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An unextendible product basis(UPB) for a multipartite quantum system is an incomplete orthogonal
product basis whose complementary subspace contains no product state. We give examples of UPBs,
and show that the uniform mixed state over the subspace complementary to any UPB is a bound
entangledstate. We exhibit a tripartite 2 3 2 3 2 UPB whose complementary mixed state has tripartite
entanglement but no bipartite entanglement, i.e., all three corresponding 2 3 4 bipartite mixed states
are unentangled. We show that members of a UPB are not perfectly distinguishable by local positive
operator valued measurements and classical communication. [S0031-9007(99)09360-6]

PACS numbers: 03.67.Hk, 03.65.Bz, 89.70.+c
Einstein, Podolsky, and Rosen [1] first highlighted
the nonlocal features of entangled (or nonfactorizable)
quantum states of two separated particles. Bell showed
that this entanglement implied a true nonlocality, or lack
of local realism in quantum mechanics [2]. But it is
now clear that there are other manifestations of quantum
nonlocality that go beyond entanglement [3]. In this
Letter we uncover various nonlocal properties of some
simple m-party sets of quantum states that involve only
product (i.e., unentangled) states.

We present detailed examples of two-party and the
three-party sets of orthogonal product states that are un-
extendible, meaning that no further product states can be
found orthogonal to all the existing ones in a given Hilbert
space. We call such a set an unextendible product basis (or
UPB), and show that unextendibility gives rise to two other
recently discovered and not yet well-understood quantum
phenomena; (1) the mixed state on the subspace comple-
mentary to a UPB is a bound entangledstate [4,5], i.e.,
an entangled mixed state from which no pure entangle-
ment can be distilled. We thus provide the first systematic
way of constructing bound entangled states, a task which
had been exceedingly difficult. (2) The states compris-
ing a UPB are locally immeasurable[3], i.e., an unknown
member of the set cannot be reliably distinguished from
the others by local measurements and classical communi-
cation. Though sufficient, unextendibility is not a neces-
sary condition for either of these phenomena, as there exist
bound entangled states [4,5] not associated with any UPB,
and locally immeasurable sets of states which are not only
extendible, but capable of being extended all the way to
a complete orthogonal product basis on the entire Hilbert
space [3].

Definition 1.—Consider a multiparticle quantum sys-
tem H �

Nm
i�1 Hi with m parts of respective dimen-

sion di , i � 1 . . . , m. A (incomplete orthogonal) product
0031-9007�99�82(26)�5385(4)$15.00
basis (PB) is a set S of pure orthogonal product states
spanning a proper subspace HS of H . A UPB is a PB
whose complementary subspace H 2 HS contains no
product state.

To illustrate how a PB can fail to be extendible,
consider the following two sets of five states on 3 3 3
(two qutrits):

(1) Let �y0, �y1, . . . , �y4 be five vectors in real three-
dimensional space forming the apex of a regular pentag-
onal pyramid, the height h of the pyramid being chosen
such that nonadjacent vectors are orthogonal (cf. Fig. 1).
The vectors are

�yj � N

√
cos

2pj
5

, sin
2pj

5
, h

!
, j � 0, . . . , 4 , (1)

with h �
1
2

p
1 1

p
5 , and N � 2�

p
5 1

p
5 . Then the

following five states in 3 3 3 Hilbert space form a UPB,
henceforth denoted PYRAMID

jcj� � j �yj� ≠ j �y2j mod5�, j � 0, . . . , 4 . (2)

FIG. 1. PYRAMID vectors in real 3-space. The height h is
chosen so that y0 � y2,3, etc.
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To see that these five states form a UPB, note first that
they are mutually orthogonal: states whose indices differ
by 2 mod 5 are orthogonal for the first party (“Alice”);
those whose indices differs by 1 mod 5 are orthogonal
for the second party (“Bob”). For a new product state
to be orthogonal to all the existing ones, it would have
to be orthogonal to at least three of Alice’s states or at
least three of Bob’s states. However this is impossible,
since any three of the vectors �yi span the full three-
dimensional space in which they live. Therefore the entire
four-dimensional subspace complementary to PYRAMID
contains no product state.

(2) The following five states on 3 3 3 form a UPB
henceforth denoted TILES

jc0� �
1
p

2
j0� �j0� 2 j1�� ,

jc2� �
1
p

2
j2� �j1� 2 j2�� ,

jc1� �
1
p

2
�j0� 2 j1�� j2� ,

jc3� �
1
p

2
�j1� 2 j2�� j0� ,

jc4� �
1
3 �j0� 1 j1� 1 j2�� �j0� 1 j1� 1 j2�� .

(3)

Note that the first four states are the interlocking tiles of
[3], and the fifth state works as a “stopper” to force the
unextendibility.

In both examples, any subset of three vectors on either
side spans the three-dimensional space of that party, pre-
venting any new vector from being orthogonal to all the
existing ones. We formalize this observation by giving
the necessary and sufficient condition for extendibility of
a PB:

Lemma 1: Let S � ��cj �
Nm

i�1 wi,j�: j � 1, . . . , n�
be an incomplete orthogonal PB of an m-partite quantum
system. Let P be a partition of S into m disjoint subsets:
S � S1 < S2<, . . . , Sm. Let ri � rank�wi,j: cj [ Si� be
the local rank of subset Si as seen by the ith party. Then
S is extendible if and only if there exists a partition P
such that for all i � 1, . . . , m, the local rank ri of the
ith subset is less than the dimension di of the ith party’s
Hilbert space.

Proof: Imagine that the parties i � 1, . . . , m allocate
among themselves the job of being orthogonal to a new
product state we are trying to add. The new state will
be orthogonal to all the existing ones if a partition can
be found such that the new state is orthogonal to all the
states in S1 for party 1, all the states in S2 for party 2, and
so on through Sm. Clearly this can be done (e.g., by local
Gram-Schmidt orthogonalization for each party) if each of
the sets Si has local rank ri less than the dimensionality
di of the ith party’s Hilbert space. Conversely, if for
every partition, at least one of the sets Si has full rank,
equal to di , there is no way to choose a new product state
5386
orthogonal to all existing states; thus the original set is not
extendible.

The lemma provides a simple lower bound on the
number of states n in a UPB,

n $
X

i

�di 2 1� 1 1 , (4)

since, for smaller n, one can partition S into sets of size
jSij # di 2 1 and thus ri , di for all m parties.

As noted earlier, UPBs provide a way to construct
bound entangled (BE) states, i.e., entangled mixed states
from which no pure entanglement can be distilled [4,5].
It was shown in [5] that if a bipartite density matrix r re-
mains positive semidefinite under the partial transposition
condition (PT) of Peres [6], then r cannot have distillable
entanglement. We then say that r has positive partial
transposition (PPT).

Theorem 1: The state that corresponds to the uniform
mixture on the space complementary to a UPB �ci: i �
1, . . . , n� in a Hilbert space of total dimension D

r �
1

D 2 n

0
@1 2

nX
j�1

jcj� �cjj

1
A (5)

is a bound entangled state.
Proof: By definition, the space complementary to a

UPB contains no product states. Therefore r is entangled.
If the UPB is bipartite then r is PPT by construction:
The identity is invariant under PT and the product states
making up the UPB are mapped onto another set of
orthogonal product states. Therefore PT � r � is another
density matrix, and thus positive semidefinite. For the
case of many parties the PPT condition cannot be used
directly, so we use the above argument to show that
every bipartite partitioning of the parties is PPT. Thus no
entanglement can be distilled across any bipartite cut. If
any pure global entanglement could be distilled it could be
used to create entanglement across a bipartite cut. Since
r is entangled and is not distillable, it is bound entangled.

We compute that the state complementary to the
TILES UPB has a (bound) entanglement of the formation
[7] of 0.213726 ebits and the PYRAMID UPB has
an entanglement of the formation of 0.232635 ebits.
These numbers are surprisingly large, considering that
the maximal entanglement for any state in 3 3 3 is
log23 	 1.585 ebits.

An example of a UPB involving three parties, A, B, and
C, each holding a qubit, is the set

�j0, 1, 1�, j1, 1, 0�, j1, 0, 1�, j2, 2, 2�� , (6)

with 6 � �j0� 6 j1���
p

2. One can see using Lemma 1
that there is no product state orthogonal to these four states,
which we will henceforth call the SHIFTS UPB. This UPB
can be simply generalized to a UPB over any number of
parties, each with a one qubit Hilbert space (see [8]).

The complementary state to the SHIFTS constructed
by Eq. (5) has the curious property that not only is it
two-way PPT, it is also two-way separable, i.e., the
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entanglement across any split into two parties is zero.
This solves the main problem left open in [9] and
surprisingly refutes a natural conjecture made there.
To show that the entanglement between A and BC is
zero, we write a � j1, 1�, b � j1, 0�, y � j0, 1�, and
d � j2, 2�. Note that these are just the B and C parts
of the four states in Eq. (6), and that �a, b� are orthog-
onal to �c, d�. Consider the vectors a� and b� in the
span�a, b� and the vectors c� and d� in the span�c, d�.
Now, we can complete the original set of vectors to a
full product basis between A and BC with the states
�j0, a��, j1, b��, j1, c��, j2, d���. By the symmetry of
the states, this is also true for the other splits.

We now consider another nonlocal property of UPBs,
their relation to local immeasureability. In this context,
a useful notion, more general than unextendibility, is
uncompletability, an uncompletable product basis being
one that might be able to be extended by one or more
states, but cannot be completed to a full orthogonal
product basis on the entire Hilbert space. Another concept
we will need is that of uncompletability even in a larger
Hilbert space with local extensions, where each party’s
space is extended from Hi to Hi © H 0

i . We have the
following simple fact about UPBs:

Lemma 2: A UPB is not completable even in a locally
extended Hilbert space.

Proof: If a set of states is completable in a locally ex-
tended Hilbert space, then its complement space in the ex-
tended Hilbert space is separable. By local projections the
uniform state on the complementary space in the extended
Hilbert space can be projected onto the complementary
space in the original Hilbert space. This state is also sep-
arable since local projections do not create entanglement.
But we have a contradiction since the state complemen-
tary to a UPB is entangled (Theorem 1).

We are now ready to show that uncompletability with
local Hilbert space extensions is a sufficient condition
for a set of orthogonal product states not to be perfectly
distinguishable by any sequence of local positive operator
valued measurements (POVMs) even with the help of
classical communication among the observers. This form
of local immeasurability was first studied in [3]. To
obtain a finite bound on the level of distiguishability
of such sets (as was done for the sets in [3]) requires
additional work and will be presented in [8].

Lemma 3: Given a set S of orthogonal product states on
H �

Nm
i�1 Hi with dim Hi � di , i � 1, . . . , m. If the

set S is exactly measurable by local von Neumann mea-
surements and classical communication, then it is com-
pletable in H . If S is exactly measurable by local POVMs
and classical communication, then the set can be completed
in some extended space H 0 �

Nm
i�1�Hi © H

0
i �.

Proof: We show how a local von Neumann mea-
surement protocol leads directly to a way to complete
the set S. At some stage of their protocol, the parties
(1) may have been able to eliminate members of the
original set of states S, and (2) they may have mapped,
by performing their von Neumann measurements, the
remaining set of orthogonal states into a new set of
orthogonal states S0. Determining which member they
have in this new set uniquely determines which state of
S they started with. At this stage, party i0 performs an l-
outcome von Neumann measurement which is given by
a decomposition of the remaining Hilbert space K �
Kelse ≠ Ki0 with Kelse �

N
jfii0

Kj , into a set of l or-
thogonal subspaces, Kelse ≠ P1Ki0 , . . . ,Kelse ≠ PlKi0 .

If a state in S0 lies in one of these subspaces, it will
be unchanged by the measurement. If a state ja� ≠
jb�, where ja� [ Kelse, is not contained in one of the
subspaces, it will be projected onto one of the states
�ja� ≠ P1jb�, ja� ≠ P2jb�, . . . , ja� ≠ Pljb��. Let S00 be
this new projected set of states, containing both the
unchanged states in S0 as well as the possible projections
of the states in S0. If one of the subspaces does not
contain a member of S0, it can be completed directly.
For the other subspaces, let us assume that each of
them can be completed individually with product states
orthogonal to members of S00. In this way we have
completed the projected S0 on the full Hilbert space K ,
as these orthogonal-subspace completions are orthogonal
sets and they are a decomposition of K . However,
we have now completed the set S00 rather than the set
S0. Fortunately, one can replace the projected states
ja� ≠ P1jb�, . . . , ja� ≠ Pljb� by the original state ja� ≠
jb� and l 2 1 orthogonal states by making l linear
combinations of the projected states. They are orthogonal
to all other states as each ja� ≠ Pijb� was orthogonal,
and they can be made mutually orthogonal as they span
an l-dimensional space on the i0 side. Thus at each
round of measurement, a completion of the set of states
S0 is achieved assuming a completion of the subspaces
determined by the measurement.

The tree of nested subspaces will always lead to a
subspace that contains only a single state of the set, as the
measurement protocol was able to tell the states in S apart
exactly. But such a subspace containing only one state
can easily be completed and thus, by induction, we have
proved that the original set S can be completed in H .

Finally, we note that a POVM is simply a von Neumann
measurement in an extended Hilbert space (this is
Neumark’s theorem (cf. [10]). Thus any sequence of
POVMs implementable locally with classical communica-
tions is a sequence of local von Neumann measurements
in extended Hilbert spaces and the preceding argument
applies, leading to a completion in H 0.

Theorem 2: Members of a UPB are not perfectly distin-
guishable by local POVMs and classical communication.

Proof: If the UPB were measurable by POVMs, it
would be completable in some larger Hilbert space by
Lemma 3. But this is in contradiction with Lemma 2.

We now give an example of a PB that is measurable
by local POVMs, but not by local von Neumann measure-
ments, which will also serve to illustrate the proofs just
given. The set is in a Hilbert space of dimension 3 3 4.
5387
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Consider the set �yj ≠ �wj , j � 0, . . . , 4 with �yj the states
of the PYRAMID UPB as in Eq. (1) with �wj defined as

�wj � N

p

cos�p�5� cos�2jp�5�,
p

cos�p�5� sin�2jp�5�,p
cos�2p�5� cos�4jp�5�,p
cos�2p�5� sin�4jp�5�� , (7)

with normalization N �
q

2�
p

5 . Note that �wT
j �wj11 � 0

(addition mod 5). One can show that this set, albeit
extendible on 3 3 4, is not completable: One can at
most add three vectors such as �y0 ≠ � �w0, �w1, �w4��, �y3 ≠
� �w2, �w3, �w4��, and � �y0, �y3�� ≠ � �w1, �w2, �w4��.

The POVM measurement that is performed by Bob
on the four-dimensional side has five projector elements,
each projecting onto a vector �uj � N���2sin�2jp�5�,
cos�2jp�5�, 2 sin�4jp�5�, cos�4jp�5���� with j � 0, . . . ,
4, and normalization N � 1�

p
2. Note that �u0 is or-

thogonal to vectors �w0, �w2, and �w3, or, in general, �ui

is orthogonal to �wi , �wi12, �wi13 (addition mod 5). This
means that upon Bob’s POVM measurement outcome,
three vectors are excluded from the set; then the remaining
two vectors on Alice’s side, �yi11 and �yi14 , are orthogonal
and can thus be distinguished.

The completion of this set is particularly simple.
Bob’s Hilbert space is extended to a five-dimensional
space. The POVM measurement can be extended as
a projection measurement in this five-dimensional space
with orthogonal projections onto the states �xi � � �ui , 0� 1
1
2 �0, 0, 0, 0, 1�. Then a completion of the set in 3 3 5 are
the following ten states:

� �y1, �y4�� ≠ �x0, �y0 ≠ 
 �w�
0 [ span� �x4, �x1�� ,

� �y0, �y2�� ≠ �x1, �y1 ≠ 
 �w�
1 [ span� �x0, �x2�� ,

� �y1, �y3�� ≠ �x2, �y2 ≠ 
 �w�
2 [ span� �x1, �x3�� ,

� �y2, �y4�� ≠ �x3, �y3 ≠ 
 �w�
3 [ span� �x2, �x4�� ,

� �y0, �y3�� ≠ �x4, �y4 ≠ 
 �w�
4 [ span� �x3, �x0�� ,

(8)

Although UPBs provide an easy way to construct a wide
variety of bound entangled states, not all bound entangled
states can be constructed by this method. In [4], a 2 3 4
state with bound entanglement was presented. However,
our construction fails for any 2 3 n as there is no UPB
in 2 3 n for any n. This follows from Theorem 2 and
the fact that any set of orthogonal product states on 2 3 n
is locally measurable. The measurement is a three round
protocol. Assume Alice has the two-dimensional side. We
write the set of states as �ja1� ≠ jb1�, . . . , jak� ≠ jbk��.
Alice can divide the states ja1�, . . . , jak� on her side in
sets Pi that have to be mutually orthogonal on Bob’s
side, namely, P1 � �ja1�, ja1�, . . . , ja1��, . . .�, . . . , Pi �
�jai�, jai�, . . . , jai��� , etc., as jai� and jaj� for i fi j are
neither orthogonal nor identical. Note that jai� or jai��
5388
can be repeated, but if they are, these states should be
orthogonal on Bob’s side. Now Bob can do a projection
measurement that singles out a subspace associated with
Pi . After Bob sends this information, the label i to Alice,
she does a measurement that distinguishes jai� from jai��.
Then Bob can finish the protocol by measuring among the
orthogonal repeaters.

Thus the following implications hold among prop-
erties of an incomplete, orthogonal product basis:
unextendible ) complementary mixed state is BE ) not
completable even in a locally extended Hilbert space )
not measurable exactly by local POVMs, and classical
communication ) preparation process jj� ! jcj� is ther-
modynamically irreversible if carried out locally (cf. [3]).

These constructions, relating entanglement to several
other kinds of nonlocality and irreversibility, may help
illuminate some of the following questions: How can
BE states be used in quantum protocols—for example,
to perform otherwise nonlocal separable superoperators
[3]? Can local hidden variable descriptions of BE
states be ruled out? What relation is there between the
irreversibility implicit in the definition of BE states and
the thermodynamic irreversibility [3] of preparation of
local immeasurable sets of states complementary to them?
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