
Short Conununication

Unfavorable Strides in Cache Memory Systems

(RNR Technical Report RNR-92-015)

DAVID H. BAILEY

Numerical Aerodynamic Simulation (NAS) Systems Division, NASA Ames Research Center, Moffett Field, CA 94035

ABSTRACT

An important issue in obtaining high performance on a scientific application running on

a cache-based computer system is the behavior of the cache when data are accessed at

a constant stride. Others who have discussed this issue have noted an odd phenomenon

in such situations: A few particular innocent-looking strides result in sharply reduced

cache efficiency. In this article, this problem is analyzed, and a simple formula is pre­

sented that accurately gives the cache efficiency for various cache parameters and data

strides. © 1995 John Wiley & Sons, Inc.

1 INTRODUCTION

Scientists accustomed to running large computa­

tionally intensive applications on Cray supercom­

puters have never had to concern themselves with

cache issues. However. with the recent sharp riooe

in the floating point performance of RISC work­

stations, many oocientistoo are now using these syoo­

tems for serious computations, and cache issues

can no longer be avoided. Another avenue from

which supercomputer :-;cicntists hm·e been intro­

duced to cache me1norie:-; is the recent incorpora­

tion of RISC procesooors into highly parallel super­

computers. In any event, it is clear that serious

program1neroo need to understand better how

caches operate, so that they can implement their

algorithms in ways that optimize potential perfor­

mance.

An important concept in this article is memory

stride. i.e .. the increment in memorv address.

Received .lu h· 1992

Revised Dec~·rnber 1994

© 199;) hv John \\ ilPv & Sons. Inc.

Scientific Programming. \ ol. -1. pp. :).3-SH 199;)'

CCC 1 008-924"1/95/02005:3-06

measured in words. between successive elements

fetched or stored in the important inner loops of

an application program. Ylany important oocien­

tific applications do not feature exclusively stride

one data access but inootead feature large nonunit

strides. For instance. many codes perform similar

operations on each dimension of a two- or three­

dimensional array. Performing computations in

the first dimension of a Fortran program (or the

laoot dimension of a C program) can be done with

unit stride, but the strides of the computations in

the other dimensions are typically large values.

and significantly degraded performance may

result when the codes are ported to cache-based

systems without change.

One solution to this problem is to rewrite the

code to employ array transpositions between the

computational steps in each dimension. In this

way all computation can be done at unit stride.

But such revision may require substantial effort.

and it may still not result in significant perfor­

mance i1nprovement unless the time spent in

stride one computation is substantial enough to

offset the cost of the array transpositions.

As a result, many problems of this smt are ooim­

ply ignored, as scientists accept with a certain fa-

54 BAILEY

talism their codes will not perform very well. How­

ever, for smne prof!rarns the reduction in

performance i;.; ;.;ufficient!y largP that it i;.; worth­

while to make an effort to understand and allevi­

ate this problem.

2 DEFINITIONS AND NOTATION

To better under;.;tand the phenomenon of perfor­

mance reduction with stride;.;. consider the follow­

ing model of a cache memory sy;.;tem. First a,;­

sume that the cache is configured with R = 2'

cache lines, and as;.;ume that each cache line con­

tains W = 2"' words., so that a total of R Tl words

can be cached.

It will be assumed that this cache memon s\s­

tem operates as follows. \\-hen a word at a virtual

address A is fetched. it is placed in cachP location

Q, where Q is determined by zeroing the bits in the

address to the left of the rightmost r + u• bits and

then shifting the resultinf! integer to the right by LL'

bits (i.e .. dividing by W). :\'ote that this operation

produces an integer Q in the ranf!:e 0 :S Q < R.

When a single word is requested" all Tr words of

the Tr-long cache line that it resides in are also

fetched.

.\lany cache-based systPm,.; employ .. associa­

tivity sets." This means that up to C cache lines

with the same cache address. a;.; determirlf'd bv

the mapping function described in the previous

paragraph, can be stored simultaneously in the

cache. In this way, potentially RC lim's or RCII

words may be cached. ·"Then a reque;.;r i,.; made for

data that are not in cache, its cache line replaces

one of Clines currently stored at the cache loca­

tion where it is a'isigned by the mapping function.

On some systems the least recently u:-;ed line i'i

replaced, while on others the line replaced is de­

termined by some un:-;pecified '·random·' proce­

dure. The above model of an associativP cache is

satisfied by many, but not all current RlSC sys­

tems.

If the stride Sofa vector fetch is unitv. then II

consecutive words re;.;idP on the same cache line.

This is obviously a very favorable situation. The

situation is similarly quite favorable if the memory

stride is some integer less than W. since in that

case many cache lines contain multiple words re­

quired by the CPC. Many scientific applications.

however, involve strides larger than T·V. :oo that

each cache line retrieved from memorv contains at

most one word required by the CPL. This last case

will be the focus of this article.

Lnfortunatelv" at some strides even RC words

cannot be cached because ;.;ome of the associativ­

itv sets are overutilized. while others are underuti­

lized. Let us con;.;ider a vector fetch of L words

with strideS and ask what fraction of the L result­

ing cache lines remain in the cache when the fetch

is complete. This question is of interest for two

reasons: 1) a computation may need to acces;.; thi;.;

same set of L words again. and 2) if this vector

fetch was a single row of a matrix stort>d in column

major order (as in Fortran). the next W rows of the

matrix reside in these same cache lines. Either

way, performance will be sif!nificantly improved if

these data can remain in the cacht>.

Accordingly, the efficiency E of a vector fetch of

length L will be defined as T/ L. where T is the

number of cache lines that still remain in the

cache when the vector fetch operation is complete.

and where Lis the vector length. For simplicity. in

the following it will be assumed that L = RC.

An obvious example of an inefiicit>nt stri(Ie i, a

large power of two. Then all cache lines will be

fetched into the same location of the cache. and

the other R- 1locations will be completely unuti­

lized. In other word,;. at most Cline,; of these data

can be stored in the cache. The re:-;ulting effi­

ciency is only 1 I R. Clearly if an applicaiton pro­

gram has arrays whose dimension,; are large

powers of two. these arrays should be .. padded.··

such as by declaring their leading dinwnsion,; (in

Fortran) to be slightly larger than a power of two.

In thi;.; wav .. acces;.;es of successive row" of data

from such an arrav will have cache addres,;es that

are slif!htly offset. resulting in much more efficient

cache utilization. 1\fost usPrs of Crav svstems are

familiar with this tuning technique. since it elimi­

nates bank conflicts that may reduce performance

by factors as high as 10 or 20 [11.

3 CACHE EFFICIENCY WITH

NON-POWER-OF-TWO STRIDES

It rnay con1e a;.; a surprise to some that large

power-of-two strides are not the only particularly

unfavorable ;.;trides for cache memory systems [4:.
To facilitate concrete discussion in the following.

we will consider the particular case R = :)2. C = 4.

and TF = 16. The;.;e values match the cache pa­

rameters of the lBJ\1 RS 6000/:320 system.\\ e will

also assume in the following that the vector lenf!th

L of the fetch is 128.

\Vhen S = 72. it turns out that in 128 consecu­

tive fetches. the respective cache lines neatly fill

SIIORT C0\1.\Il.~ICATIO~ 55

0.9 ~ ~ ~~ w ~~ ~ 1~1 ~ ~ ~ ~
0.8

0.7

0.6

"' u
c

" 0.5 ·c;
E
t.Ll

0.4

0.3

0.2

0.1

50 100 150 200 250 300

Stride

FIGURE 1 Cache dficiencies for Yariou~ stridf's.

the :32 X -± array. resulting in perfect utilization of

the cache (except that only one word in each

cache line may actually be required by the CPC:.

The resulting efficiency E is unity. ewn though -:'2

is divisible by 8. a highly unfavorable situation on

many vector con1puters. 1'\ow considerS = -:'3. a

completely favorable stride for mo,;t vector com­

puters. In this case the cache efficiency is only

about 0.414. The efficiencies for stride:-, 16-2:16

are shown in Figure 1. This i,.; obviously a wry

complicated function.

This curious phenonwnon has been noted hy

others [2. 3. 4. 6:. One way to understand it is to

list the cache addresses of consecutively fetched

cache lines in a 128-long vector fetch. with stride

?3, horizontally in a sen~n-wide table (see Table

1). This table also includes the notation R to imli­

cate instances when a cache replacemf'nt would

occur. lt is clear from examining thi,.; table that the

root cause of this poor performance is the very

nearly periodic behavior of these cache addresse,.;.

In particular, the:oe addre:o:oes are nearly periodic

with a period of seven.

Recall that virtual addres:o bits higher than po­

:oition r + w are ignored when placing the cache

line in the cache. Thus we may in general write the

cache address Q of the k-th word fetched a::;

Q(k) = int [!mod (k5, RTV)J

where int denotes the greatest integer function.

and where mod denotes the modulo operation

(i.e .. the remainder when tbe first argument is di­

vided by the second). The function Q(k) is pre­

cisely periodic with period RW. But when the

strideS' is exactly (or very nearly) a simple fraction

of RW, then this function is also precisely (or yery

nearly precisely) periodic with period nint(RH/S).

where nint denotes the nearest int.,ger function.

Table 1. Cache Addre,;ses for Successive Fetches

when S = 7:3

4 9 13 18 22 27 31

4 9 13 18 22 27 31

4 9 13 18 22 27 31

4 8 13 18 22 27 31

4R 8 13R 18R 22R 27R 31R

4R 8 13R 17 22R 27R 31R

4R 8 13R 17 22R 27R 31R

4R 8R 13R 17 22R 26 31R

4R 8R 13R 17 22R 26 31R

4R 8R 13R 17R 22R 26 31R

3 8R 13R 17R 22R 26 31R

3 8R 13R 17R 22R 26R 31R

3 8R 12 17R 22R 26R 31R

3 8R 12 17R 22R 26R 31R

3R 8R 12 17R 21 26R 31R

3R 8R 12 17R 21 26R 31R

3R 8R 12R 17R 21 26R 30

3R 8R 12R 17R 21 26R 30

3R 8R

:'1/ote. Successive fetches arc· listed alonl! rows. in a table

seven wide, so that the nearly periodic belmvior can tw oh-

served.

56 BAILEY

In this example, R = 32, W = 16, RW = 512,

and S = 73. Indeed, the fraction 512173 is very

close to seven. In fact, 7 X 73 = 511, so that

consecutive values of mod(7kS, RW) differ by only

one. Thus it clear, by 'examining the above for­

mula, that Q(7k) is identical for W = 16 consecu­

tive k. But a string of 16 consecutive identical

cache addresses results in 12 replacements, since

only 4 of these can be accommodated in a single

associativity set of the cache. This explains why

the fetches in a single column of Table 1 result in a

cache replacement approximately 75% of the

time. Since this analysis applies to each column of

the array shown in Table 1, it follows that the 75°/.,

figure also applies to the entire table as well.

From these facts one can compute the approxi­

mate cache efficiency E for this example (recall

that the cache efficiency was defined above as the

fraction of cache lines that remain in the cache

when the vector fetch is complete). In Table 1. the

first 4 X 7 = 28 fetches completely fill cache ad­

dresses 4, 9, 13, 18, 22, 27, and 31. except that

address nine has one line empty. Thereafter ap­

proximately 3/4 of the fetches result in a replace­

ment. Thus we have the approximation

128 - (3/4) X (128 - 28)

E = 128

53

128
0.4140625

which in this case exactly matches the actual effi­

ciency determined by counting replacement,.; in

Table 1.

As we have seen. the replacement frequency

G = 3/4 used in the above calculation results

from the fact that 7 X 73 = .511 differs from 512

by only one. ln general. define the minimum dif­

ference D as follows:

D mm lbS - uRWI
O<u.h<H

When D is zero (i.e .. when S is a large power of

two, such as 64). then the corresponding value of

G may easily be seen to be unity. \\'hen D = 1.

then G = 3/4: when D = 2 .. then G = 1/2: wlwn

D = 3, then G = 1/4: and when D 2: 4. thPn G =
0. In other words .. when D is larger than the ,.,et

associativity size C, then successive fetches move

to a different cache address before a given a:-;soci-

atrvrty set is exhausted. In general, the replace­

ment frequency G is given by the formula

G = bmax(C- D. 0)

Suppose that S/(RW) is very close to a simple

fraction a/ b, b :S R, so that D = lbS - aRWI is

small. Compute G from the above formula. Gen­

eralizing from the above example. note that the

first bC fetches will completely fill the b associativ­

ity sets whose addresses are those that nearly re­

peat. Thereafter. the fraction G (approximately) of

the fetches will result in replacements. Thus a

general formula that is an approximation to the

cache efficiency E for general strides and cache

parameters is given by

L G(L bC)
E = -----'-;-L---'-

l\'ote that when Lis large, E = 1 - Gas expected.

A graph of the efficiencies for various strides in

the standard case used above. computed with the

above formula, is shown in FigurP 2. By compar­

ing Figures 1 and 2. it is clear that this formula is

very accurate, particularly at the ··spike:-;.·· which

are the cases of greatest interest. In fact. thP re­

placement count G(L- bC). which is the key sub­

expression of this formula. is (with one exception)

alwavs within one of the actual value whenever G

is nonzero.

4 A RANDOM STRIDE APPROXIMATION

\Vhen the differencf' D i,., greater than C. the for­

mula above 1£ive" perfect efficiency. since Gin that

case is zero. However. the actual efficiencv i,;

somewhat less than unitv for manv such case:-;. . .
resulting in a low-level background .. noise .. !com-

pare Figs. 1 and 2). This phenomenon can lw

explained by noting that when tlw stride S is a

substantial fraction of RW. the operation mod(kS.

RTV) is a good pseudorandom number ?-"enerator.

and a certain number of .. collisions'' can be ex­

pected to occur in the resulting cache addresses.

In fact. thi,., operation is a member of the widely

studied clas:-; of linear conwuential pseudoran­

dom number generators l:'i. p. 91.
If one assumes that the assigrunent of memory

fetches to the R addres,;e,; i,; actuallv random.

SHORT COMMU~ICATIO~ 57

I ,
,, I~

~

~ I ~ n l~ 9 0.

0. 8

0.7

0. 6

0.5

0.4

0.3

0.2

0.1

50 100 !50 200 250 300

Stride

FIGURE 2 Cache efficiencies using the formula.

then one can compute the expected cache effi­

ciency by applying techniques of probability and

statistics. The probability P(k) that an individual

address contains exactly k entries after an L-long

fetch is given by the formula for a binomial distri­

bution:

P(k) = (~) pk(1 - p)'-k

where p = 1 I R. The expected number of replace­

ments F is then

L

F = R ~ (k - C)P(k)
k~C+l

and the resulting expected efficiency E = (L - F;l

L. For the example parameters above. this for­

mula vields E = 0.807714 · · · . The actual aver­

age efficiency, determined from the data in Figure

1.. is 0.892:334 · · · . This indicate;-; that the oper­

ation mod(kS. RW) actually behaves somewhat

better than a true random number generator.

5 FINDING SIMPLE FRACTIONS

One detail was omitted from the above discu,.;sion:

how can one compute the minimum difference D

for a given stride. or in other words. how doe,; one

determine the best simple fraction approximation

a/ b to S/(RW)? The straightforward scheme of

computing lbS - aRWI for all pairs of integers a

and b less than R, in order to find the minimum

value of this expression, is time-consuming when

R is even moderate in size.

A more direct and elegant means to find these

rational approximation a/ b is to employ the Eu­

clidean algorithm [5, p. 319] as follows. Start with

the 2-long vector V = (5, RW) and the 2 X 2 iden­

tity matrix. At a given step let x be the smaller

entry of V, lety be the larger entry .. and let X andY

be the columns of the 2 X 2 matrix corresponding

to x andy. Compute q = int(y/ x). Then replace y

by y - qx and X by X + q Y. This process continues

until one entry of the vector Vis zero. At that point

one column of the final matrix will contain the

original vector (with any common factor divided

out) and the other column will contain a close ra­

tional approximation. In this application, the Eu­

clidean algorithm may be halted whenever an en­

trv of the matrix exceeds R.

"The operation of this algorithm in this applica­

tion is more easily understood by an example. Let

us consider the particular parameters as above,

with the strideS= 197. ln other words. we wish to

find a good simple fraction approximation a/ b to

197 I 512. The algorithm proceeds as shown be­

low. The value of q used in each step (computed

from the previous step· s vector) is shown at the

right.

58 BAILEY

e97) e
512 0 ~)

e
97

) e 118 2 ~) q = 2

c ;~) (~ j) q = 1

c9
) e .39 .s j) q = 1

(3~) (~ 1~) q = 2

(1) (19?
() 512

5
) = 39 13 q

In this case the desired pair of integers (a, b) is in

the next-to-last column generated in the matrix,

i.e. (5, 13). l\'ote that 5/1:3 = 0.384615 · · · is

indeed an excellent approximation to 19? I 512 =

0.384?65

Here the final column generated. (19?. 512). is

identical to the original vector. If Sis divisible by a

power of two, then the final column generated will

be the original vector with the common power of

two divided out. In that case. and if both entries of

the final column are less than or equal to R, then

this final column should be selected for (a. b) in­

stead of the previously generated column. If for a

given stride S, no pair (a. b), b ::s: R is found that

satisfies I bS - oR WI < C. then the periodic effect

does not exist, and the stride may be considered a

favorable stride. In this particular example. where

S = 19?, the resulting values a = 5 and b = 13

yield D = L so that C = 0.?5 and E =
0.554687.').

6 IMPROVING CACHE PERFORMANCE OF

DATA ACCESS WITH STRIDES

We have demonstrated a fairly simple scheme that

can accurately predict the phenomenon of un­

usual slow-downs for particular strides. It should

be emphasized. however, that the above analysis

and conclusions depend on the particular model

assumed above for an associative cache. This

model is satisfied by many. but not alL of the cur­

rently popular RISC systems.

\Vhat can a programmer do if his or her pro­

gram features a particularly unfavorable stride?

The most straightforward solution is to ·'pad"

(slightly increase) the dimensions of arrays having

such dimensions. This solution has the advantage

that in most cases only dimension statements

need to be changed, and the executable part of

the program does not need to be altered. Some

space is "wasted" in this manner, but the result­

ing performance improvement is almost certainly

worth the additional memory required.

There does not appear to be a simple formula

giving the optimal amount of padding for a given

unfavorable stride (i.e., array dimension) S, but in

practice it suffices to merelv evaluate the effi­

ciency function described above for S + 1, S + 2,

etc. until an efficient stride is found. In examples

the author has studied, it appears that a pad of

only one or two is effective in most cases.

However, this type of tuning should not be nec­

essary, nor should it be necessary for program­

mers to analvze whether their strides are unfavor­

able. By applying techniques such as those

described in this article, compilers should be able

to detect unfavorable strides and automaticallv

adjust the appropriate array dimensions. Such

adjustments will need to be optional, since they

technically depart from the Fortran ?? standard,

but they will likely be welcomed by the majority of

users who prefer the compiler to shield them from

such unsavory features of the underlying architec­

ture.

REFERENCES

[1 J D. H. Bailey, "Vector computer memory bank con­

tention," IEEE Trans. Comput., vol. C-36, pp.

293-298. 1987.

[2J D. Callahan and A. Porterfield, "Data cache per­

formance of supercomputer applications." Pro­

ceedings of Supercomputing '90, 1990. pp. 564-

572.

[3] J. Ferrante, V. Sarkar, and \\'. Thrash, "On Esti­

mating and Enhancing Cache Effectiveness." IBM

T. J. Watson Research Center. P.O. 704, Yorktown

Heights, :\'Y 1 OS98, August 1991. Presented at the

Fourth Workshop on Languages and Compilers for

Parallel Computing. August 7-9. 1991, Santa

Clara, CA.

r4] A. H. Karp. "What you don't know can hurt you,

or machine organization can affect performance,·'

Technical Report G320-34 79, IBYI Scientific Cen­

ter, 1530 Page :VIii! Road, Palo Alto. CA 94304,

October 198.5.

[5] D. E. Knuth, The Art of Computer Programming.

Menlo Park: Addison Wesley. 1981.

[6] :VI. S. Lam, E. E. Rothberg, and M. E. Wolf, "The

cache performance and optimization of blocked al­

gorithms,., Proceedings of the Fourth Interna­

tional Conference on Architectural Support for

Programming Languages and Operating Systems

(April 1991).

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

