Short Communication

Unfavorable Strides in Cache Memory Systems
(RNR Technical Report RNR-92-015)

DAVID H. BAILEY

Numerical Aerodynamic Simulaiion (NAS) Systems Division, NASA Ames Research Center, Moffest Field, CA 94035

ABSTRACT

An important issue in obtaining high performance on a scientific application running on
a cache-based computer system is the behavior of the cache when data are accessed at
a constant stride. Others who have discussed this issue have noted an odd phenomenon
in such situations: A few particular innocent-looking strides result in sharply reduced
cache efficiency. In this article, this problem is analyzed, and a simple formula is pre-
sented that accurately gives the cache efficiency for various cache parameters and data

strides. © 1995 John Wiley & Sons, Inc.

1 INTRODUCTION

Scientists accustomed to running large computa-
tionally intensive applications on Cray supercom-
puters have never had to concern themselves with
cache issues. However. with the recent sharp rise
in the {loating point performance of RISC work-
stations, many scientists are now using these sys-
tems for serious computations, and cache issues
can no longer be avoided. Another avenue from
which supercomputer scientists have been intro-
duced to cache memories is the recent incorpora-
ton of RISC processors into highly parallel super-
computers. In any event, it is clear that serious
programmers need to understand better how
caches operate, so that they can implement their
algorithms in ways that optimize potendal perfor-
mance.

An important concept in this article is memory
stride, i.e., the increment in memory address.

Received July 1992

Revised December 1994

© 1995 by John Wiley & Sons. Inc.

Scientific Programming. Vol. 4. pp. 53-58 (1995}
CCC 1058-9244/95/020053-06

measured in words, between successive elements
fetched or stored in the important inner loops of
an application program. Many important scien-
tific applications do not feature exclusively stride
one data access but instead feature large nonunit
strides. For instance. many codes perform similar
operations on each dimension of a two- or three-
dimensional arrayv. Performing computations in
the first dimension of a Fortran program (or the
last dimension of a C program) can be done with
unit stride, but the swuides of the computations in
the other dimensions are typically large values,
and significantly degraded performance may
result when the codes are ported to cache-based
svstems without change.

One solution to this problem is to rewrite the
code to employ arrav transpositions between the
computational steps in each dimension. In this
way all computation can be done at unit stride.
But such revision may require substantal effort,
and it may still not result in significant perfor-
mance improvement unless the time spent in
stride one computation is substantial enough to
offset the cost of the array transpositions.

As a result, many problems of this sort are sim-
ply ignored, as scientists accept with a certain fa-

54 BAILEY

talism their codes will not perform very well. How-
ever, for some programe the reduction in
performan(‘e is sufficiently large that it is worth-
while to make an effort to understand and allevi-
ate this problem.

2 DEFINITIONS AND NOTATION

To better understand the phenomenon of perfor-
mance reduction with strides. consider the follow-
ing model of a cache memory system. First as-
sume that the cache is configured with R = 27
cache lines, and assume that each cache line con-
tains W = 2* words, so that a total of R# words
can be cached.

It will be assumed that this cache memory svs-
tem operates as follows. When a word at a virtual
address A is fetched, it is placed in cache location
Q. where () is determined by zeroing the bits in the
address to the left of the nﬂhtm()st r + w bits and
then shifting the resulting integer to the right by w
bits (i.e.. dividing by). Note that this operation
produces an integer () in the range 0 = Q < R.
When a single word is requested. all # words of
the W-long cache line that it resides in are also
fetched.

Many cache-based svstems employ
tivity sets.”” This means that up to C cache lines
with the same cache address. as determined by

“associa-

the mapping function described in the previous
paragraph, can be stored simultaneously in the
cache. In this way. potenually RC lines or RCH
words may be cached. When a request is made lor
data that are not in cache. its cache line replaces
one of C lines currently stored at the cache loca-
tion where it is assigned by the mapping function.
On some systems the least recently used line is
replaced, while on others the line replaced is de-
termined by some unspecified “‘random’” proce-
dure. The above model of an associative cache is
satisfied bv many, but not all current RISC sys-
tems.

If the stride .S of a vector fetch is unity, then B

consecutive words reside on the same cache line.
This is obviously a very favorable situation. The
situation is similarly quite favorable if the memory
stride is some integer less than W, since in that
case many cache lines contain multiple words re-
quired by the CPU. Many scientific applications.
however, involve strides larger than W. so that
each cache line retrieved from memory contains at
most one word required by the CPU. This last case
will be the focus of this article.

Unfortunately, at some strides even RC words
cannot be cached because some of the associativ-
ity sets are overutilized. while others are underuti-
lized. Let us consider a vector fetch of L words
with stride S and ask what fraction of the L result-
ing cache lines remain in the cache when the fetch
is complete. This question is of interest for two
reasons: 1) a computation may need to access this
same set of L words again. and 2) if this vector
fetch was a single row of a matrix stored in column
major order (as in Fortran). the next J} rows of the
matrix reside in these same cache lines. Either
way, performance will be significantly improved if
these data can remain in the cache.

Accordingly. the efficiency E of a vector ferch of
length L will be defined as T/L. where T is the
number of cache lines that still remain in the
cache when the vector fetch operation is complete.
and where L is the vector length. For simplicity. in
the following it will be assumed that L = RC.

An obvious example of an ineflicient stride is a
large power of two. Then all cache lines will be
fetched into the same location of the cache. and
the other R — 1 locations will be completely unuti-
lized. In other words, at most C lines of these data
can be stored in the cache. The resulting effi-
ciency is only 1/R. Clearly if an applicaiton pro-
gram has arrays whose dimensions are large
powers of two, these arravs should be ““padded.”
such as by declaring their leading dimensions {in
Fortran) to be slightly larger than a power of two.
In this way. accesses of successive rows of data
from such an array will have cache addresses that
are slightly offset, resulting in much more efficient
cache uiilization. Most users of Crayv svstems are
familiar with this tuning technique. since it elimi-
nates bank conflicts that may reduce performance

bv factors as high as 10 or 20 [1].

3 CACHE EFFICIENCY WITH
NON-POWER-OF-TWO STRIDES

It may come as a surprise to some that large
power-of-two strides are not the only paruvularl\
unfavorable strides for cache memory systems [4 .
To facilitate concrete discussion in the followi ing.
we will consider the particular case R = 32. C = 4.
and B = 16. These values match the cache pa-
rameters of the IBM RS 6000/320 system. We will
also assume in the following that the vector length
L of the fetch is 128.

When S = 72, it turns out that in 128 consecu-
tive fetches, the respective cache lines neatly fill

SHORT COMMUNICATION 55

oy
£

£ |
=
334

045 1

03} .

02} |

01} .

0 . . . ‘ . |

0 50 100 150 200 250 300
Stride

FIGURE 1 Cache efficiencies for various strides.

the 32 X 4 array. resulting in perfect utilization of
the cache {except that only one word in each
cache line may actually be required by the CPU}.
The resulting efficiency £ is unity. even though 72
is divisible by 8. a highly unfavorable situation on
many vector computers. Now consider § = 73, a
completely favorable stride for most vector com-
puters. In this case the cache efficiency is only
about 0.414. The efficiencies for strides 16—-256
are shown in Figure 1. This is obviously a very
complicated function.

This curious phenomenon has been noted by
others [2. 3, 4. 6.. One way (0 understand it is to
list the cache addresses of consecutively fetched
cache lines in a 128-long vector fetch. with stride
73, horizontally in a seven-wide table {sce Table
1}. This table also includes the notation R to indi-
cate instances when a cache replacement would
occur. Itis clear from examining this table that the
root cause of this poor performance is the very
nearly periodic behavior of these cache addresses.
In particular, these addresses are nearly periodic
with a period of seven.

Recall that virwual address bits higher than po-
sition r + w are ignored when placing the cache
line in the cache. Thus we may in general write the

cache address Q of the £-th word fetched as

, 1
Qlk) = int [-ﬂ- mod kS, RlV)]

where int denotes the greatest integer function,
and where mod denotes the modulo operation

(i.e.. the remainder when the first argument is di-
vided by the second). The function Q{k} is pre-
cisely periodic with period RW. But when the
stride S is exactly (or very nearly) a simple fraction
of RW. then this function is also precisely {or very
nearly precisely) periodic with period nint{RH7/S)).
where nint denotes the nearest integer function.

Table 1. Cache Addresses for Successive Fetches
when S = 73

4 9 13 18 22 27 31
4 9 13 18 22 27 31
4 9 13 18 22 27 31
4 8 13 .18 22 27 31
4R 8 13R 18R 22R 27R 31R
4R 8 13R 17 22R 27R 31R
4R 8 13R 17 22R 27R 31R
4R 8R 13R 17 22R 26 31R
4R 8R 13R 17 22R 26 31R
4R, 8R 13R 17R 22R 26 31R
3 8R 13R 17R 22R 26 31R
3 8R 13R 17R 22R 26R 31R
3 8R 12 17R 22R 26R 31R
3 8R 12 17R 22R 26R 31R
3R 8R 12 17R 21 26R 31R
3R 8R 12 17R 21 26R 31R
3R 8R 12R 17R 21 26R 30
3R 8R 12R 17R 21 26R 30
3R 8R

Note. Successive fetches are listed along rows. in a table
seven wide, so that the nearly periodic behavior can be ob-
served.

56 BAILEY

In this example, R = 32, W = 16, RW = 512,
and S = 73. Indeed, the fraction 512/73 is very
close to seven. In fact, 7 X 73 = 511, so that
consecutive values of mod(7kS, RW) differ by only
one. Thus it clear, by examining the above for-
mula, that ((7k) is identical for W' = 16 consecu-
tive k. But a string of 16 consecutive identical
cache addresses results in 12 replacements. since
only 4 of these can be accommodated in a single
associativity set of the cache. This explains why
the fetches in a single column of Table 1 resultin a
cache replacement approximately 75% of the
time. Since this analysis applies to each column of
the array shown in Table 1, it follows that the 75%
figure also applies to the entire table as well.

From these facts one can compute the approxi-
mate cache efficiency £ for this example (recall
that the cache efficiency was defined above as the
fraction of cache lines that remain in the cache
when the vector fetch is complete). In Table 1, the
first 4 X 7 = 28 fetches completely fill cache ad-
dresses 4, 9, 13, 18, 22, 27, and 31. except that
address nine has one line empty. Thereafter ap-
proximately 3/4 of the fetches result in a replace-
ment. Thus we have the approximation

(128 — 28)

128 — (3/4) x
E= 128

=108 = 0.4140625

which in this case exactly matches the acrual effi-
ciency determined by counting replacements in
Table 1.

As we have seen, the replacement frequency
G = 3/4 used in the above calculation results
from the fact that 7 X 73 = 511 differs from 512
by only one. In general. define the minimum dif-
ference D as follows:

D = min |bS — aRW)|

O<a.b<R

When D is zero (i.e.. when S is a large power of
two, such as 64), then the corresponding value of
G may easily be seen to be unity. When D = 1.
then G = 3/4; when D = 2. then ¢ = 1/2: when
D =3, then ¢ = 1/4; and when D = 4, then (' =
0. In other words, when D is larger than the set
associativity size C, then successive fetches move
to a different cache address before a given associ-

ativity set is exhausted. In general, the replace-
ment frequency G is given by the formula

1 Al
G = ral max(C — D, 0)

Suppose that S/(RW) is very close 1o a simple
fraction a/b, b = R, so that D = [bS — aRW/| is
small. Compute G from the above formula. Gen-
eralizing from the above example. note that the
first bC fetches will completely fill the b associativ-
ity sets whose addresses are those that nearly re-
peat. Thereafter. the fraction G (approximately) of
the fetches will result in replacements. Thus a
general formula that is an approximation to the
cache efficiency £ for general sirides and cache
parameters is given by

_L-G[L~-bC)

E L

Note that when L is large. £ = 1 — G as expected.

A graph of the efficiencies for various strides in
the standard case used above, computed with the
above formula, is shown in Figure 2. By compar-
ing Figures 1 and 2, it is clear that this formula is
very accurate, particularly at the “*spikes.” which
are the cases of greatest interest. In fact, the re-
placement count G;{L — bC'}, which is the key sub-
expression of this formula. is (with one exception)
alwayvs within one of the actual value whenever ¢
i$ nonzero.

4 A RANDOM STRIDE APPROXIMATION

When the difference D is greater than C. the for-
mula above gives perfect efficiency. since G in that
case Is zero. However. the actual efficiency is
somewhat less than unity for manyv such cases,
resulting in a low-level background ““noise™ {com-
pare Figs. 1 and 2). This phenomenon can be
explained by noting that when the suide S is a
substantial fraction of RW. the operation mod(kS.
RW) is a good pseudorandom number generator.
and a certain number of ““collisions™ can be ex-
pected to occur in the resulting cache addresses.
In fact. this operation is a member of the widelv
studied class of linear congruential pseudoran-
dom number generators [5. p. 9].

If one assumes that the assignment of memory
fetches to the R addresses is actually random.

Efficiency

SHORT COMMUNICATION 57

03r J
0.2 i
0.1F N
00 Sb 160 1%0 260 250 300
Stride

FIGURE 2 Cache efficiencies using the formula.

then one can compute the expected cache effi-
ciency by applying techniques of probability and
statistics. The probability P(k) that an individual
address contains exactly k& entries after an L-long
fetch is given by the formula for a binomial distri-
bution:

P = () ptis =

where p = 1/R. The expected number of replace-
ments F is then

=R 2 (k — C)Pk)

k=C+1

and the resulting expected efficiency £ = (L — '}/
L. For the example parameters abme, this for-
mula vields £ = 0.807714 - - - . The actual aver-
age efficiency, determined from the data in Figure
1,15 0.892334 - - - . This indicates that the oper-
ation mod(kS. RW) actually behaves somewhat
better than a true random number generator.

5 FINDING SIMPLE FRACTIONS

One detail was omitted from the above discussion:
how can one compute the minimum dilference D
for a given stride. or in other words, how does one

determine the best simple {raction approximation
a/b to S/(RW)? The straightforward scheme of
computing |bS — aRW| for all pairs of integers a
and b less than R, in order to find the minimum
value of this expression, is time-consuming when
R is even moderate in size.

A more direct and elegant means to find these
rational approximation a/b is to employ the Eu-
clidean algorithm [5. p. 319] as follows. Start with
the 2-long vector V' = (S, RW) and the 2 X 2 iden-
tity matrix. At a given step let x be the smaller
entry of ¥, let - be the larger entry. and let X and ¥
be the columns of the 2 X 2 matrix corresponding
to x and y. Compute g = int(3/x). Then replace »
by y — gxr and X by X + ¢VY. This process continues
until one entry of the vector Vis zero. At that point
one column of the final matrix will contain the
original vector (with any common factor divided
out) and the other column will contain a close ra-
tional approximation. In this application, the Fu-
clidean algorithm may be halted whenever an en-
try of the matrix exceeds R.

The operation of this algorithm in this applica-
tion is more easily understood by an example. Let
us consider the particular parameters as above,
with the stride S = 197. In other words. we wish to
find a good simple fraction approximation a/b to
197/512. The algorithm proceeds as shown be-
low. The value of g used in each step {computed
from the previous step’s vector) is shown at the

right.

58 BAILEY

(197) (1 0)

512/ \0 1

(197) (1 o) _
118/ \2 1 9

<79> (1 1) _q
118/ \2 3 9~
ICHINEE
39/ \5 3 q
)E) -
(39 5 13 4772

1)(197 5> _ .
(0 512 13/ 9= 39

In this case the desired pair of integers (a. b) is in
the next-to-last column generated in the matrix,
i.e. (5, 13). Note that 5/13 = 0.384615 - - - is
indeed an excellent approximation to 197/512 =
0.384765 - - -

Here the final column generated. (197. 512). is
identical to the original vector. If S is divisible by a
power of two, then the final column generated will
be the original vector with the common power of
two divided out. In that case. and if both entries of
the final column are less than or equal to R, then
this final column should be selected for (a, b) in-
stead of the previously generated column. If for a
given stride S, no pair (a. b), b = R is found that
satisfies |6S — aRW| < C, then the periodic effect
does not exist, and the stride mav be considered a
favorable stride. In this particular example, where
S = 197, the resulting values @ = 5 and b = 13
vield D = 1, so that ¢ = 0.75 and £ =
0.5546875.

6 IMPROVING CACHE PERFORMANCE OF
DATA ACCESS WITH STRIDES

We have demonstrated a fairly simple scheme that
can accuratelv predict the phenomenon of un-
usual slow-downs for particular strides. It should
be emphasized, however, that the above analysis
and conclusions depend on the particular model
assumed above for an associative cache. This
model is satisfied by many. but not all. of the cur-
rently popular RISC systems.

What can a programmer do if his or her pro-
gram features a partcularly unfavorable stride?
The most straightforward solution is to “*pad”
(slightly increase) the dimensions of arrays having
such dimensions. This solution has the advantage
that in most cases only dimension statements

need to be changed, and the executable part of
the program does not need to be altered. Some
space is ““‘wasted’” in this manner, but the result-
ing performance improvement is almost certainly
worth the additional memory required.

There does not appear to be a simple formula
giving the optimal amount of padding for a given
unfavorable stride (i.e., array dimension) S, but in
practice it suffices to merely evaluate the effi-
ciency function described above for S + 1, S + 2,
etc. until an efficient stride is found. In examples
the author has studied, it appears that a pad of
only one or two is effective in most cases.

However, this tvpe of tuning should not be nec-
essary, nor should it be necessary for program-
mers to analyze whether their strides are unfavor-
able. By applying techniques such as those
described in this article, compilers should be able
to detect unfavorable strides and automatically
adjust the appropriate array dimensions. Such
adjustments will need to be optional, since they
technically depart from the Fortran 77 standard,
but they will likely be welcomed by the majority of
users who prefer the compiler to shield them from
such unsavory features of the underlying architec-
ture.

REFERENCES

(1] D.H. Bailey, ““Vector computer memory bank con-
tention,”” IEEE Trans. Comput., vol. C-36, pp.
293-298, 1987.

[2] D. Callahan and A. Porterfield. “‘Data cache per-
formance of supercomputer applications,”” Pro-
ceedings of Supercomputing 90, 1990, pp. 564—
572.

[3] J. Ferrante, V. Sarkar, and W. Thrash, **On Esti-
mating and Enhancing Cache Effectiveness.”” IBM
T.]. Watson Research Center, P.O. 704, Yorktown
Heights, NY 10598. August 1991. Presented at the
Fourth Workshop on Languages and Compilers for
Parallel Computing. August 7-9. 1991. Santa
Clara, CA.

[4] A. H. Karp. “*What you don’t know can hurt you,
or machine organization can affect performance.”
Technical Report G320-3479, IBM Scientific Cen-
ter, 1530 Page Mill Road. Palo Alto, CA 94304,
October 1985.

[5] D. E. Knuth, The Art of Computer Programming.
Menlo Park: Addison Wesley, 1981.

[6] M. S. Lam, E. E. Rothberg. and M. E. Wolf, “The
cache performance and optimization of blocked al-
gorithms,”” Proceedings of the Fourth Interna-
tional Conference on Architectural Support for
Programming Languages and Operating Systems
{April 1991).

Journal of))
Industrial Engineering

Applied
Computational
Intelligence and Soft
Computing—

. A International Journal of
The Scientific Dictione. S
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Ll T Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networkhs
and Communications /1 Advances in

Artificia
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, = Neural Systems
- 2 \ i

International Journal of
Computer Games . in
Technology re Engineering

Reconfigurable
Computing

e Computational L g
Journal of Human-Computer Intelligence and Electrical and Computer
Robotics Interaction Neuroscience Engineering

