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Unfolding a sequence of
sensory influences and
interactions in the development
of functional brain laterality
Lesley J. Rogers*

School of Science and Technology, University of New England, Armidale, NSW, Australia

Evidence of sensory experience influencing the development of lateralized

brain and behavior is reviewed. The epigenetic role of light exposure

during two specific stages of embryonic development of precocial avian

species is a particular focus of the research discussed. Two specific periods

of light sensitivity (in early versus late incubation), each depending on

different subcellular and cellular processes, affect lateralized behavior after

hatching. Auditory and olfactory stimulation during embryonic development

is also discussed with consideration of interactions with light-generated

visual lateralization.
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1. Introduction

Most research on laterality of brain and behavior in non-human species has been
conducted on adults, but research on lateralization in domestic chicks is an exception.
Since avian embryos develop in eggs, it is possible to manipulate their pre-hatching,
as well as post-hatching, sensory experience much more easily than can be achieved in
mammals. Consequently, the chick (Gallus gallus) has become a model for elucidating
genetic and epigenetic influences on the development of lateralized brain and behavior.
A similar ease of studying epigenetic influences on the development of lateralization
applies to other avian species although, so far, the pigeon and the quail have been the only
other avian species studied in this regard (quail, Casey and Sleigh, 2014; Harshaw et al.,
2021; pigeon, Güntürkün and Ocklenburg, 2017; Letzner et al., 2017). In fact, precocial
avian species, such as the chick and quail, have an exceptional attribute aiding study
of development; both before and after hatching their development passes through a
number of distinct phases, each quite separate and of short duration. These phases can be
intercepted and manipulated separately or in sequence to reveal outcomes on behavior
after hatching, making it possible to investigate the influence of sensory experience on
brain function.
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This paper discusses what is known about the effect of
sensory stimulation on development of lateralized brain and
behavior in precocial, avian species (domestic chick and quail).

As a body of research has shown, newly hatched chicks
process information differently in each hemisphere and each
hemisphere controls different patterns of behavior (Rogers and
Anson, 1979; Vallortigara and Rogers, 2005). These lateral
differences include specialization of the right hemisphere for
attention to novel and unexpected events (Rogers, 2000),
expression of sexual behavior and aggression (Rogers et al.,
1985), attention to geometric spatial information (Tommasi and
Vallortigara, 2001; Tommasi et al., 2003), including attention
to spatial relationships between objects (Morandi-Raikova and
Mayer, 2021), social behavior (Deng and Rogers, 2002; Daisley
et al., 2009; Rosa Salva et al., 2012) and, as an aspect of
the latter, attention to the movement of living beings (Rugani
et al., 2015). By contrast, the left hemisphere is specialized to
categorize stimuli (e.g., grains versus small pebbles) and follow
learned rules of behavior (Rogers, 1982; Rogers et al., 2013).
Sensory stimulation during embryonic development affects the
development of several of these lateralized functions. In other
words, sensory input interplays dynamically with a genetic
program to achieve different lateral outcomes.

Light exposure of the developing chick embryo has a critical
role in generating lateralization of brain structure and a range of
different brain functions, as will be discussed. However, before
focusing on the latter, it is worth noting that light stimulation
is not required for development of all aspects of the lateralized
brain: e.g., asymmetry of neural activity in the pre-optic region
of the brain is present in chicks not exposed to light (Lorenzi
et al., 2019) and lateralization of choice to approach a familiar
versus and unfamiliar chick is present in chicks lacking exposure
to light (Deng and Rogers, 2002).

2. Effect of light stimulation on the
development of laterality

Stimulation by light during incubation is by far the most
studied example of sensory influence on lateralized behavior
after hatching. There are two periods when light exposure affects
development of visual lateralization. The first falls within the
first three days of incubation (Chiandetti et al., 2013) and
the second occurs during the last three days before hatching
(Rogers, 1982, 1990). During natural incubation, hens leave
the nest for longer periods exactly at these two times of light-
sensitivity (Archer and Mench, 2014) thereby exposing the
embryos to light, which indicates that the laboratory studies are
relevant to development in natural conditions.

Exposure to light during the first three days of incubation
(early period) has some effects similar to those generated by light
exposure during the last three days (late period); viz., both early
and late light-exposure cause the chick to peck at an array of

grains with a leftwards bias (Chiandetti et al., 2013) and both
times of exposure suppress a preference to pay more attention
to distracting stimuli on the chick’s left side (Chiandetti et al.,
2017). However, another measure of post-hatching behavior
separates the effects of early versus late exposure to light
(Chiandetti and Vallortigara, 2019): chicks tested binocularly
with scattered grain and pebbles perseverate by repeatedly
pecking at the same pebble provided they have been exposed to
light during late incubation but not if they have been exposed
to light during early incubation, or if they have been incubated
in the dark. Note that the repeated pecking at pebbles after
late exposure to light does not mean that these chicks cannot
discriminate grain from pebbles (discussed in section “2.2 Light
exposure at the end of embryonic development”).

2.1. Light exposure at the beginning of
embryonic development

It is, of course, not surprising that the early and late
periods of sensitivity to light have different effects on post-
hatching behavior since each must rely on different cellular
and subcellular processes. The early period happens well before
the embryo’s visual system is fully functional: not until day 18
of incubation can an electroretinogram be recorded (Rogers,
1995). It is, however, on day 2 of incubation that the embryo
adopts an asymmetrical posture with its left side against the yolk.
This early stage of development involves left-right differences
in the expression of genes, including Lefty and Nodal (Levin
et al., 1995; Nakamura and Hamada, 2012). Chiandetti et al.
(2013) have hypothesized that the early effect of light may be
mediated via undifferentiated cells of photosensitive regions, but
what might those cells be? Pigmentation of the eyes begins on
day 3 of incubation and on day 3 amacrine cells begin to form
in the retina (summarized in Rogers, 1995). Using a marker for
photoreceptive cone cells, Visinin, Doh et al. (2010) were able
to detect retinal photoreceptor cells on day 4 of incubation.
Possibly these cells could develop even earlier since day 4 was
the earliest day of incubation examined. Although it is not
until day 10 that Visinin-labeled cells in the retina peak in
number (Doh et al., 2010) and by day 6 of incubation axons
from the ganglion cells of the retina start arriving at the optic
tecta of the brain [summarized in Rogers (1995)], on day 3
there is a detectable increase in spontaneous motor activity of
the embryo in response to light exposure (Wu et al., 2001).
In other words, the early embryo can detect and respond to
light stimulation, possibly via either the first formed retinal
photoceptors or via photoreceptors in the developing pineal
and parapineal organs (Kuo et al., 2003), both of which are
known to establish asymmetry in zebrafish (Guglielmotti and
Cristino, 2006; Andrew, 2009; Concha et al., 2009) and to do
so by asymmetry of Nodal signaling (Concha et al., 2000; Liang
et al., 2000).
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2.2. Light exposure at the end of
embryonic development

The second period of light-sensitivity (last 3 days of
incubation: Rogers, 1982) occurs at a time when the chick
embryo adopts an asymmetric posture inside the egg so that
the left eye is occluded by the chick’s body and the right eye
is next to the shell and membranes (Kovach, 1968; Rogers,
1990). This genetically determined postural turning allows the
right eye only to be stimulated by light passing through the
shell and membranes. From 96 to 98 percent of chick embryos
are oriented in this way (Olsen and Byerly, 1935; Butcher and
Nilipour, 2002). At this late stage of embryonic development, the
retinas are functional and light-stimulated nerve impulses are
sent to the brain for processing (summarized in Rogers, 1995).
Since the optic nerves decussate completely, light stimulation
of the right eye relays visual inputs to the left side of the
midbrain.

This asymmetrical stimulation of the visual pathways leads
to asymmetry of visual behavior after the chick has hatched.
For example, male chicks hatched from eggs exposed to light
during the last three days of incubation are able to learn to
discriminate food grains from a background of small pebbles
provided that they are using their right eye (left hemisphere),
but not if they are using their left eye (right hemisphere)
(Rogers, 1982). By contrast, chicks hatched from eggs kept in
darkness during the last 3 days show no such laterality (Rogers
and Anson, 1979; Rogers, 1982, 1997; Mench and Andrew,
1986), even if they have been exposed to light up until day
17 of incubation (Zappia and Rogers, 1983). Lateralization of
other types of visual behavior also depends on light-exposure
during this period; viz., attack and copulation (Rogers, 1982,
1990), discrimination of left from right position (Chiandetti and
Vallortigara, 2009), attention to spatial information (Chiandetti
et al., 2005), attention to biological motion (Rugani et al., 2015)
and competition within a social group (Rogers and Workman,
1989).

Although light exposure in ovo enables use of the right eye
and left hemisphere in learning to find grain scattered amongst
pebbles, exposure to light also alters functions controlled by
the right hemisphere (e.g., attack and copulation, Rogers,
1982; Bullock and Rogers, 1986), possibly via interhemispheric
communication which releases the right hemisphere from
inhibition by the left hemisphere and, hence, elevates attack
and copulation. A role of interhemispheric communication
has also been shown in a task requiring chicks to locate
food using patterned or spatial cues (Chiandetti et al., 2005).
When tested monocularly on this task, chicks exposed to
light before hatching are able to use both hemispheres to
process visual information, likely because, in this case, the
exposure to light enhances interhemispheric communication.
This contrasts to chicks incubated in the dark, which can
use only the hemisphere opposite to their open eye. Indeed,

study of lateralized development in the pigeon has shown
that interhemispheric communication is enhanced following
exposure of embryos to light throughout incubation (Manns and
Römling, 2012; Letzner et al., 2014).

Along with the behavioral asymmetries dependent on
light stimulation, there are left-right asymmetries in the
number of neural projections from the thalamus to the visual
Wulst/hyperpallium region of the forebrain (Rogers and Deng,
1999), asymmetries in some, but not all, aspects of neural
responses in the visual Wulst (Costalunga et al., 2022) and left-
right differences in the number of synapses per neuron in the
Wulst (Stewart et al., 1992).

Although most studies have used the procedure of exposing
the embryo to light from day 19 of incubation until hatching
on day 21, as little as 4 to 6 h of light exposure on day 19 of
incubation is sufficient to generate the lateralization of visual
behavior (Zappia and Rogers, 1983; Rogers, 1990). During this
short sensitive period, genetic processes that generate postural
asymmetry of the head and body provide a foundation for the
epigenetic effect of light stimulation on the development of
lateralized brain function (for more, see Versace et al., 2022).

It is now worth investigating whether the two
different periods of sensitivity to light stimulation during
embryonic development interact in terms of their effects on
behavior after hatching.

3. Effect of auditory stimulation on
development of lateralization

By removing the egg shell and membranes of quail embryos
24 to 36 h before hatching, Lickliter (1990) studied the
influence of patterned visual stimulation on choices made after
hatching. Quail chicks that had received the visual experience
prior to hatching integrated visual with auditory information
when tested soon after hatching, whereas chicks hatched
normally without pre-hatching visual stimulation responded
only to auditory inputs. Although this study did not assess
lateralization, a study by Casey and Lickliter (1998) did show
that the visual stimulation pre-hatching enhances lateralization,
measured as turning bias after hatching (a type of visuo-motor
laterality). This suggests that visual experience prior to hatching
may enhance integration of sensory inputs via an effect on brain
lateralization.

Processing of auditory information by the domestic chick
is lateralized. During the first week after hatching, chicks turn
their right ear toward an auditory sound source (Andrew
and Dharmaretnam, 1991), showing a preference to use
the left hemisphere. This finding is supported by evidence
that disrupting left-hemisphere function impairs auditory
habituation, whereas the same treatment of the right hemisphere
has no effect (Rogers and Anson, 1979; Howard et al., 1980).
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Exposing chick embryos to auditory experience during the
final days of incubation does not appear to alter laterality,
at least in tasks that rely primarily on visual behavior
(Zappia and Rogers, 1983). Also, auditory stimulation during
the final 3-4 days of incubation has no effect on lateralization of
habituation to an auditory stimulus (Zappia and Rogers, 1983),
and light-induced lateralization is not affected by exposing
the late-stage embryos to sounds at the same time as the
light exposure (Zappia and Rogers, 1983). Similarly, Casey and
Lickliter (1998) found that exposing quail embryos to the sounds
made by embryos just prior to hatching had no affect on turning
bias of the chicks after hatching, whereas exposure to light did
enhance side-bias of turning.

The absence of any effect of auditory stimulation in these
experiments could be due to the late stage when the exposure
to sounds was applied. Chick embryos already respond to
low frequency auditory stimulation on day 12 of incubation
(Rogers, 1995), well before the visual system becomes functional.
Hence, it is possible that auditory stimulation may influence
the development of auditory lateralization if it is applied during
a sensitive period midway through incubation instead of just
before hatching. This has not yet been tested.

A complication of empirically testing the effects of auditory
stimulation on development of lateralization before hatching is
the interaction between visual and auditory experience (Lickliter
and Lewkowicz, 1995). Testing quails, Foushée and Lickliter
(2002) showed that visual experience prior to hatching interferes
with auditory learning of species-typical vocalizations. This
could involve the right hemisphere since, as shown recently, this
hemisphere processes and integrates visual and auditory inputs
(Harshaw et al., 2021).

Regardless of which hemisphere is involved, it is it worth
considering that, if lateralization of the auditory system develops
in response to auditory stimulation midway through incubation,
this particular laterality may be enhanced or suppressed by the
later development in ovo of visual asymmetry.

4. Laterality of olfaction

Detection and response to odors is lateralized in the
domestic chick, as it is also in other species (Cavelius et al.,
2022). Chicks respond to lower doses of odors when they detect
them using their right nostril than they do when using their
left nostril (Vallortigara and Andrew, 1994; Burne and Rogers,
2002). Since each nostril sends its primary inputs to its ipsilateral
hemisphere, this means that the right hemisphere processes
olfactory information.

Although the olfactory system develops rather early during
incubation, it is unlikely that it is functional until day 20 of
incubation when the nares are freed of obstructing material
(Rogers, 1995). Dissimilar to visual and auditory stimulation,
which in late incubation are lateralized to the right eye and ear

respectively, it seems rather unlikely that olfactory stimulation
of the embryo is temporarily restricted to one nostril, unless the
obstructing material of one nostril is cleared in advance of the
other. Just before hatching the embryo can certainly detect odors
and this leads to development of olfactory preferences after
hatching (Tolhurst and Vince, 1976; Burne and Rogers, 1999)
but there has been no investigation of whether this pre-hatching
olfactory stimulation is lateralized.

At the current stage of knowledge, it seems that
lateralization of olfactory processing is genetically determined
and not affected by epigenetic influences during development
of the embryo. Nevertheless, lateralized olfactory behavior after
hatching is influenced by visual inputs. For example, chicks
perform head shaking after they have pecked an attractive blue
bead coupled with clove oil odor provided that they use the
right nostril and not when they use the left nostril (Rogers et al.,
1998). However, if the same odor is coupled with a less attractive
red bead, no laterality is manifested: the chicks head-shake to
the same amount when the odor is presented to the right
or the left nostril (Rogers et al., 1998). In other words, there
are left-right differences in integration of visual and olfactory
inputs. Visual inputs compete with olfactory inputs from the
left nostril to the left hemisphere but this competition does not
occur in the right hemisphere, indicating a clear link between
lateralized processing of visual information and processing of
olfactory information. It is perhaps worth mentioning here that
sensory responses of zebrafish to light and odor are lateralized
to opposite sides of the epithalamic region of the brain and
changing the laterality of one changes laterality of the other
(Dreosti et al., 2014).

5. Conclusion

Using the precocial avian embryo as a model for study, an
epigenetic influence of light exposure on the development of
lateralized visual behavior occurs during two sensitive periods
that lead to lateralized visual processing in hatched chicks. The
generated visual lateralities also interact with both auditory
and olfactory stimulation after hatching and may enhance or
mask lateralities in these modalities. Further research is needed
to determine whether auditory or olfactory stimulation of the
embryo plays a direct role or interactive role in the development
of lateralization in these sensory modalities. So far, it seems that,
after hatching, laterality of processing visual information plays a
key role, possibly and over-riding one, in laterality of the chick’s
response to sounds and odors.

Asymmetric tactile stimulation is another potential
epigenetic influence on development so far not investigated. It
may have an influence given the asymmetrical posture adopted
by the embryo, especially in the early stages of incubation
when the embryo lies with its left side against the egg yolk
and membranes. Since tactile sensitivity has been recorded as
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early as on day 6 of incubation (Hamburger and Balaban, 1963;
Freeman and Vince, 1974; Rogers, 1995), any lateralized tactile
influence on development is expected to occur quite early in
incubation.

This paper has focused on development of lateralization
in precocial avian species but the epigenetic effect of light
stimulation has also been studied in the pigeon, an altricial
species, revealing similar, though not identical, effects of light
on lateralized behavior and asymmetry of visual pathways
(Manns and Römling, 2012; Manns and Ströckens, 2014; Letzner
et al., 2020; Manns, 2021; Pusch et al., 2022). Light exposure
also alters the development of lateralization in the zebrafish
(Andrew et al., 2009; Budaev and Andrew, 2009). It makes
sense, therefore, to predict that light stimulation might influence
the development of laterality in mammalian species (Rogers,
2020). Asymmetry of sensory inputs in other modalities might
also affect development of lateralization: in fact, asymmetrical
vestibular inputs have recently been shown to affect motor
asymmetry in mice, leading to prediction that early, inner ear
imbalance may contribute to the development of handedness in
humans (Antoine et al., 2018).
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