)

Equations (3.2) and (3.5) can be solved for both an and dρ/dn, obtaining

an = 1

c2 − v2

[
v2

(
d


dn
− c2K − 1

ρ
�n · �fviscous

)
+ c2

(
∂v

∂t
− v

ρ

∂ρ

∂t

)]
; (3.6)

dρ

dn
= 1

c2 − v2

[
−ρ

(
d


dn
− v2K − 1

ρ
�n · �fviscous

)
− ρ ∂v

∂t
+ v
∂ρ

∂t

]
. (3.7)

† The Frobenius condition is �v · �∇ × �v = 0, or equivalently �n · �∇ × �n = 0. This is sometimes phrased as the statement
that the flow has zero ‘helicity’. The Frobenius condition is satisfied whenever there exist a pair of scalar potentials
such that �v = α �∇β, in which case the velocity field is orthogonal to the surfaces of constant β. In view of this fact
the velocity field is said to be a ‘surface-orthogonal vector field’.
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In general, we see that there is risk of a divergence in the acceleration and the density gradient
as v → c, which indicates that the ergo-surfaces† (the boundaries of ergo-regions) must be
treated with some delicacy. The fact that gradients diverge in this limit is the key observation of
this paper; we shall demonstrate that this has numerous repercussions throughout the physics
of acoustic black holes.

Since v2 = c2 at the ergo-surface it is evident that the acceleration and the density gradient
both diverge, unless the condition

d


dn
− c2 K − 1

ρ
�n · �fviscous +

∂v

∂t
− c

ρ

∂ρ

∂t
= 0 (3.8)

is satisfied on the ergo-surface. Equation (3.8) is therefore a relationship that must be satisfied
in order to have a physically acceptable model. Of course, it is only a necessary condition,
because an and dρ/dn may diverge at the ergo-surface even when (3.8) is fulfilled, if the
quantities in square brackets in the right-hand sides of (3.6) and (3.7) tend to zero slower than
c2 − v2 as one approaches the ergo-surface.

For a stationary, non-viscous flow, (3.8) reduces to
d


dn
= c2K, (3.9)

where again d
/dn, c and K are evaluated at a generic point on the ergo-surface. Thus, in
this case it seems that a special fine-tuning of the external forces is needed in order to keep
the acceleration and density gradient finite at the ergo-surface. If the condition (3.9) is not
fulfilled but still �fviscous = �0, the flow cannot be stationary. Near the ergo-surface, an instability
will make the time derivatives in (3.8) different from zero, so that they could compensate the
mismatch between the two sides of (3.9). More realistically, we shall see later that for a given
potential, either no horizon forms, or the flow tries to assume a configuration in which (3.9) is
automatically satisfied.

4. Regularity conditions at horizons

If we now look at the ‘surface gravity’ of an acoustic black hole it is most convenient to first
restrict attention to a stationary flow. Defining a notion of surface gravity for non-stationary
flows is easier in fluid mechanics than in general relativity, but is still sufficiently messy to
encourage us to make this simplifying assumption [6]. For additional technical simplicity we
shall further assume that at the acoustic horizon (the boundary of the trapped region) the fluid
flow is normal to the horizon. Under these circumstances the technical distinction between an
ergo-surface and an acoustic horizon vanishes and we can simply define an acoustic horizon
by the condition v = c. (In complete generality you would have to define an (apparent)
acoustic horizon as a surface for which the inward normal component of the fluid velocity is
everywhere equal to the speed of sound [6]; this adds extra layers of technical complication
to the discussion which in the present context we have not found to be useful.) Then it can
be shown that the surface gravity‡ gH has two terms [6, 7], one coming from acceleration of
the fluid, the other coming from variations in the local speed of sound. More precisely, gH is
given by the value attained by the quantity

g = 1

2

d(c2 − v2)

dn
= 1

2

dc2

dn
− an (4.1)

† In general relativity the v → c surface would be called an ‘ergosphere’, however, proving that this surface generically
has the topology of a sphere is a result special to general relativity which depends critically on the imposition of the
Einstein equations. In the present fluid-dynamic context there is no particular reason to believe that the v → c surface
would generically have the topology of a sphere and we prefer the more non-committal term ‘ergo-surface’.
‡ Hereafter, we label all quantities evaluated at the horizon with the subscript H .
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at the acoustic horizon. (And note that g is defined throughout all space.)
Now we write, using equations (3.3) and (3.4),

dc2

dn
= dc2

dρ

dρ

dn

= −d2p

dρ2

[
ρ

(
K +

1

v

dv

dn

)
+

1

v

∂ρ

∂t

]

= −d2p

dρ2

[
ρ

(
K +

an

v2
− 1

v2

∂v

∂t

)
+

1

v

∂ρ

∂t

]
. (4.2)

Under the present assumptions, time derivatives vanish, so we find, using (3.6)

g = 1

c2 − v2

[(
c2 +

ρ

2

d2p

dρ2

)
Kv2 −

(
v2 +

ρ

2

d2p

dρ2

)(
d


dn
− 1

ρ
�n · �fviscous

)]
. (4.3)

Since v2 = c2 at the horizon, it is now evident that the surface gravity (as well as the
acceleration and the density gradient) diverges unless the condition

d


dn

∣∣∣∣
H

− c2
HKH − 1

ρH
�nH · ( �fviscous)H = 0 (4.4)

is satisfied. For a non-viscous flow (4.4) again reduces to (3.9), and the same considerations
made about the acceleration and density gradient apply.

Now all this discussion is predicated on the fact that acoustic horizons actually form, and
would be useless in the case that some obstruction could be proven to prevent the fluid from
reaching the speed of sound. In order to deal with this possibility we shall now check that
at least in some specific examples it is possible to form acoustic horizons under the current
hypotheses. For analysing these specific cases it is useful to first consider a generic stationary,
spherically symmetric flow.

5. Spherically symmetric stationary flow

For simplicity, we now deal with the case of a spherically symmetric stationary flow in d space
dimensions. Spherical symmetry guarantees that the fluid flowlines are always perpendicular
to the acoustic horizon, and so we can ignore the subtleties attendant on the distinction between
horizons and ergospheres [6]. Additionally, for the time being we shall assume the absence of
viscosity, �fviscous = �0.

For a spherically symmetric steady inflow, �n is minus the radial unit vector. Then
d�n/dn = �0; also

d

dn
= − d

dr
, (5.1)

and

K = −d − 1

r
. (5.2)

From equation (2.3) it follows that �a has only the radial component, which coincides with −an
and is

a = −v2 c
2(d − 1)/r − d
/dr

c2 − v2
. (5.3)



Unexpectedly large surface gravities for acoustic horizons? 2909

This result could also be obtained directly, without the general treatment of section 3. For a
steady flow the continuity equation implies

ρvrd−1 = J = constant. (5.4)

Taking the logarithmic derivative of the above equation one obtains

dρ

dr
= −ρ (d − 1)

r
− ρ

v

dv

dr
. (5.5)

On the other hand, the Euler equation (2.4) takes in this case the form

ρv
dv

dr
= −c2 dρ

dr
− ρ d


dr
, (5.6)

where we have used the barotropic condition. Equations (5.5) and (5.6) can be combined to
give the useful result

v
dv

dr
= c2

(
(d − 1)

r
+

1

v

dv

dr

)
− d


dr
, (5.7)

which allows one to easily compute the acceleration a = v dv/dr of the fluid for this specific
case, recovering equation (5.3), and to obtain a differential equation for the velocity profile
v(r):

dv

dr
= −v c

2(d − 1)/r − (d
/dr)
c2 − v2

. (5.8)

When it comes to calculating g, the same analysis as previously developed now yields

g = 1

c2 − v2

[(
v2 +

ρ

2

d2p

dρ2

)
d


dr
−

(
c2 +

ρ

2

d2p

dρ2

)
v2(d − 1)

r

]
. (5.9)

So the acceleration at the acoustic horizon, whose location rH is the solution of the equation
v(rH )

2 = c(rH )2, formally goes to infinity unless the external body force satisfies the condition

d


dr

∣∣∣∣
H

− c2
H

(d − 1)

rH
= 0. (5.10)

Any further analysis requires one to integrate the differential equation (5.8). However, this
can be done only by assigning an equation of state p = p(ρ), and simultaneously integrating
equation (5.5) in order to obtain the dependence of c on r . We consider such a specific model
in the next section.

6. Constant speed of sound

In order to obtain further insight, let us consider the simple case of a fluid with a constant speed
of sound,

d2p

dρ2
= 0. (6.1)

It is easy to see that in this case, the condition (5.10) is also sufficient in order to keep the
physical quantities finite on the horizon. Consider equation (5.8) and apply the Bernoulli–de
L’Hospital rule in order to evaluate (dv/dr)H . One obtains

(
dv

dr

)2

H

= −1

2

(
d2


dr2

∣∣∣∣
H

+
c2(d − 1)

r2
H

)
, (6.2)
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Figure 1. The inverse of the Lambert function: W−1(x) = xex .

so (dv/dr)H has a finite value. As a corollary of (6.2), we see that at the horizon one must
have

d2


dr2

∣∣∣∣
H

� −c
2(d − 1)

r2
H

; (6.3)

so, in particular, no potential with a non-negative second derivative can lead to a horizon on
which dv/dr is finite.

With the assumption (6.1), the differential equation (5.8) for the velocity profile can be
easily integrated. Its general solution is

1

2

[
c2 ln

(
v2

v2
0

)
− v2 + v2

0

]
= −c2 (d − 1) ln

(
r

r0

)
+
(r)−
(r0), (6.4)

where r0 is arbitrary and v0 is the speed of the fluid at r0†. In order to study the general
properties of v(r), it is convenient to rewrite equation (6.4) in the form

r2(d−1)e−2
(r)/c2
W−1

(−v2/c2
) = r2(d−1)

0 e−2
(r0)/c2
W−1

(−v2
0/c

2
)
, (6.5)

where W−1 is the inverse of the Lambert function [26], defined as W−1(x) = xex . Given
r0 and v0, equation (6.5) implies that the solution v(r) has two branches—a subsonic and a
supersonic one. This follows immediately from the trivial fact that, since W−1(−v2

0/c
2) is

negative, W−1(−v2/c2) is also negative; then, from the plot in figure 1 we see that there are
two possible values for v2, one smaller and the other greater than c2.

We end this section with some remarks that are crucial for a correct interpretation of the
regularity condition (5.10). On rewriting (6.4) or (6.5) as

F(r, v; r0, v0) = 0, (6.6)

we can represent the location rH of the horizon, for a given potential 
 and given boundary
data (r0, v0), as the solution of the equation

F(rH , c; r0, v0) = 0. (6.7)

† Equation (6.4) simply expresses Bernoulli’s theorem. Indeed, it can be written in the form v2/2 +
(r)+h(v, r) =
constant, where h = ∫

dp/ρ can be found from (5.5).
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On the other hand, differentiating (6.6) and comparing with (5.8) we can rewrite the regularity
condition (5.10) as

∂F

∂r
(rH , c; r0, v0) = 0. (6.8)

It is clear that, if we impose the boundary data (r0, v0), then (6.8) expresses a fine-tuning
condition on 
 in order to have dv/dr finite at the horizon. However, we can reverse the
argument and consider the more realistic case in which one looks for a physically acceptable
flow compatible which an assigned 
, without trying to force the boundary condition
v(r0) = v0 on the velocity profile. In this case, equations (6.7) and (6.8), when solved
simultaneously, give the location of the horizon, rH , and the value v0 of the fluid speed at r0.
Thus, requiring regularity of the flow for a given potential amounts to solving an eigenvalue
problem, while if one insists on assigning a boundary condition for the speed, a careful fine
tuning of 
 is needed in order to avoid infinite gradients. We stress, however, that although
from a strictly mathematical point of view both types of problems can be considered, it is the
first one that is relevant in practice.

7. Examples

We now consider some specific choices, both of 
(r) and of v(r), in order to illustrate the
general situation.

7.1. Constant body force

Let us begin with a constant body force, with the linear potential


(r) = κr, (7.1)

where κ is a constant. Equation (6.4) becomes, in this case,

1

2

[
c2 ln

(
v2

v2
0

)
− v2 + v2

0

]
= −c2 (d − 1) ln

(
r

r0

)
+ κ(r − r0), (7.2)

and equation (6.5) can be rewritten completely in terms of inverse Lambert functions:

W−1

(
− κr

c2(d − 1)

)2(d−1)

W−1

(
−v

2

c2

)
= W−1

(
− κr0

c2(d − 1)

)2(d−1)

W−1

(
−v

2
0

c2

)
. (7.3)

Following the discussion at the end of section 6, we can regard (5.10) as the equation for
the locations of rH where dv/dr is finite. We have, in this case,

rH = c2(d − 1)

κ
(7.4)

so, excluding the uninteresting possibility rH = 0 for d = 1, we see immediately that there can
be no regular flow with an acoustic horizon when κ � 0. For κ > 0, one can see that there are
no values of v0 for which (7.4) is satisfied. Indeed, setting v = c and r = rH = c2(d − 1)/κ
in (7.3) gives the following equation for v2

0:

W−1

(
−v

2
0

c2

)
= −1

e

(
eW−1

(
− κr0

c2(d − 1)

))−2(d−1)

. (7.5)

Since, for x < 0, it is 0 > W−1(x) > −1/e (see figure 1), the right-hand side of equation (7.5)
turns out to be smaller than −1/e, while the left-hand side is greater than −1/e. Therefore,
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satisfying equation (7.5) is impossible, i.e. there are no real values of v0 that satisfy it, and no
regular flow exists in which v = c at some point.

These conclusions are in agreement with equation (6.3), which implies that dv/dr cannot
be finite at rH , because d2
/dr2 ≡ 0 in this case. Thus, either v(r) 
= c for all values of r , or
dv/dr diverges at the horizon. It is not difficult to see that the second possibility is the correct
one, because a horizon always forms in this type of flow. To this end, let us set v = c in (7.3),
and look for a solution rH (that we do not require to be necessarily equal to the one following
from the regularity condition, equation (7.4)—in fact, we already know that this would be
impossible). We obtain

W−1

(
− κrH

c2(d − 1)

)
= W−1

(
− κr0

c2(d − 1)

) (
−W−1

(
−v

2
0

c2

)) 1
2(d−1)

. (7.6)

The last factor on the right-hand side of this equation is always positive and smaller than one,
therefore

W−1

(
− κrH

c2(d − 1)

)
(7.7)

has the same sign of, and a smaller absolute value than,

W−1

(
− κr0

c2(d − 1)

)
. (7.8)

For κ < 0, the quantity (7.7) is positive, so also (7.8) is positive and corresponds to a positive
value rH < r0. For κ > 0, equation (7.7) is negative, so (7.8) gives two positive solutions for
rH , one smaller and the other greater than r0. In both cases, the horizon forms.

We now illustrate these features by showing some plots of the solution of equation (7.2)
with arbitrarily chosen boundary conditions. Without loss of generality we can rescale the unit
of distance to set

κ =




+c2/r0,

0,

−c2/r0.

(7.9)

Let us treat these three cases separately.

7.1.1. κ > 0. For κ > 0 figure 2 clearly shows that there is no obstruction to reaching the
acoustic horizon. In addition, if we keep the distance scale fixed and instead vary κ we find
the curves of figure 3.

The four things to emphasize here are that:

(a) velocities equal to the speed of sound are indeed attained;
(b) the gradient dv/dr is indeed infinite at the acoustic horizon;
(c) these particular solutions break down at the acoustic horizon and cannot be extended

beyond it;
(d) the particular solutions we have obtained all exhibit a double-valued behaviour, there is

a branch with subsonic flow that speeds up and reaches v = c at the acoustic horizon;
and there is a second supersonic branch, defined on the same spatial region, that slows
down and reaches v = c at the acoustic horizon. Mathematically, this happens because
of the double-valuedness of the Lambert function of negative argument, as already noted
in section 6.
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Figure 2. Plot of the solutions of equation (6.4) for several values of d and κ > 0. We have first
fixed κ = +c2/r0, and then set c = 1, r0 = 1 and v0 = 1

2 .

Figure 3. Plot of the solutions of equation (6.4) for κ = 2, 3, 4 with d = 3, c = 1, r0 = 1 and
v0 = 1

2 .

7.1.2. κ = 0 (no body force). If there is no external body force, then d = 1 is uninteresting
(the velocity is constant). If we now look at d = 2 and higher then equation (5.3) again easily
gives us the acceleration of the fluid

a = v dv

dr
= −v2 c

2(d − 1)/r

c2 − v2
, (7.10)

so

dv

dr
= −v c

2(d − 1)/r

c2 − v2
. (7.11)

Explicit integration leads us to the solution

r = r0
(
v

v0

) 1
1−d

exp

(
v2 − v2

0

2(d − 1)c2

)
, (7.12)
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Figure 4. Plot of the solution of equation (6.4) for κ = 0 with the same initial values (c = 1,
r0 = 1 and v0 = 1

2 ). Note the triviality of the d = 1 solution, which exhibits two branches, with
subsonic and supersonic speeds, respectively.

Figure 5. Plot of the solution of equation (6.4) for d = 1, 2, 3 and κ = −c2/r0, where we again
set c = 1, r0 = 1 and v0 = 1

2 .

which is equivalent to equation (7.3) in the limit κ = 0. This can be easily plotted for different
values of the dimension d as shown in figure 4.

7.1.3. κ < 0. For κ < 0 the solutions are plotted in figure 5.
Finally, it is interesting to compare the behaviour of the solutions for the different signs

of the body force as shown in figure 6.
In all three cases (κ > 0, κ = 0, κ < 0) we see that the acoustic horizon does, in fact, form

as predicted, and that the surface gravity and acceleration are indeed infinite at the acoustic
horizon. Naturally, this should be viewed as evidence that some of the technical assumptions
usually made are no longer valid as the horizon is approached. In particular, in section 8 we
shall discuss the role of viscosity as a regulator for keeping the surface gravity finite.
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Figure 6. Plot of the solutions of equation (6.4) for κ = ±1, 0 and d = 2, with c = 1, r0 = 1 and
v0 = 1

2 .

7.2. Schwarzschild geometry

So far, the discussion in this paper has concerned the attainability of acoustic horizons in
general, without focusing on any particular acoustic geometry. A more specific, and rather
attractive possibility is to attempt to build a flow with an acoustic metric that is as close as
possible to one of the standard black hole metrics of general relativity. Remarkably, this can be
done (up to a conformal factor) for the Schwarzschild geometry. To be more specific: for a fluid
with a constant speed of sound, one can find a stationary, spherically symmetric flow in three
spatial dimensions, whose acoustic metric is conformal to the Painlevé–Gullstrand form of the
Schwarzschild geometry [6]. This possibility has stimulated considerable work concerning
the physical realization of an experimental set-up that could actually produce such a flow (or,
more precisely, a two-dimensional version of it [16]). These particular fluid configurations
exhibit a different type of fine-tuning problem to the one we discussed previously. In order to
reproduce the Painlevé–Gullstrand line element, the speed of the fluid must have the profile
v = √

2M/r , withM a positive constant. Then, r0 and v0 must satisfy the relation r0v2
0 = 2M ,

and equation (6.4) allows us to find the external potential needed in order to sustain such a
flow in d space dimensions:


(r) = 
(r0) +
M

r0
+ c2

(
d − 3

2

)
ln

(
r

r0

)
− M

r
. (7.13)

Therefore, the potential must be carefully chosen, which will not be easy to do in a laboratory.
If one does manage to construct such a potential
(r) it will automatically fulfil the fine-tuning
condition (3.9) at the acoustic horizon, rH = 2M/c2. This is only to be expected, because
dv/dr = −

√
M/2r3 blows up only as r → 0. Also, since we know that the surface gravity of

a Schwarzschild black hole is finite, any fluid flow that reproduces the Schwarzschild geometry
must by definition satisfy the fine-tuning condition for a finite surface gravity.

Looking at the issue from the point of view discussed at the end of section 6, one expects
that, given the potential (7.13), the value v0 = √

2M/r0 is the solution of equations (6.7)
and (6.8), while v(r) = √

2M/r is the corresponding eigenfunction that is selected by the
requirement of having a regular flow. This is indeed the case: equation (6.7) now gives
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Figure 7. Plot of the solutions of equation (6.4) for the potential (7.13), withM = 1
2 , d = 3, c = 1

and r0 = 4. The corresponding boundary conditions are v0 = 0.4, v0 = 0.5 and v0 = 0.6.

rH = 2M/c2 which, substituted into (6.8), leads to the following equation for v0:

c2

2
ln

(
2M

r0v
2
0

)
+
v2

0

2
= M

r0
. (7.14)

It is trivial to check that v0 = √
2M/r0 is, in fact, a solution of (7.14).

Considering the same potential (7.13), but values of v0 different from
√

2M/r0,
corresponds to flows either with no horizon, or in which (dv/dr)H diverges. This is evident
in figure 7, which confirms the ‘eigenvalue character’ of the problem of finding a regular
flow. Note that there are two solutions that are regular at the horizon, with opposite values of
(dv/dr)H , in full agreement with the fact that equation (6.2) only determines the square of
(dv/dr)H .

Additionally, note that what we have done above has been to ask how to mimic a slice
of the (3 + 1)-dimensional Schwarzschild geometry with a (d + 1)-dimensional fluid flow.
We could ask what happens in different spacetime dimensions: for the (D + 1)-dimensional
generalization of the Schwarzschild geometry the fluid flow generalizes to v =

√
2M/rD−2,

and the potential required to produce this flow is


(r) = 
(r0) +
M

rD−2
0

+ c2

(
d − D

2

)
ln

(
r

r0

)
− M

rD−2
. (7.15)

Again a very specific external body force is needed to set up the very specific fluid flow
corresponding to a higher-dimensional Schwarzschild geometry.

7.3. Reissner–Nordström geometry

We mention in passing that generalizing this discussion to the (3 + 1)-dimensional Reissner–
Nordström geometry is straightforward. This geometry is described in Painlevé–Gullstrand
form by the fluid flow

v(r) =
√

2M

r
− e2

r2
. (7.16)
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The external potential required to set up this fluid flow is then


(r) = c2
(
d − 3

2

)
ln

(
r

r0

)
− M

r
+
e2

2r2
+
c2

2
ln

(
1 − e2

2Mr

)
+ constant. (7.17)

7.4. The canonical acoustic black hole

To wrap up our section on specific examples, we add a few words about the ‘canonical’ acoustic
black hole discussed in [6, 8]. In that model the fluid is assumed to have a constant density
throughout space, and the continuity equation is then used to deduce the velocity profile

v(r) ∝ 1/r2. (7.18)

Note that ‘constant density’ is actually a much weaker statement than incompressibility, and
the word ‘incompressible’ should be excised from all of section 8 of [6] and replaced by this
phrase. Now in [6, 8] the velocity profile was determined purely on these kinematic grounds,
and no attempt was made to put this background fluid flow back into the Euler equations to
determine the external body force required to set up the flow. (In that paper, almost all the
attention was focused on the fluctuations rather than the background flow.)

Determining the potential is an easy application of the general analysis of this paper (see
equation (5.7)). We calculate


(r) ∝ −1/r4 + constant. (7.19)

With hindsight this can be seen to be nothing more than a special case of Bernoulli’s theorem
for a constant-density flow


(r) = − 1
2v

2 + constant. (7.20)

The single overriding message coming from all these specific examples is the generic
dichotomy between a formally infinite surface gravity and needing a highly specific boundary
condition to be satisfied. In the following section we shall regulate the generically infinite
surface gravity by using a less idealized model for the fluid.

8. Viscosity

A viscous flow is governed by the Navier–Stokes equation (2.4). In general, there will be two
contributions to viscosity, associated with the coefficients η and ζ . Since our treatment in the
present section does not pretend to be realistic, but we simply wish to point out how viscosity
acts as a regulator for the surface gravity, we shall set the bulk viscosity coefficient ζ to zero,
in order to have a model with as few free parameters as possible. (This is sometimes called
the ‘Stokes assumption’ [25].) For a spherically symmetric inflow one has

�n ·
(

∇2�v +
1

3
�∇ �∇ · �v

)
= 4

3

(
d2v

dr2
+
(d − 1)

r

dv

dr
− (d − 1)v

r2

)
, (8.1)

so the Navier–Stokes equation (2.4) becomes, in the stationary case,

a = v dv

dr
= − v2

c2 − v2

[
c2(d − 1)

r
− d


dr
+

4ν

3

(
d2v

dr2
+
(d − 1)

r

dv

dr
− (d − 1)v

r2

)]
, (8.2)

where we have introduced the coefficient of kinematic viscosity ν = η/ρ. Hereafter we
assume, for simplicity, that ν is a constant. (However, any hypothesis about ν must ultimately
by justified by a kinetic model for the fluid, and it is worth noticing that there are plausible
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distribution functions that lead to a velocity-dependent ν (see, e.g. [27]). Obviously, such a
dependence can have important repercussions on the conclusions of the present section.) The
acceleration is then infinite at the horizon unless(

1 − 4ν

3crH

)
c2(d − 1)

rH
− d


dr

∣∣∣∣
H

+
4ν

3

(
d2v

dr2

∣∣∣∣
H

+
(d − 1)

rH

dv

dr

∣∣∣∣
H

)
= 0. (8.3)

Since this involves higher-order derivatives at the horizon, it can no longer be regarded as a
fine-tuning constraint, or as an equation for rH , but merely as a statement about the shape of
the velocity profile near the horizon. Indeed, the general solution to this equation when c is
constant is

v(r) = c +
aH

c
(r − rH ) +

(d − 1)

2crH

(
c2

rH
− aH

)
(r − rH )2

+
3

8ν

(
d


dr

∣∣∣∣
H

− c2(d − 1)

rH

)
(r − rH )2 + O

(
(r − rH )3

)
, (8.4)

with aH arbitrary, and finite, at the horizon. We can rearrange (8.2) to obtain a differential
equation for v(r):

d2v

dr2
+

(
(d − 1)

r
+

3

4ν

c2 − v2

v

)
dv

dr
− (d − 1)v

r2
= 3

4ν

(
d


dr
− c2(d − 1)

r

)
. (8.5)

Unfortunately, integrating this equation is completely impractical in general and we must resort
to the analysis of special cases.

8.1. d = 1, constant body force

Even the case of a constant body force is intractable unless d = 1, in which case we obtain
(following the steps above)

dv

dr
= − v

c2 − v2

(
−κ +

4ν

3

d2v

dr2

)
. (8.6)

This single second-order differential equation can be turned into an autonomous system of
first-order equations

dv

dr
= %,

d%

dr
= 3κ

4ν
+

3v

4ν

(
1 − c2

v2

)
%.

(8.7)

We can plot the flow of this autonomous system in the usual way and it clearly shows that it is
possible to cross the acoustic horizon v = c at arbitrary accelerations aH and arbitrary surface
gravity gH (see figure 8).

8.2. d = 1, zero body force

Integrating equation (8.6) once (this is easy provided c is a constant), we obtain

dv

dr

∣∣∣∣
r

= dv

dr

∣∣∣∣
r0

− 3

8ν

[
c2 ln

(
v2

v2
0

)
− v2 + v2

0

]
+

3

4ν
(
(r)−
(r0)), (8.8)
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Figure 8. Plot of the phase space for d = 1, κ = constant > 0 and non-zero viscosity. The
transverse line identifies a separatrix in the integral curves. Note that the integral curves can
intersect the acoustic horizon at arbitrary values of the surface gravity.

where (r0, v0) again denotes an arbitrary pair of initial values. If d = 1 and κ = 0 this equation
for dv(r)/dr reduces to

dv

dr

∣∣∣∣
r

= dv

dr

∣∣∣∣
r0

− 3

8ν

[
c2 ln

(
v2

v2
0

)
− v2 + v2

0

]
. (8.9)

In this particular case the analysis is sufficiently simple that we can say something about the
acceleration at the horizon, namely

dv

dr

∣∣∣∣
H

= dv

dr

∣∣∣∣
r0

− 3

8ν

[
c2 ln

(
c2

v2
0

)
− c2 + v2

0

]
. (8.10)

That is,

gH = aH = c dv

dr

∣∣∣∣
r0

− 3c

8ν

[
c2 ln

(
c2

v2
0

)
− c2 + v2

0

]
, (8.11)

which is an explicit analytic verification that viscosity regularizes the surface gravity of the
acoustic horizon.

We can plot the flow in the usual way and it again clearly shows that it is possible to cross
the acoustic horizon v = c at arbitrary accelerations aH (see figure 9).

8.3. d > 1, constant body force

The relevant equation is

d2v

dr2
+

(
(d − 1)

r
+

3

4ν

c2 − v2

v

)
dv

dr
− (d − 1)v

r2
= 3

4ν

(
κ − c2(d − 1)

r

)
, (8.12)

which can be recast as
dv

dr
= %

d%

dr
= 3

4ν

(
κ − c2(d − 1)

r

)
+
(d − 1)v

r2
+

(
3v

4ν

(
1 − c2

v2

)
− (d − 1)

r

)
%.

(8.13)
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Figure 9. Plot of the phase space for d = 1, κ = 0 and non-zero viscosity. Again note that the
integral curves can intersect the acoustic horizon at arbitrary values of the surface gravity.

Figure 10. Plot of some solutions to the non-autonomous system (8.13) for various initial conditions
for d = 2, κ = constant and non-zero viscosity. Note that at least some of these curves intersect
the acoustic horizon, and do so at various but finite values of the surface gravity.

This is no longer an autonomous system of differential equations (there is now an explicit r
dependence in these equations) so a flow diagram is meaningless. Nonetheless, the system can
be treated numerically and curves plotted as a function of initial conditions. As an example
we plot some curves in the phase space for d = 2 (see figure 10), and verify that at least some
of these curves imply formation of an acoustic horizon.

As a final remark we think that it is useful to briefly discuss the effect of viscosity with
regard to Hawking radiation. It has been shown that the addition of viscosity to the fluid-
dynamical equations is equivalent to the introduction of an explicit violation of ‘acoustic
Lorentz invariance’ at short scales [6, 7]. Thus one may wonder whether or not such an explicit
breakdown would lead to a suppression of the Hawking flux as well. Indeed, the violation
of Lorentz invariance is important for wavelengths of order λ0 = ν/c [6, 7], introducing in
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this way a sort of cut-off at short wavelengths which can dramatically affect the Hawking flux
[2, 3, 5, 20].

Thus there is naively a risk that using viscosity to remove the unphysical divergences
at acoustic horizons would also ‘kill’ the phenomenon one is seeking. This problem has
been extensively discussed in the literature (see, e.g., [20]) and it has (quite remarkably)
been demonstrated that such a violation of Lorentz invariance is not only harmless but even
natural and useful. In particular, viscosity can be shown to induce [6, 7] the same type of
modifications of the phonon dispersion relation which are actually required for circumventing
the above-cited problem [2, 3, 5, 20]. So the emergence of viscosity appears to indeed be a
crucial factor, both for allowing the formation of acoustic horizons and, at the same time, for
implementing that mechanism of ‘mode regeneration’ which permits Hawking radiation in the
presence of short-distance cut-off.

9. Conclusions. Danger + opportunity

Let us summarize the results that we have obtained for a fluid subjected to a given external
potential. In the viscosity-free, stationary case, we have seen that if the flow possesses an
acoustic horizon, the gradients of physical quantities, as well as the surface gravity and the
corresponding Hawking flux, generically exhibit formal divergences. There are two ways
in which a real fluid can circumvent this physically unpalatable result. For a broad class of
potentials, there is one particular flow which is regular everywhere, even at the horizon. In
this case, it is obvious that the fluid itself will ‘choose’ such a configuration. Mathematically,
imposing the regularity condition at the horizon amounts to formulating an eigenvalue problem.
However, there are physically interesting potentials—such as a linear one—for which this is
impossible. We view this result as both a danger and an opportunity. A danger because
infinite accelerations are clearly unphysical and indicate that the idealization of considering
a stationary flow for an irrotational barotropic inviscid perfect fluid (and this idealization
underlies the standard derivations of the notion of acoustic metric [1, 4, 6, 8]), is sure to break
down in the neighbourhood of any putative acoustic horizon. Indeed, the divergences will be
avoided in real life simply because one or more of the simplifying hypotheses become invalid
as v → c.

On the other hand, this may be viewed as an opportunity. Once we regulate the infinite
surface gravity, by adding for instance a finite viscosity, we find that the surface gravity becomes
an extra free parameter, divorced from naive estimates based on the geometry of the fluid flow.
The common naive estimates of the surface gravity take the form [1, 8]

gH ≈ c2

R
, (9.1)

where R is a typical length scale associated with the flow (a nozzle radius, or the radius of
curvature of the horizon). The analysis of this paper suggests that this estimate may in general
be misleading because it does not take into account information regarding the dynamics of the
flow. Because of this the surface gravity could be considerably larger than previously expected.

There is a potential source of confusion which we should clarify before finishing: in
general relativity the physical acceleration of a stationary observer hovering just outside the
black hole horizon diverges, but when an appropriate redshift factor is applied and the properly
defined surface gravity is calculated that surface gravity proves to be finite. In contrast, in
acoustic black holes it is the Newtonian acceleration of the infalling observers that (in the
absence of fine-tuning) diverges at the horizon, leading to an infinite surface gravity. Why
the difference? It is here that the actual dynamical equations governing the background
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geometry come into play. The physics that is identical between gravitational black holes
and acoustic black holes is the kinematical physics of fields propagating in the respective
Lorentzian spacetime metrics. The physics which is different is that which depends on the
dynamical equations of motion of the background geometry. For gravity, the latter is governed
by the Einstein equations while for acoustic black holes it is governed by the hydrodynamic
equations—these equations are sufficiently different that the geometries of the two Lorentzian
metrics can be quite different, even though qualitative features such as the existence of event
horizons may be quite similar.

Our general discussion, plus the specific example utilizing viscosity, makes it clear that
it is the specific technical restrictions placed on the hydrodynamic equations that lead to the
formally infinite surface gravity—and so one might wonder how much of the current analysis
one should trust. For example, in real superfluids the existence of roton excitations leads to a
breakdown of irrotational flow before the acoustic horizon is reached [20]. Adding vorticity is
certainly technically complicated (see, for instance, the recent book by Ostashev [28]), but this
may merely be a technical complication, not a fundamental barrier to progress. For technical
discussions regarding the possibility (probability) of actually building acoustic black holes
see [9–20]. Note that Garay et al’s implementation of acoustic black holes [19] is built on a
different physical background; they use a Bose–Einstein condensate governed by the Gross–
Pitaevski equation rather than a barotropic fluid governed by the Euler–continuity equations.
Therefore, the perils and opportunities delineated in this paper do not necessarily apply to their
particular situation. A similar remark applies to Volovik’s implementation based on two-fluid
models of superfluidity (for example 3He-A), where the horizon is defined using the speed of
the quasi-particles, rather than by the speed of sound per se. Of these two speeds, the former
is much smaller than the latter, so the surface gravity at such horizons is always finite [18].
In short, while specific physical implementations of the acoustic geometry idea all have their
characteristic peculiarities and potential pitfalls, overall the experimental prospects continue
to look extremely promising.
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