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Abstract

Partial order reduction (POR) and net unfoldings are two alternative methods to tackle state-

space explosion caused by concurrency. In this paper, we propose the combination of both

approaches in an effort to combine their strengths. We first define, for an abstract execution

model, unfolding semantics parameterized over an arbitrary independence relation. Based on it,

our main contribution is a novel stateless POR algorithm that explores at most one execution

per Mazurkiewicz trace, and in general, can explore exponentially fewer, thus achieving a form of

super-optimality. Furthermore, our unfolding-based POR copes with non-terminating executions

and incorporates state caching. On benchmarks with busy-waits, among others, our experiments

show a dramatic reduction in the number of executions when compared to a state-of-the-art

DPOR.
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1 Introduction

Efficient exploration of the state space of a concurrent system is a fundamental problem in

automated verification. Concurrent actions often interleave in intractably many ways, quickly

populating the state space with many equivalent but unequal states. Existing approaches to

address this problem can essentially be classified as either partial-order reduction techniques

(PORs) or unfolding methods.

Conceptually, POR methods [19, 7, 6, 8, 21, 20, 2, 1] exploit the fact that executing

certain transitions can be postponed because their result is independent of the execution

sequence taken in their stead. They execute a provably-sufficient subset of transitions enabled

at every state, computed either statically [19, 7] or dynamically [6, 2]. The latter methods,

referred as dynamic PORs (DPORs), are often stateless (i.e., they only store one execution

in memory). By contrast, unfolding approaches [14, 5, 3, 10] model execution by partial

orders, bound together by a conflict relation. They construct finite, complete prefixes by a

saturation procedure, and cope with non-terminating executions using cutoff events [5, 3].

POR can employ highly sophisticated decision procedures to determine a sufficient subset

of the transitions to fire, and in most cases [7, 6, 8, 21, 20, 2, 1] the commutativity of

transitions is the enabling mechanism underlying the chosen method. Commutativity, or

independence, is thus a mechanism and not necessarily an irreplaceable component of a
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POR [19, 9].1 Conceptually, PORs that exploit commutativity establish an equivalence

relation on the sequential executions of the system and explore at least one representative of

each class, thus discarding equivalent executions. In this work we restrict our attention to

exclusively PORs that exploit commutativity.

Despite impressive advances in the field, both unfoldings and PORs have shortcomings.

We now give six of them. Current unfolding algorithms (1) need to solve an NP-complete

problem when adding events to the unfolding [14], which seriously limits the performance

of existing unfolders as the structure grows. They are also (2) inherently stateful, i.e., they

cannot selectively discard visited events from memory, quickly running out of it. PORs, on

the other hand, explore Mazurkiewicz traces [13], which (3) often outnumber the events in

the corresponding unfolding by an exponential factor (e.g., Fig. 2 (d) gives an unfolding

with 2n events and O(2n) traces). Furthermore, DPORs often (4) explore the same states

repeatedly [20], and combining them with stateful search, although achieved for non-optimal

DPOR [20, 21], is difficult due to the dynamic nature of DPOR [21]. More on this in

Example 1. The same holds when extending DPORs to (5) cope with non-terminating

executions (note that a solution to (4) does not necessarily solve (5)). Lastly, (6) existing

stateless PORs do not make full use of the available memory.

Either readily available solutions or promising directions to address these six problems

can be found in, respectively, the opposite approach. PORs inexpensively add events to the

current execution, contrary to unfoldings (1). They easily discard events from memory when

backtracking, which addresses (2). On the other hand, while PORs explore Mazurkiewicz

traces (maximal configurations), unfoldings explore events (local configurations), thus ad-

dressing (3). Explorations of repeated states and pruning of non-terminating executions is

elegantly achieved in unfoldings by means of cutoff events. This solves (4) and (5).

Some of these solutions indeed seem, at present, incompatible with each other. We do

not claim that the combination of POR and unfoldings immediately addresses the problems

above. However, since both unfoldings and PORs share many fundamental similarities,

tackling these problems in a unified framework is likely to shed light on them.

This paper lays out a DPOR algorithm on top of an unfolding structure. Our main result

is a novel stateless, optimal DPOR that explores every Mazurkiewicz trace at most once,

and often many fewer, owing to cutoff events. It also copes with non-terminating systems

and exploits all available RAM with a cache memory of events, speeding up revisiting events.

This provides a solution to (4), (5), (6), and a partial solution to (3). Our algorithm can

alternatively be viewed as a stateless unfolding exploration, partially addressing (1) and (2).

Our result reveals DPORs as algorithms exploring an object that has richer structure

than a plain directed graph. Specifically, unfoldings provide a solid notion of event across

multiple executions, and a clear notion of conflict. Our algorithm indirectly maps important

POR notions to concepts in unfolding theory.

◮ Example 1. We illustrate problems (3), (4), and (5), and explain how our DPOR deals with

them. The following code is the skeleton of a producer-consumer program. Two concurrent

producers write, resp., to buf1 and buf2. The consumer accesses the buffers in sequence.

while (1):

lock(m1)

if (buf1 < MAX): buf1++

unlock(m1)

while (1):

lock(m2)

if (buf2 < MAX): buf2++

unlock(m2)

1 For instance, all PORs based on persistent sets [7] are based on commutativity.
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while (1):

lock(m1)

if (buf1 > MIN): buf1--

unlock(m1)

// same for m2, buf2

Lock and unlock operations on both mutexes m1 and m2 create many Mazurkiewicz traces.

However, most of them have isomorphic suffixes, e.g., producing two items in buf1 and

consuming one reaches the same state as only producing one. After the common state, both

traces explore identical behaviours and only one needs to be explored. We use cutoff events,

inherited from unfolding theory [5, 3], to dynamically stop the first trace and continue only

with the second. This addresses (4) and (5), and partially deals with (3). Observe that

cutoff events are a form of semantic pruning, in contrast to the syntactic pruning introduced

by, e.g., bounding the depth of loops, a common technique for coping with non-terminating

executions in DPOR. With cutoffs, the exploration can build unreachability proofs, while

depth bounding renders DPOR incomplete, i.e., it limits DPOR to finding bugs.

Our first step is to formulate PORs and unfoldings in the same framework. PORs are

often presented for abstract execution models, while unfoldings have mostly been considered

for Petri nets, where the definition is entangled with the syntax of the net. We make a second

contribution here. We define, for a general execution model, event structure semantics [16]

parametric on a given independence relation.

Section 2 sets up basic notions and § 3 presents our parametric event-structure semantics.

In § 4 we introduce our DPOR,§ 5 improves it with cutoff detection and discusses event

caching. Experimental results are in § 6 and related work in § 7. We conclude in § 8. All

lemmas cited along the paper and proofs of all stated results can be found in the extended

version [17].

2 Execution Model and Partial Order Reductions

We set up notation and recall general ideas of POR. We consider an abstract model of

(concurrent) computation. A system is a tuple M ∶= ⟨Σ, T, s̃⟩ formed by a set Σ of global

states, a set T of transitions and some initial global state s̃ ∈ Σ. Each transition t∶Σ→ Σ in T

is a partial function accounting for how the occurrence of t transforms the state of M .

A transition t ∈ T is enabled at a state s if t(s) is defined. Such t can fire at s, producing

a new state s′ ∶= t(s). We let enabl(s) denote the set of transitions enabled at s. The

interleaving semantics of M is the directed, edge-labelled graph SM ∶= ⟨Σ,→, s̃⟩ where Σ are

the global states, s̃ is the initial state and → ⊆ Σ×T ×Σ contains a triple ⟨s, t, s′⟩, denoted by

s
t
Ð→ s′, iff t is enabled at s and s′ = t(s). Given two states s, s′ ∈ Σ, and σ ∶= t1.t2 . . . tn ∈ T ∗

(t1 concatenated with t2, . . . until tn), we denote by s
σ
Ð→ s′ the fact that there exist states

s1, . . . , sn−1 ∈ Σ such that s
t1

Ð→ s1, . . . , sn−1
tn

Ð→ s′.

A run (or interleaving, or execution) of M is any sequence σ ∈ T ∗ such that s̃
σ
Ð→ s for

some s ∈ Σ. We denote by state(σ) the state s that σ reaches, and by runs(M) the set of

runs of M , also referred to as the interleaving space. A state s ∈ Σ is reachable if s = state(σ)
for some σ ∈ runs(M); it is a deadlock if enabl(s) = ∅, and in that case σ is called deadlocking.

We let reach(M) denote the set of reachable states in M . For the rest of the paper, we fix a

system M ∶= ⟨Σ, T, s̃⟩ and assume that reach(M) is finite.

The core idea behind POR2 is that certain transitions can be seen as commutative

2 To be completely correct we should say “POR that exploits the independence of transitions”.
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operators, i.e., changing their order of occurrence does not change the result. Given two

transitions t, t′ ∈ T and one state s ∈ Σ, we say that t, t′ commute at s iff

if t ∈ enabl(s) and s
t
Ð→ s′, then t′ ∈ enabl(s) iff t′ ∈ enabl(s′); and

if t, t′ ∈ enabl(s), then there is a state s′ such that s
t.t′

ÐÐ→ s′ and s
t′.t
ÐÐ→ s′.

For instance, the lock operations on m1 and m2 (Example 1), commute on every state, as they

update different variables. Commutativity of transitions at states identifies an equivalence

relation on the set runs(M). Two runs σ and σ′ of the same length are equivalent, written

σ ≡ σ′, if they are the same sequence modulo swapping commutative transitions. Thus

equivalent runs reach the same state. POR methods explore a fragment of SM that contains

at least one run in the equivalence class of each run that reaches each deadlock state. This is

achieved by means of a so-called selective search [7]. Since employing commutativity can be

expensive, PORs often use independence relations, i.e., sound under-approximations of the

commutativity relation. In this work, partially to simplify presentation, we use unconditional

independence.

Formally, an unconditional independence relation on M is any symmetric and irreflexive

relation ◇ ⊆ T × T such that if t ◇ t′, then t and t′ commute at every state s ∈ reach(M). If

t, t′ are not independent according to ◇, then they are dependent, denoted by t } t′.

Unconditional independence identifies an equivalence relation ≡◇ on the set runs(M).
Formally, ≡◇ is defined as the transitive closure of the relation ≡1

◇, which in turn is defined

as σ ≡1
◇ σ′ iff there is σ1, σ2 ∈ T ∗ such that σ = σ1.t.t′.σ2, σ′ = σ1.t′.t.σ2 and t ◇ t′. From the

properties of ◇, one can immediately see that ≡◇ refines ≡, i.e., if σ ≡◇ σ′, then σ ≡ σ′.

Given a run σ ∈ runs(M), the equivalence class of ≡◇ to which σ belongs is called the

Mazurkiewicz trace of σ [13], denoted by T◇,σ. Each trace T◇,σ can equivalently be seen

as a labelled partial order D◇,σ, traditionally called the dependence graph (see [13] for a

formalization), satisfying that a run belongs to the trace iff it is a linearization of D◇,σ.

Sleep sets [7] are another method for state-space reduction. Unlike selective exploration,

they prune successors by looking at the past of the exploration, not the future.

3 Parametric Partial Order Semantics

An unfolding is, conceptually, a tree-like structure of partial orders. In this section, given an

independence relation ◇ (our parameter) and a system M , we define an unfolding semantics

UM,◇ with the following property: each constituent partial order of UM,◇ will correspond to

one dependence graph D◇,σ, for some σ ∈ runs(M). For the rest of this paper, let ◇ be an

arbitrary unconditional independence relation on M . We use prime event structures [16], a

non-sequential, event-based model of concurrency, to define the unfolding UM,◇ of M .

◮ Definition 2 (LES). Given a set A, an A-labelled event structure (A-LES, or LES in short)

is a tuple E ∶= ⟨E,<, #, h⟩ where E is a set of events, < ⊆ E ×E is a strict partial order on E,

called causality relation, h∶E → A labels every event with an element of A, and # ⊆ E ×E is

the symmetric, irreflexive conflict relation, satisfying

for all e ∈ E, {e′ ∈ E∶ e′ < e} is finite, and (1)

for all e, e′, e′′ ∈ E, if e # e′ and e′ < e′′, then e # e′′. (2)

The causes of an event e ∈ E are the set ⌈e⌉ ∶= {e′ ∈ E∶ e′ < e} of events that need to

happen before e for e to happen. A configuration of E is any finite set C ⊆ E satisfying:

(causally closed) for all e ∈ C we have ⌈e⌉ ⊆ C; (3)

(conflict free) for all e, e′ ∈ C, it holds that ¬e # e′. (4)

CONCUR’15
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Intuitively, configurations represent partially-ordered executions. In particular, the local

configuration of e is the ⊆-minimal configuration that contains e, i.e. [e] ∶= ⌈e⌉ ∪ {e}.
We denote by conf (E) the set of configurations of E . Two events e, e′ are in immediate

conflict, e #i e′, iff e # e′ and both ⌈e⌉∪[e′] and [e]∪⌈e′⌉ are configurations. Lastly, given two

LESs E ∶= ⟨E,<, #, h⟩ and E ′ ∶= ⟨E′,<′, #′, h′⟩, we say that E is a prefix of E ′, written E ⊴ E ′,
when E ⊆ E′, < and # are the projections of <′ and #′ to E, and E ⊇ {e′ ∈ E′∶ e′ < e ∧ e ∈ E}.

Our semantics will unroll the system M into a LES UM,◇ whose events are labelled by

transitions of M . Each configuration of UM,◇ will correspond to the dependence graph

D◇,σ of some σ ∈ runs(M). For a LES ⟨E,<, #, h⟩, we define the interleavings of C as

inter(C) ∶= {h(e1), . . . , h(en)∶ ei, ej ∈ C ∧ ei < ej Ô⇒ i < j}. Although for arbitrary LES

inter(C) may contain sequences not in runs(M), the definition of UM,◇ will ensure that

inter(C) ⊆ runs(M). Additionally, since all sequences in inter(C) belong to the same trace,

all of them reach the same state. Abusing the notation, we define state(C) ∶= state(σ) if

σ ∈ inter(C). The definition is neither well-given nor unique for arbitrary LES, but will be

so for the unfolding.

We now define UM,◇. Each event will be inductively identified by a canonical name of the

form e ∶= ⟨t, H⟩, where t ∈ T is a transition of M and H a configuration of UM,◇. Intuitively,

e represents the occurrence of t after the history (or the causes) H ∶= ⌈e⌉. The definition will

be inductive. The base case inserts into the unfolding a special bottom event � on which

every event causally depends. The inductive case iteratively extends the unfolding with one

event. We define the set HE,◇,t of candidate histories for a transition t in an LES E as the

set which contains exactly all configurations H of E such that

transition t is enabled at state(H), and

either H = {�} or all <-maximal events e in H satisfy that h(e)} t,

where h is the labelling function in E . Once an event e has been inserted into the unfolding,

its associated transition h(e) may be dependent with h(e′) for some e′ already present and

outside the history of e. Since the order of occurrence of e and e′ matters, we need to

prevent their occurrence within the same configuration, as configurations represent equivalent

executions. We therefore introduce a conflict between e and e′. The set KE,◇,e of events

conflicting with e ∶= ⟨t, H⟩ thus contains any event e′ in E with e′ ∉ [e] and e ∉ [e′] and

t } h(e′).

Following common practice [4], the definition of UM,◇ proceeds in two steps. We first

define (Def. 3) the collection of all prefixes of the unfolding. Then we show that there exists

only one ⊴-maximal element in the collection, and define it to be the unfolding (Def. 4).

◮ Definition 3 (Finite unfolding prefixes). The set of finite unfolding prefixes of M under the

independence relation ◇ is the smallest set of LESs that satisfies the following conditions:

1. The LES having exactly one event �, empty causality and conflict relations, and h(�) ∶= ε

is an unfolding prefix.

2. Let E be an unfolding prefix containing a history H ∈ HE,◇,t for some transition t ∈ T .

Then, the LES ⟨E,<, #, h⟩ resulting from extending E with a new event e ∶= ⟨t, H⟩ and

satisfying the following constraints is also an unfolding prefix of M :

for all e′ ∈ H, we have e′ < e;

for all e′ ∈ KE,◇,e, we have e # e′; and h(e) ∶= t.

Intuitively, each unfolding prefix contains the dependence graph (configuration) of one

or more executions of M (of finite length). The unfolding starts from �, the “root” of the

tree, and then iteratively adds events enabled by some configuration until saturation, i.e.,

when no more events can be added. Observe that the number of unfolding prefixes as per
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8

4,7,8 | 1,5 | ∅

{1, 5, 9}

{1, 7}
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7 | 1,4 | 9

7,9,10 | 1,4 | ∅

{1, 4, 5}
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7,9 | 1,4 | ∅
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∅ | 1,4 | 7,9
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rr′
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1 4 7

9
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85

6

Figure 1 Running example. (a) A concurrent program; (b) its unfolding semantics. (c) The

exploration performed by Alg. 1, where each node C | D | A represents one call to the function

Explore(C, D, A). The set X underneath each leaf node is such that the value of variable U in

Alg. 1 at the leaf is U = C ∪D ∪X. At ∅ | ∅ | ∅ , the alternative taken is {4}, and at 4 | 1 | ∅ it

is {7}.

Def. 3 will be finite iff all runs of M terminate. Due to lack of space, we give the definition

of infinite unfolding prefixes in the extended version [17], as the main ideas of this section

are well conveyed using only finite prefixes. In the sequel, by unfolding prefix we mean a

finite or infinite one.

Our first task is checking that each unfolding prefix is indeed a LES [17, Lemma 14]. Next

one shows that the configurations of every unfolding prefix correspond the Mazurkiewicz

traces of the system, i.e., for any configuration C, inter(C) = T◇,σ for some σ ∈ runs(M) [17,

Lemma 16]. This implies that the definition of inter(C) and state(C) is well-given when

C belongs to an unfolding prefix. The second task is defining the unfolding UM,◇ of M .

Here, we prove that the set of unfolding prefixes equipped with relation ⊴ forms a complete

join-semilattice [17, Lemma 17]. This implies the existence of a unique ⊴-maximal element:

◮ Definition 4 (Unfolding). The unfolding UM,◇ of M under the independence relation ◇ is

the unique ⊴-maximal element in the set of unfolding prefixes of M under ◇.

Finally we verify that the definition is well given and that the unfolding is complete, i.e.,

every run of the system is represented by a unique configuration of the unfolding.

◮ Theorem 5. The unfolding UM,◇ exists and is unique. Furthermore, for any non-empty

run σ of M , there exists a unique configuration C of UM,◇ such that σ ∈ inter(C).

◮ Example 6 (Programs). Figure 1 (a) gives a concurrent program, where process w writes

a global variable and processes r and r′ read it. We can associate various semantics to

it. Under an empty independence relation, the unfolding would be the computation tree,

where executions would be totally ordered. Considering (the unique transition of) r and r′

independent, and w dependent on them, we get the unfolding given in Fig. 1 (b).

Events are numbered from 1 to 10, and labelled with a transition. Arrows represent

causality between events and dotted lines immediate conflict. The Mazurkiewicz trace of

each deadlocking execution is represented by a unique ⊆-maximal configuration, e.g., the

run w.r.r′ yields configuration {1, 2, 3}, where the two possible interleavings reach the same

CONCUR’15
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(c)
t3t3t3 t3t3

t2t1

t3

(a)

�

t1 t′1 tn t′n
. . .

(d)

t1 t2

�

t3

t3 t3

t1

t3

t2

t2t1

(b)

Figure 2 (a) A Petri net; (b) its classic unfolding; (c) our parametric semantics.

state. For instance, the canonic name of event 1 is ⟨w,{�}⟩ and of event 2 it is ⟨r,{�, 1}⟩.
Let P be the unfolding prefix that contains events {�, 1, 2}. Definition 3 can extend it with

three possible events: 3, 4, and 7. Consider transition r′. Three configurations of P enable

r′: {�},{�, 1} and {�, 1, 2}. But since ¬(h(2) } r′), only the first two will be in HP,◇,r′ ,

resulting in events 3 ∶= ⟨r′,{�, 1}⟩ and 7 ∶= ⟨r′,{�}⟩. Also, KP,◇,7 is {1}, as w } r′. The

four maximal configurations are {1, 2, 3}, {4, 5, 6}, {4, 7, 8} and {7, 9, 10}, resp. reaching the

states ⟨x, y, z⟩ = ⟨1, 1, 1⟩, ⟨1, 0, 1⟩, ⟨1, 0, 0⟩ and ⟨1, 1, 0⟩, assuming that variables start at 0.

◮ Example 7 (Comparison to Petri Net Unfoldings). In contrast to our parametric semantics,

classical unfoldings of Petri nets [5] use a fixed independence relation, specifically the

complement of the following one (valid only for safe nets): given two transitions t and t′,

t }n t′ iff (t● ∩ ●t′ ≠ ∅) or (t′● ∩ ●t ≠ ∅) or (●t′ ∩ ●t ≠ ∅),

where ●t and t● are respectively the preset and postset of t. Classic Petri net unfoldings (of

safe nets) are therefore a specific instantiation of our semantics. A well known challenge

for classic unfoldings are transitions that “read” places, e.g., t1 and t2 in Fig. 2 (a). Since

t1 }n t2, the classic unfolding, Fig. 2 (b), sequentializes all their occurrences. A solution for

this issue is the so-called place replication (PR) unfolding [15], or alternatively contextual

unfoldings (which anyway internally are asymptotically the same size as the PR-unfolding).

This problem vanishes with our parametric unfolding. It suffices to use a dependency

relation }′n ⊂ }n that makes transitions that “read” common places independent. The

result is that our unfolding, Fig. 2 (c), can be of the same size as the PR-unfolding, i.e.,

exponentially more compact than the classic unfolding. For instance, when Fig. 2 (a) is

generalized to n reading transitions, the classic unfolding would have O(n!) copies of t3,

while ours would have O(2n). The point here is that our semantics naturally accommodates

a more suitable notion of independence without resorting to specific ad-hoc tricks.

Furthermore, although this work is restricted to unconditional independence, we conjecture

that an adequately restricted conditional dependence would suffice, e.g., the one of [12].

Gains achieved in such setting would be difficult with classic unfoldings.

4 Stateless Unfolding Exploration Algorithm

We present a DPOR algorithm to explore an arbitrary event structure (e.g., the one of § 3)

instead of sequential executions. Our algorithm explores one configuration at a time and

organizes the exploration into a binary tree. Figure 1 (c) gives an example. The algorithm is

optimal [2], in the sense that no configuration is ever visited twice in the tree.
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Algorithm 1: An unfolding-based POR exploration algorithm.

1 Initially, set U ∶= {�}, set G ∶= ∅, and call Explore({�}, ∅, ∅).

2 Procedure Explore(C, D, A)

3 Extend(C)

4 if en(C) = ∅ return

5 if A = ∅

6 Choose e from en(C)

7 else

8 Choose e from A ∩ en(C)

9 Explore(C ∪ {e}, D, A ∖ {e})

10 if ∃J ∈ Alt(C, D ∪ {e})

11 Explore(C, D ∪ {e}, J ∖C)

12 Remove(e, C, D)

13 Procedure Extend(C)

14 Add ex(C) to U

15 Procedure Remove(e, C, D)

16 Move {e} ∖QC,D,U from U to G

17 foreach ê ∈ #i

U
(e)

18 Move [ê] ∖QC,D,U from U to G

For the rest of the paper, let U◇,M ∶= ⟨E,<, #, h⟩ be the unfolding of M under ◇, which

we abbreviate as U . For this section we assume that U is finite, i.e., that all computations

of M terminate. This is only to ease presentation, and we relax this assumption in § 5.2.

We give some new definitions. Let C be a configuration of U . The extensions of C,

written ex(C), are all those events outside C whose causes are included in C. Formally,

ex(C) ∶= {e ∈ E∶ e ∉ C ∧ ⌈e⌉ ⊆ C}. We let en(C) denote the set of events enabled by C, i.e.,

those corresponding to the transitions enabled at state(C), formally defined as en(C) ∶=
{e ∈ ex(C)∶C ∪ {e} ∈ conf (U)}. All those events in ex(C) that are not in en(C) are the

conflicting extensions, cex(C) ∶= {e ∈ ex(C)∶ ∃e′ ∈ C, e #i e′}. Clearly, sets en(C) and cex(C)

partition the set ex(C). Lastly, we define #i(e) ∶= {e′ ∈ E∶ e #i e′}, and #i

U
(e) ∶= #i(e) ∩U .

The difference between both is that #i(e) contains events from anywhere in the unfolding

structure, while #i

U
(e) can only see events in U .

The algorithm is given as Alg. 1. The main procedure Explore(C, D, A) is given the

configuration that is to be explored as parameter C. The parameter D (for disabled) is the

set of set of events that have already been explored and prevents that Explore() repeats

work. It can be seen as a sleep set [7]. The set A (for add) is occasionally used to guide the

direction of the exploration.

Additionally, a global set U stores all events presently known to the algorithm. Whenever

some event can safely be discarded from memory, Remove will move it from U to G (for

garbage). Once in G, it can be discarded at any time, or be preserved in G in order to save

work when it is re-inserted in U . Set G is thus our cache memory of events.

The key intuition for Alg. 1 is as follows. A call to Explore(C, D, A) visits all maximal

configurations of U that contain C and do not contain D; and the first one explored will

contain C ∪A. Figure 1 (c) gives one execution; tree nodes are of the form C | D | A .

The algorithm first updates U with all extensions of C (procedure Extend). If C is a

maximal configuration, then there is nothing to do, and it backtracks. If not, it chooses an

event in U enabled at C, using the function en(C) ∶= en(C) ∩U . If A is empty, any enabled

event can be taken. If not, A needs to be explored and e must come from the intersection.

Next it makes a recursive call (left subtree), where it explores all configurations containing

all events in C ∪ {e} and no event from D. Since Explore(C, D, A) had to visit all maximal

configurations containing C, it remains to visit those containing C but not e, but only if
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there exists at least one! Thus, we determine whether U has a maximal configuration that

contains C, does not contain D and does not contain e. Function Alt will return a set of

events that witness the existence of such configuration (iff one exists). If one exists, we make

a second recursive call (right subtree). Formally, we call such witness an alternative:

◮ Definition 8 (Alternatives). Given a set of events U ⊆ E, a configuration C ⊆ U , and a set

of events D ⊆ U , an alternative to D after C is any configuration J ⊆ U satisfying that

C ∪ J is a configuration (5)

for all events e ∈ D, there is some e′ ∈ C ∪ J such that e′ ∈ #i

U
(e). (6)

Function Alt(X, Y ) returns all alternatives (in U) to Y after X. Notice that it is called as

Alt(C, D∪{e}) from Alg. 1. Any returned alternative J witnesses the existence of a maximal

configuration C ′ (constructed by arbitrarily extending C ∪ J) where C ′ ∩ (D ∪ {e}) = ∅.

Although Alt reasons about maximal configurations of U , thus potentially about events

that have not yet been seen, it can only look at events in U . Thus, the set U needs to be

large enough to contain enough conflicting events to satisfy (6). Perhaps surprisingly, it

suffices to store only events seen (during the past exploration) in immediate conflict with C

and D. Consequently, when the algorithm calls Remove, to clean from U events that are no

longer necessary (i.e., necessary to find alternatives in the future), it needs to preserve at

least those conflicting events. Specifically, Remove will preserve in U the following events:

QC,D,U ∶= C ∪D ∪ ⋃
e∈C∪D,e′∈#i

U
(e)

[e′].

That is, events in C, in D and events in conflict with those. An alternative definition that

makes QC,D,U smaller would mean that Remove discards more events, which could prevent a

future call to Alt from discovering a maximal configuration that needs to be explored.

We focus now on the correctness of Alg. 1. Every call to Explore(C, D, A) explores a

tree, where the recursive calls at lines 9 and 11 respectively explore the left and right subtrees

(proof in [17, Corollary 25]). Tree nodes are tuples ⟨C, D, A⟩ corresponding to the arguments

of calls to Explore, cf. Fig. 1. We refer to this object as the call tree. For every node, both C

and C ∪A are configurations, and D ⊆ ex(C), cf. [17, Lemma 18]. As the algorithm goes

down in the tree it monotonically increases the size of either C or D. Since U is finite, this

implies that the algorithm terminates:

◮ Theorem 9 (Termination). Regardless of its input, Alg. 1 always stops.

Next we assert that Alg. 1 never visits twice the same configuration, which is why it

is called an optimal POR [2]. We show that for every node in the call tree, the set of

configurations in the left and right subtrees are disjoint [17, Lemma 24]. This implies:

◮ Theorem 10 (Optimality). Let C̃ be a maximal configuration of U . Then Explore(⋅, ⋅, ⋅)

is called at most once with its first parameter being equal to C̃.

Parameter A of Explore plays a central role in making Alg. 1 optimal. It is necessary to

ensure that, once the algorithm decides to explore some alternative J , such an alternative

is visited first. Not doing so makes it possible to extend C in such a way that no maximal

configuration can ever avoid including events in D. Such a configuration, referred as a

sleep-set blocked execution in [2], has already been explored before.

Finally, we ensure that Alg. 1 visits every maximal configuration of U . This essentially

reduces to showing that it makes the second recursive call, line 11, whenever there exists

some unexplored maximal configuration not containing D ∪ {e}. The difficulty of proving
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this [17, Lemma 27] aises from the fact that Alg. 1 only sees events in U . Owing to space

constraints, we omit an additional result on the memory consumption, see [17, Appendix

B.5.].

◮ Theorem 11 (Completeness). Let C̃ be a maximal configuration of U . Then Explore(⋅, ⋅, ⋅)

is called at least once with its first parameter being equal to C̃.

5 Improvements

5.1 State Caching

Stateless model checking algorithms explore only one configuration of U at a time, thus

potentially under-using remaining available memory. A desirable property for an algorithm

is the capacity to exploit all available memory without imposing the liability of actually

requiring it. The algorithm in § 4 satisfies this property. The set G, storing events discarded

from U , can be cleaned at discretion, e.g., when the memory is approaching full utilisation.

Events cached in G are exploited in two different ways.

First, whenever an event in G shall be included again in U , we do not need to reconstruct

it in memory (causality, conflicts, etc.). This might happen frequently. Second, using the

result of the next section, cached events help prune the number of maximal configurations

to visit. This means that our POR potentially visits fewer final states than the number of

configurations of U , thus conforming to the requirements of a super-optimal DPOR. The

larger G is, the fewer configurations will be explored.

5.2 Non-Acyclic State Spaces

In this section we remove the assumption that UM,◇ is finite. We employ the notion of cutoff

events [14]. While cutoffs are a standard tool for unfolding pruning, their application to our

framework brings unexpected problems.

The core question here is preventing Alg. 1 from getting stuck in the exploration of

an infinite configuration. We need to create the illusion that maximal configurations are

finite. We achieve this by substituting procedure Extend in Alg. 1 with another procedure

Extend’ that operates as Extend except that it only adds to U an event from e ∈ ex(C) if

the predicate cutoff(e, U, G) evaluates to false. We define cutoff(e, U, G) to hold iff there

exists some event e′ ∈ U ∪G such that

state([e]) = state([e′]) and ∣[e′]∣ < ∣[e]∣. (7)

We refer to e′ as the corresponding event of e, when it exists. This definition declares e cutoff

as function of U and G. This has important consequences. An event e could be declared

cutoff while exploring one maximal configuration and non-cutoff while exploring the next, as

the corresponding event might have disappeared from U ∪G. This is in stark contrast to

the classic unfolding construction, where events are declared cutoffs once and for all. The

main implication is that the standard argument [14, 5, 3] invented by McMillan for proving

completeness fails. We resort to a completely different argument for proving completeness of

our algorithm (see [17, Appendix C.1.]), which we are forced to skip due to lack of space.

We focus now on the correction of Alg. 1 using Extend’ instead of Extend. A causal

cutoff is any event e for which there is some e′ ∈ [e] satisfying (7). It is well known that

causal cutoffs define a finite prefix of U as per the classic saturation definition [3]. Also,

cutoff(e, U, G) always holds for causal cutoffs, regardless of the contents of U and G. This
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means that the modified algorithm can only explore configurations from a finite prefix. It

thus necessarily terminates. As for optimality, it is unaffected by the use of cutoffs, existing

proofs for Alg. 1 still work. Finally, for completeness we prove the following result, stating

that local reachability (e.g., fireability of transitions of M) is preserved:

◮ Theorem 12 (Completeness). For any reachable state s ∈ reach(M), Alg. 1 updated with

the cutoff mechanism described above explores one configuration C such that for some C ′ ⊆ C

it holds that state(C ′) = s.

Lastly, we note that this cutoff approach imposes no liability on what events shall be

kept in the prefix, set G can be cleaned at discretion. Also, redefining (7) to use adequate

orders [5] is straightforward (see [17], where our proofs actually assume adequate orders).

6 Experiments

As a proof of concept, we implemented our algorithm in a new explicit-state model checker

baptized Poet (Partial Order Exploration Tool).3 Written in Haskell, a lazy functional

language, it analyzes programs from a restricted fragment of the C language and supports

POSIX threads. The analyzer accepts deterministic programs, implements a variant of Alg. 1

where the computation of the alternatives is memoized, and supports cutoffs events with the

criteria defined in § 5.

We ran Poet on a number of multi-threaded C programs. Most of them are adapted

from benchmarks of the Software Verification Competition [18]; others are used in related

works [8, 20, 2]. We investigate the characteristics of average program unfoldings (depth,

width, etc.) as well as the frequency and impact of cutoffs on the exploration. We also

compare Poet with Nidhugg [1], a state-of-the-art stateless model checking for multi-

threaded C programs that implements Source-DPOR [2], an efficient but non-optimal DPOR.

All experiments were run on an Intel Xeon CPU with 2.4 GHz and 4 GB memory. Tables 1

and 2 give our experimental data for programs with acyclic and non-acyclic state spaces,

respectively.

For programs with acyclic state spaces (Table 1), Poet with and without cutoffs seems to

perform the same exploration when the unfolding has no cutoffs, as expected. Furthermore,

the number of explored executions also coincides with Nidhugg when the latter reports 0

sleep-set blocked executions (cf., § 4), providing experimental evidence of Poet’s optimality.

The unfoldings of most programs in Table 1 do not contain cutoffs. All these programs

are deterministic, and many of them highly sequential (Stf, Spin08, Fib), features known

to make cutoffs unlikely. Ccnf(n) are concurrent programs composed of n − 1 threads

where thread i and i + 1 race on writing one variable, and are independent of all remaining

threads. Their unfoldings resemble Fig. 2 (d), with 2(n−1)/2 traces but only O(n) events.

Saturation-based unfolding methods would win here over both Nidhugg and Poet.

In the ssb benchmarks, Nidhugg encounters sleep-set blocked executions, thus performing

sub-optimal exploration. By contrast, Poet finds many cutoff events and achieves a super-

optimal exploration, exploring fewer traces than both Poet without cutoffs and Nidhugg.

The data shows that this super-optimality results in substantial savings in runtime.

For non-acyclic state spaces (Table 2), unfoldings are infinite. We thus compare Poet

with cutoffs and Nidhugg with a loop bound. Hence, while Nidhugg performs bounded

model checking, Poet does complete verification. The benchmarks include classical mutual

3 Source code and benchmarks available from: http://www.cs.ox.ac.uk/people/marcelo.sousa/poet/.

http://www.cs.ox.ac.uk/people/marcelo.sousa/poet/
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Table 1 Programs with acyclic state space. Columns are: ∣P ∣: nr. of threads; ∣I ∣: nr. of explored

traces; ∣B∣: nr. of sleep-set blocked executions; t(s): running time; ∣E∣: nr. of events in U ; ∣Ecut∣: nr.

of cutoff events; ∣Ω∣: nr. of maximal configurations; ⟨∣UΩ∣⟩: avg. nr. of events in U when exploring a

maximal configuration. A ∗ marks programs containing bugs. <7K reads as “fewer than 7000”.

Benchmark Nidhugg Poet (without cutoffs) Poet (with cutoffs)

Name ∣P ∣ ∣I ∣ ∣B∣ t(s) ∣E∣ ∣Ω∣ ⟨∣UΩ∣⟩ t(s) ∣E∣ ∣Ecut∣ ∣Ω∣ ⟨∣UΩ∣⟩ t(s)

Stf 3 6 0 0.06 121 6 79 0.04 121 0 6 79 0.06
Stf∗ 3 – – 0.05 – – – 0.02 – – – – 0.03
Spin08 3 84 0 0.08 2974 84 1506 2.04 2974 0 84 1506 2.93
Fib 3 8953 0 3.36 <185K 8953 92878 305 <185K 0 8953 92878 704
Fib∗ 3 – – 0.74 – – – 81.0 – – – – 133
Ccnf(9) 9 16 0 0.05 49 16 46 0.07 49 0 16 46 0.06
Ccnf(17) 17 256 0 0.15 97 256 94 5.76 97 0 256 94 6.09
Ccnf(19) 19 512 0 0.28 109 512 106 22.5 109 0 512 106 22.0
Ssb 5 4 2 0.05 48 4 38 0.03 46 1 4 37 0.03
Ssb(1) 5 22 14 0.06 245 23 143 0.11 237 4 23 140 0.11
Ssb(3) 5 169 67 0.12 2798 172 1410 3.51 1179 48 90 618 0.90
Ssb(4) 5 336 103 0.15 <7K 340 3333 20.3 2179 74 142 1139 2.07
Ssb(8) 5 2014 327 0.85 <67K 2022 32782 4118 <12K 240 470 6267 32.1

Table 2 Programs with non-terminating executions. Column b is the loop bound. The value is

chosen based on experiments described in [1].

Benchmark Nidhugg Poet (with cutoffs)

Name ∣P ∣ b ∣I ∣ ∣B∣ t(s) ∣E∣ ∣Ecut∣ ∣Ω∣ ⟨∣UΩ∣⟩ t(s)

Szymanski 3 – 103 0 0.07 1121 313 159 591 0.36
Dekker 3 10 199 0 0.11 217 14 21 116 0.07
Lamport 3 10 32 0 0.06 375 28 30 208 0.12
Peterson 3 10 266 0 0.11 175 15 20 100 0.05
Pgsql 3 10 20 0 0.06 51 8 4 40 0.03
Rwlock 5 10 2174 14 0.83 <7317 531 770 3727 12.29
Rwlock(2)∗ 5 2 – – 7.88 – – – – 0.40
Prodcons 4 5 756756 0 332.62 3111 568 386 1622 5.00
Prodcons(2) 4 5 63504 0 38.49 640 25 15 374 1.61

exclusion protocols (Szymanski, Sekker, Lamport and Peterson), where Nidhugg is

able to leverage an important static optimization that replaces each spin loop by a load

and assume statement [1]. Hence, the number of traces and maximal configurations is not

comparable. Yet Poet, which could also profit from this static optimization, achieves a

significantly better reduction thanks to cutoffs alone. Cutoffs dynamically prune redundant

unfolding branches and arguably constitute a more robust approach than the load and

assume syntactic substitution. The substantial reduction in number of explored traces,

several orders of magnitude in some cases, translates in clear runtime improvements. Finally,

in our experiments, both tools were able to successfully discover assertion violations in stf∗,

fib∗ and rwlock(2)∗.

In our experiments, Poet’s average maximal memory consumption (measured in events)

is roughly half of the size of the unfolding. We also notice that most of these unfoldings are

quite narrow and deep (∣Ecut∣÷ ∣E∣ is low) when compared with standard benchmarks for Petri

nets. This suggests that they could be amenable for saturation-based unfolding verification,

possibly pointing the opportunity of applying these methods in software verification.
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7 Related Work

This work focuses on explicit-state POR, as opposed to symbolic POR techniques exploited

inside SAT solvers, e.g., [11, 8]. Early POR statically computed the necessary transitions to

fire at every state [19, 7]. Flanagan and Godefroid [6] first proposed to compute persistent

sets dynamically (DPOR). However, even when combined with sleep sets [7], DPOR was

still unable to explore exactly one interleaving per Mazurkiewicz trace. Abdulla et al. [2, 1]

recently proposed the first solution to this, using a data structure called wakeup trees. Their

DPOR is thus optimal (ODPOR) in this sense.

Unlike us, ODPOR operates on an interleaved execution model. Wakeup trees store

chains of dependencies that assist the algorithm in reversing races throughly. Technically,

each branch roughly correspond to one of our alternatives. According to [2], constructing

and managing wakeup trees is expensive. This seems to be related with the fact that

wakeup trees store canonical linearizations of configurations, and need to canonize executions

before inserting them into the tree to avoid duplicates. Such checks become simple linear-

time verifications when seen as partial-orders. Our alternatives are computed dynamically

and exploit these partial orders, although we do not have enough experimental data to

compare with wakeup trees. Finally, our algorithm is able to visit up to exponentially fewer

Mazurkiewicz traces (due to cutoff events), copes with non-terminating executions, and

profits from state caching. The work in [2] has none of these features.

Combining DPOR with stateful search is challenging [21]. Given a state s, DPOR relies on

a complete exploration from s to determine the necessary transitions to fire from s, but such

exploration could be pruned if a state is revisited, leading to unsoundness. Combining both

methods requires addressing this difficulty, and two works did it [21, 20], but for non-optimal

DPOR. By contrast, incorporating cutoff events into Alg. 1 was straightforward.

Classic, saturation-based unfolding algorithms are also related [14, 5, 3, 10]. They

are inherently stateful, cannot discard events from memory, but explore events instead of

configurations, thus may do exponentially less work. They can furthermore guarantee that

the number of explored events will be at most the number of reachable states, which at

present seems a difficult goal for PORs. On the other hand, finding the events to extend

the unfolding is computationally harder. In [10], Kähkönen and Heljanko use unfoldings for

concolic testing of concurrent programs. Unlike ours, their unfolding is not a semantics of

the program, but rather a means for discovering all concurrent program paths.

While one goal of this paper is establishing an (optimal) POR exploiting the same

commutativity as some non-sequential semantics, a longer-term goal is building formal

connections between the latter and PORs. Hansen and Wang [9] presented a characterization

of (a class of) stubborn sets [19] in terms of configuration structures, another non-sequential

semantics more general than event structures. We shall clarify that while we restrict ourselves

to commutativity-based PORs, they attempt a characterization of stubborn sets, which do

not necessarily rely on commutativity.

8 Conclusions

In the context of commutativity-exploiting POR, we introduced an optimal DPOR that

leverages on cutoff events to prune the number of explored Mazurkiewicz traces, copes

with non-terminating executions, and uses state caching to speed up revisiting events. The

algorithm provides a new view to DPORs as algorithms exploring an object with richer

structure. In future work, we plan exploit this richer structure to further reduce the number

of explored traces for both PORs and saturation-based unfoldings.
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