

COMPUTING
SCIENCE

Unfolding CSPT-nets

Bowen Li and Maciej Koutny

TECHNICAL REPORT SERIES

No. CS-TR-1463 April 2015

TECHNICAL REPORT SERIES

No. CS-TR-1463 April, 2015

Unfolding CSPT-nets

B. Li and M. Koutny

Abstract

Communication structured occurrence nets CSONs are the basic variant of structured
occurrence nets which have been introduced to characterise the behaviours of
complex evolving systems. A CSON has the capability of portraying different types
of interaction between systems by using special elements to link with multiple
(component) occurrence nets. Communication structured place transition nets CSPT-
nets are the system-level counterpart of CSONs.

In this paper, we investigate CSPT-nets unfoldings containing representations of all
the single runs of the original nets captured by CSONs. We develop several useful
notions related to CSPT-net unfoldings, and then present an algorithm for
constructing the new class of unfolding.

© 2015 Newcastle University.
Printed and published by Newcastle University,
Computing Science, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 7RU, England.

Bibliographical details

LI, B; KOUTNY, M;
Unfolding CSPT-nets
[By] B. Li and M. Koutny
Newcastle upon Tyne: Newcastle University: Computing Science, 2015.

(Newcastle University, Computing Science, Technical Report Series, No. CS-TR-1463)

Added entries

NEWCASTLE UNIVERSITY
Computing Science. Technical Report Series. CS-TR-1463

Abstract

Communication structured occurrence nets CSONs are the basic variant of structured occurrence nets which have
been introduced to characterise the behaviours of complex evolving systems. A CSON has the capability of
portraying different types of interaction between systems by using special elements to link with multiple
(component) occurrence nets. Communication structured place transition nets CSPT-nets are the system-level
counterpart of CSONs.

In this paper, we investigate CSPT-nets unfoldings containing representations of all the single runs of the original
nets captured by CSONs. We develop several useful notions related to CSPT-net unfoldings, and then present an
algorithm for constructing the new class of unfolding.
.

About the authors

Maciej Koutny is a Professor in the School of Computing Science, Newcastle University. His research interests
centre on the theory of distributed and concurrent systems, including both theoretical aspects of their semantics
and application of formal techniques to the modelling and verification of such systems; in particular, model
checking based on net unfoldings. He has also investigated non-interleaving semantics of priority systems, and the
relationship between temporal logic and process algebras. Recently, he has been working on the development of a
formal model combining Petri nets and process algebras as well as on Petri net based behavioural models of
membrane systems.

Bowen is working on the EPSRC funded project UNCOVER (UNderstanding COmplex system eVolution
through structurEd behaviours). An overall goal of UNCOVER is to develop a rigorous methodology supported
by a toolkit based on structured occurrence nets, in order to provide an effective approach to acquiring and
exploiting behavioural knowledge of a complex evolving system.

Suggested keywords

PETRI NETS
STRUCTURED OCCURRENCE NETS
NET UNFOLDING
CONCURRENCY

Unfolding CSPT-nets

Bowen Li and Maciej Koutny

School of Computing Science, Newcastle University
Newcastle upon Tyne NE1 7RU, United Kingdom

{bowen.li,maciej.koutny}@ncl.ac.uk

Abstract. Communication structured occurrence nets (csons) are the
basic variant of structured occurrence nets which have been introduced
to characterise the behaviours of complex evolving systems. A cson has
the capability of portraying different types of interaction between sys-
tems by using special elements to link with multiple (component) occur-
rence nets. Communication structured place transition nets (cspt-nets)
are the system-level counterpart of csons. In this paper, we investigate
cspt-nets unfoldings containing representations of all the single runs of
the original nets captured by csons. We develop several useful notions
related to cspt-net unfoldings, and then present an algorithm for con-
structing the new class of unfolding.

1 Introduction

A complex evolving system consists of a large number of sub-systems which may
proceed concurrently and interact with each other or with the external environ-
ment while its behaviour is subject to modification by other systems. A typical
example would be a federated cloud [15] combining multiple interacting cloud
providers, with each cloud being composed of a huge amount of services. The
cloud infrastructure can suffer from component break-downs, reconfigurations
and replacement, and the software is continually updated or patched. The com-
munication between sub-systems may either be asynchronous or synchronous.

Structured occurrence nets (sons) [8,13,14] are a Petri net based formalism
that can be used to model the behaviours of complex evolving system. The con-
cept extends that of occurrence nets [1] which are directed acyclic graphs that
represent causality and concurrency information concerning a single execution
of a system. In son, multiple related occurrence nets are combined by means
of various formal relationships; in particular, in order to express dependencies
between interacting systems. Communication structure occurrence nets (csons)
are the basic variant of sons. The model has the capability of portraying dif-
ferent types of interaction between systems. A cson involves occurrence nets
that are connected by channel places representing synchronous or asynchronous
communications. [7] introduced a system-level counterpart of csons called com-
munication structured place transition nets (cspt-nets). The nets are built out
of the place/transition nets (pt-nets), which are connected by channel places
allowing both synchronous and asynchronous communication.

2 Bowen Li and Maciej Koutny

(a) (b)

Fig. 1. (a)A cspt-net example; and (b) its unfolding using standard unfolding ap-
proach.

The standard Petri nets unfoldings, introduced in [2, 11], are a technique
supporting effective verification of concurrent systems modeled by Petri nets
(throughout this paper, Petri net related concepts, such as configuration, un-
folding, merged process, will be referred to as standard). The method relies on
the concept of net unfolding which can be seen as the partial order behaviour
of a concurrent system. The unfolding (or branching process) of a net is usually
infinite, but for bounded Petri nets one can construct a finite complete prefix of
the unfolding containing enough information to analyse important behavioural
properties. [9] investigated branching processes of cspt-nets (cspt-net unfold-
ings). As in the standard net theory, cspt branching processes act as a ‘bridge’
between cspt-nets and their processes captured by csons (i.e., the branching
processes of a cspt-net contains a representation of all the possible single runs
of the original net). In order to reduce the complexity of branching processes of
cspt-nets, we adapt the notion of occurrence depth which was originally devel-
oped for merged processes [5]. Figure 1(a) shows a cspt-net with (asynchronous)
communication between the two component pt-nets. In this case, the unfolding
of is isomorphic to the original cspt-net. Note that in the standard unfolding
approach there would be a duplicated event c as the additional consumer for the
input place q (figure 1(b)).

In this paper, we introduce and discuss several key properties of branching
processes of cspt-nets. We also present an algorithm for constructing cspt-net
unfoldings, generalising the unfolding algorithm introduced in [9] which could
only handle channel places with a single input and a single output transition. In
particular, the new algorithm takes into account the occurrence depth of events,
and fusees nodes which have same behaviours during the unfolding. In this way,
the size of the resulting net can be significantly reduced when compared with
the standard unfolding approach.

The paper is organised as follows. Section 2 provides basic notions concern-
ing Petri nets and their unfoldings. Section 3 presents the main concepts of
communication structured net theory, including cson-nets, cspt-nets and cspt
branching processes. In section 4, we discuss finite complete prefixes of cspt

Unfolding CSPT-nets 3

branching processes and related properties. The cspt unfolding algorithm is
provided in Section 5. Section 6 discusses future works and concludes the paper.

2 Basic Definitions

We assume that the reader is familiar with the basic notions concerning Petri
nets and their unfoldings, which can be found in, e.g., [1,2,11]. Throughout the
paper, a multiset over a set X is a function µ : X → N, where N = {0, 1, 2, . . .}.
A multiset may be represented by explicitly listing its elements with repetitions.
For example {a, a, b} denotes the multiset such that µ(a) = 2, µ(b) = 1 and
µ(x) = 0 for x ∈ X\{a, b}.

2.1 PT-nets

A net is a triple N = (P, T, F) such that P and T are disjoint sets of respectively
places and transitions (collectively referred to as nodes), and F ⊆ (P × T) ∪
(T × P) is the flow relation. The inputs and outputs of a node x are defined as
•x = {y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F}. Moreover, •x• = •x ∪ x•. It is
assumed that the inputs and outputs of a transition are nonempty sets.

Two nodes, x and x′, are in conflict if there are distinct transitions, t and
t′, such that •t ∩ •t′ 6= ∅ and (t, x) ∈ F ∗ and (t′, x′) ∈ F ∗. We denote this by
x#x′. A node x is in self-conflict if x#x.

A place transition net (pt-net) is a tuple PT = (P, T, F,M0), where (P, T, F)
is a finite net, and M0 : P → N is the initial marking (in general, a marking is
a multiset of places).

A step U is a non-empty multiset of transitions of PT . It is enabled at a
marking M if

M(p) ≥
∑
t∈p•

U(t) ,

for every place p. In such a case, the execution of U leads to a new marking M ′

given by

M ′(p) = M(p) +
∑
t∈•p

U(t)−
∑
t∈p•

U(t) ,

for every p ∈ P . We denote this by M [U〉M ′. A step sequence of PT is a sequence
λ = U1 . . . Un (n ≥ 0) of steps such that there exist markings M1, . . . ,Mn

satisfying:
M0[U1〉M1, . . . ,Mn−1[Un〉Mn

The reachable markings of PT are defined as the smallest (w.r.t.⊆) set reach(PT)
containing M0 and such that if there is a marking M ∈ reach(PT) and M [U〉M ′,
for a step U and a marking M ′, then M ′ ∈ reach(PT).

PT is k-bounded if, for every reachable marking M and every place p ∈ P ,
M ≤ k, and safe if it is 1-bounded. The markings of a safe pt-net can be treated
as sets of places.

4 Bowen Li and Maciej Koutny

2.2 Branching processes of PT-nets

A net ON = (P, T, F), with places and transitions called respectively conditions
and events, is a branching occurrence net if the following hold:

– F is acyclic and no transition t ∈ T is in self-conflict;
– |•p| ≤ 1, for all p ∈ P ; and
– for every node x, there are finitely many y such that (y, x) ∈ F ∗.

The set of all places p with no inputs (i.e., •p = ∅) is the default initial state of
ON , denoted by MON . In general, a state is any set of places.

If |p•| ≤ 1, for all p ∈ P , then ON is a non-branching occurrence net.
Note that in a branching occurrence net, two paths outgoing from a place will
never meet again by coming to the same place (the inputs of places are at most
singleton sets) nor the same transition (transitions cannot be in self-conflict).

A branching process of a pt-net PT = (P, T, F,M0) is a pair Π = (ON , h),
where ON = (P ′, T ′, F ′) is a branching occurrence net and h : P ′ ∪ T ′ → P ∪ T
is a mapping, such that the following hold:

– h(P ′) ⊆ P and h(T ′) ⊆ T ;
– for every e ∈ T ′, the restriction of h to •e is a bijection between •e and •h(e),

and similarly for e• and h(e)•;
– the restriction of h to MON is a bijection between MON and M0; and
– for all e, f ∈ T ′, if •e = •f and h(e) = h(f) then e = f .

There exists a maximal branching process ΠPT , called the unfolding of PT [2].

2.3 Configurations and cuts of a branching process

Let Π = (ON , h) be a branching process of a pt-net PT , and ON = (P ′, T ′, F ′).
A configuration of Π is a set of events C ⊆ T ′ such that ¬(e#e′), for all

e, e′ ∈ C, and (e′, e) ∈ F ′+ =⇒ e′ ∈ C, for every e ∈ C. In particular, the local
configuration of an event e, denoted by [e], is the set of all the events e′ such
that (e′, e) ∈ F ′∗. The notion of a configuration captures the idea of a possible
history of a concurrent system, where all events must be conflict-free, and all
the predecessors of a given event must have occurred.

A co-set of Π is a set of conditions B ⊆ P ′ such that, for all distinct b, b′ ∈ B,
(b, b′) /∈ F ′+. Moreover, a cut of Π is any maximal (w.r.t. ⊆) co-set B.

Finite configurations and cuts of Π are closely related:

– if C is a finite configuration of Π, then Cut(C) = (MON ∪C•) \ •C is a cut
and Mark(C) = h(Cut(C)) is a reachable marking of PT ; and

– if M is a reachable marking of PT , then there is a finite configuration C of
ΠPT such that Mark(C) = M .

Hence every marking represented in the unfolding ΠPT is reachable in PT , and
every reachable marking of PT is represented in ΠPT .

Unfolding CSPT-nets 5

3 Structuring PT-nets

In this section we recall the formal definitions concerning communication struc-
tured nets theory, including cson-nets and cspt-nets. We then introduce the
notion of branching processes of cspt-nets and several related properties.

The new models are able to portray different kinds of communication between
separate systems. One can envisage that if a given pt-net attempts to represent
several interacted systems, it will be beneficial to split the model into a set
of component nets, and create specific devices to represent any communication
between the subsystems. In the model we are interested in communication can
be synchronous or asynchronous. Usually, the former implies that a sender waits
for an acknowledgment of a message before proceeding, while in the latter the
sender proceeds without waiting.

A communication structured net is composed of a set of component nets rep-
resenting separate subsystems. When it is determined that there is a potential
for an interaction between subsystems, asynchronous or synchronous communi-
cation link can be made between transitions (or events) in the different nets via
a special element called a channel place. Two transitions (events) involved in a
synchronous communication link must be executed simultaneously. On the other
hand, transitions (events) involved in an asynchronous communication may be
executed simultaneously, or one after the other.

Similarly as in the case of pt-nets, non-branching processes cson-nets will
represent single runs of cspt-nets, while branching processes will capture full
execution information of the corresponding cspt-nets.

3.1 CSPT-nets

By generalising the definition of [7], we first introduce an extension of pt-nets
which combines several such nets into one model using channel places.

Definition 1 (CSPT-net). A communication structured place transition net
(or cspt-net) is a tuple

CSPT = (PT 1, . . . ,PT k, Q,W,M0) (k ≥ 1)

such that each PTi = (Pi, Ti, Fi,Mi) is a safe (component) pt-net; Q is a finite
set of channel places; M0 : Q → N is the initial marking of the channel places;
and W ⊆ (T ×Q)∪ (Q×T), where T =

⋃
Ti, is the flow relation for the channel

places.

It is assumed that the following are satisfied:

1. The PT i’s and Q are pairwise disjoint.
2. For every channel place q ∈ Q,

– the sets of inputs and outputs of q,

•q = {t ∈ T | (t, q) ∈W} and q• = {t ∈ T | (q, t) ∈W} ,

are both nonempty and, for some i 6= j, •q ⊆ Ti and q• ⊆ Tj; and

6 Bowen Li and Maciej Koutny

Fig. 2. A cspt-net with three component pt-nets.

– if •q• ∩ Ti 6= ∅ then there is no reachable marking of PT i which enables
a step comprising two distinct transitions in •q•. �

The initial marking MCSPT of CSPT is the multiset sum of the Mi’s (i =
0, 1, . . . , k), and a marking is in general a multiset of places, including the channel
places.

To simplify the presentation, in the rest of this paper we will assume that
the channel places in the initial states of cspt-nets are empty.

The execution semantics of CSPT is defined as for a pt-net except that a
step of transitions U is enabled at a marking M if, for every non-channel place p,

M(p) ≥
∑
t∈p•

U(t) ,

and, for every channel place q,

M(q) +
∑
t∈•q

U(t) ≥
∑
t∈q•

U(t) . (∗)

The condition (∗) for step enabledness caters for synchronous behaviour as step
U can use not only the tokens that are already available in channel places at
marking M , but also can use the tokens deposited there by transitions from U
during the execution of U . In this way, transitions from U can ‘help’ each other
individually and synchronously pass resources (tokens) among themselves. Thus,
in contrast to the step execution of a pt-net where a step consists of a number
of enabled transitions, the execution of a step in a cspt-net (i.e., M [U〉M ′) may
involve synchronous communications (or interactions), where transitions execute
simultaneously and behave as a transaction. Such a mode of execution is strictly
more expressive than that used in pt-nets.

Unfolding CSPT-nets 7

Figure 2 shows a cspt-net which consists of three component pt-nets con-
nected by a set of channel places (represented by circles with thick edges). To
improve readability, the thick dashed lines indicate the flow relation W . Tran-
sitions n2 and u2 are connected by a pair of empty channel places, q3 and q4,
forming a cycle. This indicates that these two transitions can only be executed
synchronously. They will be filled and emptied synchronously when both n2 and
u2 participate in an enabled step. On the other hand, the execution of transitions
n1 and u0 can be either asynchronous (n1 occurs before u0), or synchronous
(both of them occur simultaneously). A possible step sequence of Figure 2 is
λ = {t0, n1}{u0}{n2, u2}, where n1 and u0 perform an asynchronous communi-
cation. Another step sequence λ′ = {t0}{n1, u0}{n2, u2} shows that n1 and u0
can be also executed synchronously.

Definition 1(2) means that the occurrences of transitions in •q (as well as
those in q•) are totally ordered in any execution of the corresponding component
net PT i. In other words, we assume that both the output access and the input
access to the channel places is sequential. This will allow us to introduce the
notion of depth at which an event which accessed a channel place has occurred.

Given a branching process derived for a component pt-net of a cspt-net,
consider an event e such that its corresponding transition is an input (or output)
of a channel place q in the cspt-net. Then the occurrence depth of such event
w.r.t., the channel place q is the number of events such that they all causally
precede e and their corresponding transitions are also inputs (or outputs) of the
channel place q. Since the tokens flowing through channel places are based on the
FIFO policy. The occurrence depth intuitively represents the number of tokens
which have entered (or left) the channel place q before the occurrence of e.

Definition 2 (occurrence depth). Let CSPT be as in Definition 1, and q ∈ Q
and PT i be such that •q• ∩ Ti 6= ∅. Moreover, let Π = (ON , h) be a branching
process of PT i, and e be an event of ON = (P ′, T ′, F ′) such that h(e) ∈ •q•.

The depth of e in Π w.r.t. the channel place q is given by:

depthΠq (e) = |{f ∈ T ′ | h(f) ∈ •q• ∧ (f, e) ∈ F ′∗}| .

Moreover, if the process Π is clear from the context, we will write depthq(e)

instead of depthΠq (e). �

Proposition 1. Let Π and q ∈ Q be as in Definition 2. Moreover, let e and
f be two distinct events of Π satisfying ¬(e#f) and h(e), h(f) ∈ •q•. Then
depthq(e) 6= depthq(f).

Proof. By ¬(e#f) and Definition 1(2), we have that either eF ′+f or fF ′+e
holds. Hence depthq(e) < depthq(f) or depthq(e) > depthq(f), respectively. ut

The nets in the dashed line boxes in Figure 3(b) are two component branching
processes derived from the component pt-nets of the cspt-net in Figure 3(a).
The labels are shown alongside each node, and the occurrence depth of each
event connected to a (unique, in this case) channel place is shown in brackets.

8 Bowen Li and Maciej Koutny

(depthq0=1)

(depthq0=1)

(depthq0=2)

(depthq0=2)

Fig. 3. (a) A cspt-net, and (b) its branching process (event labels are shown alongside
the nodes and the occurrence depths are shown in brackets).

Let us consider event e1. Its corresponding transition t1 is the input of channel
place q0. When searching the directed path starting at the initial state and
terminating at e1, we can find another event (viz. e0) such that its corresponding
transition is also the input of q0. Therefore the occurrence depth of e1, w.r.t.
q0, is depthq0(e1) = 2. It intuitively represents transition t1 passing the second
token to the channel.

3.2 Non-branching processes of CSPT-nets

Similarly to the way in which cspt-nets are extensions of pt-nets, non-branching
processes of cspt-nets are extensions of non-branching occurrence nets.

Definition 3 (non-branching process of CSPT-net). Let CSPT be as in
Definition 1 with M0 being empty.

A non-branching process of CSPT is a tuple:

CSON = (Π1, . . . ,Πk, Q
′,W ′, h′)

such that each Πi = (ON i, hi) is a non-branching process of PT i with ON i =
(P ′i , T

′
i , F

′
i); Q

′ is a set of channel places; W ′ ⊆ (T ′ × Q′) ∪ (Q′ × T ′) where
T ′ =

⋃
T ′i ; and h′ : Q′ → Q.

It is assumed that the following hold, where h = h′ ∪
⋃
hi and F ′ =

⋃
F ′i :

1. The ON i’s and Q′ are pairwise disjoint.
2. For every r ∈ Q′,

– |•r| = 1 and |r•| ≤ 1; and
– if e, f ∈ •r•, then depthh(r)(e) = depthh(r)(f).

3. For every e ∈ T ′, the restriction of h to •e∩Q′ is a bijection between •e∩Q′
and •h(e) ∩Q, and similarly for e• ∩Q′ and h(e)• ∩Q.

4. The relation
(@ ∪ ≺)∗◦ ≺ ◦(≺ ∪ @)∗

over T ′ is irreflexive, where:

Unfolding CSPT-nets 9

Fig. 4. A cson-net which is a possible single run of the cspt-net of Figure 2.

– e ≺ f if there is p ∈
⋃
P ′i with p ∈ e• ∩ •f ; and

– e @ f if there is r ∈ Q′ with r ∈ e• ∩ •f .

5. h(MCSON) = MCSPT , where MCSON is the default initial state of CSON
defined as

⋃
MON i . �

The above definition extends that in [7] by allowing an infinite number of
nodes, and therefore provides a general meaning of a single run of a cspt-net.
To capture the behaviour systems with complex structure, we use the the binary
relation @ (weak causality) to represent a/synchronous communication between
two events (see [7]). Intuitively, the original causality relation ≺ represents the
‘earlier than’ relationship on the events, and @ represents the ‘not later than’
relationship. In order to ensure the resulting causal dependencies remain consis-
tent, we require the acylicity of not only each component non-branching process
but also any path involving both @ and ≺. The condition involving the depth
of two events accessing the same channel place means that the tokens flowing
through channel places are based on the FIFO policy, so that the size of the
subsequent full representation of the behaviours of a cspt-net is kept low.

The cson in Figure 4 shows a non-branching processes with the labels (along-
side the nodes) coming from the cspt-net shown in Figure 2. It corresponds, e.g.,
to the step sequence λ = {t0, n1}{u0}{n2, u2} in the original cspt-net.

3.3 Branching processes of CSPT-nets

We have described two classes of structured nets, i.e., cspt-nets and csons. The
former is a system-level class of nets providing representations of entire systems,

10 Bowen Li and Maciej Koutny

whereas the latter is a behaviour-level class of nets representing single runs of
such systems. In this section, we will introduce a new class of branching nets
which can capture the complete behaviours of cspt-nets.

Definition 4 (branching process of CSPT-net). Let CSPT be as in Defi-
nition 1 with M0 being empty.

A branching process of CSPT is a tuple:

BCSON = (Π1, . . . ,Πk, Q
′,W ′, h′)

such that each Πi = (ON i, hi) is a branching process of PT i with ON i =
(P ′i , T

′
i , F

′
i); Q

′ is a set of channel places; W ′ ⊆ (T ′ × Q′) ∪ (Q′ × T ′) where
T ′ =

⋃
T ′i ; and h′ : Q′ → Q.

It is assumed that the following hold, where h = h′ ∪
⋃
hi and F ′ =

⋃
F ′i :

1. The ON i’s and Q′ are pairwise disjoint.

2. For all r, r′ ∈ Q′ with h(r) = h(r′), as well as for all e ∈ •r• and f ∈ •r′•,

depthh(r)(e) = depthh(r′)(f)⇐⇒ r = r′ .

3. BCSON is covered in the graph-theoretic sense by a set of non-branching
processes CSON of CSPT satisfying MCSON = MBCSON , where the default
initial state MBCSON of BCSON is defined as

⋃
MON i

. �

Using arguments similar to those used in the case of the standard net unfoldings,
one can show that there is a unique maximal branching process BCSON CSPT ,
called the unfolding of CSPT .

A branching process of a cspt-net consists of branching processes obtained
from each component pt-net and a set of channel places. The default initial state
MBCSON consists of the initial states in the component branching processes. In
addition, Definition 4(1) means that the component branching processes are in-
dependent, and all the interactions between them must be via the channel places.
In particular, there is no direct flow of tokens between any pair of the compo-
nent branching processes. Definition 4(2) implies that the occurrence depths of
events inserting tokens to a channel place are the same, and are equal to the
occurrence depths of events removing the tokens. Moreover, channel places at
the same depth correspond to different channel places in the original cspt-net.
Finally, Definition 4(3) specifies that the label of every input and output event
of a channel place in bcson matches a corresponding transition in the original
cspt-net. In general, every node and arc in the branching process belongs to
at least one non-branching process of cspt-net (cson). This ensures that every
event in the bcson is executable from the default initial state MBCSON (i.e., it
belongs to a step enabled in some reachable marking), and every condition and
channel place is reachable (i.e., it belongs to the initial state or to the post-set
of some executable events).

Unfolding CSPT-nets 11

(a)

(b)

Fig. 5. (a) cspt-net, and (b) its branching process.

Proposition 2 (safeness). Let BCSON be as in Definition 4. Then BCSON
is safe when executed from the default initial state MBCSON .
Note: This means that we treat BCSON as a cspt-net with the initial marking
obtained by inserting a single token in each condition belonging to MBCSON ,
and safety means that no reachable marking contains more than one token in
any condition, including the channel places.

Proof. For the conditions which are not channel places, this follows from the
general properties of the branching processes of pt-nets. For the channel places,
this follows from Proposition 1 and the fact that no event in a branching process
of a pt-net can be executed more than once from the default initial marking. ut

The nets in Figure 3(b) and Figure 5(b) are the branching processes of the
cspt-nets showing in Figure 3(a) and Figure 5(a) respectively. We can observe
that every input and output event of a channel place has the same occurrence

12 Bowen Li and Maciej Koutny

depth which represents the token flow sequence during communication between
different pt-nets. For instance, in Figure 5(b) the occurrence depths of e0, e2
and e8 are depthq0(e0) = depthq0(e2) = depthq0(e8) = 1. This means of that the
transitions t0 and n0 were involved in a first asynchronous communication.

Remark 1. A bcson cannot, in general, be obtained by simply unfolding every
component pt-net independently and appending the necessary channel places
afterwards. Proceeding in such a way can lead to a net violating Definition 4(3).
This is so because an executable transition in a component pt-net does not have
to be executable within the context of the cspt-net. For example, Figure 6(b)
does not show a valid branching process of the cspt-net of Figure 2. Transition
n0 in the middle pt-net of Figure 2 can never be executed since t0 and t1 are in
conflict, and the system is acyclic. As the result, there is no n0-labelled event in
a corresponding branching process. Note that Figure 6(a) shows a valid bcson
since each event present there is executable. �

Remark 2. If one was only interested in marking reachability, then one might
attempt to encode a cspt-net by replacing every asynchronous channel place
by a standard place and ‘glue’ transitions forming a synchronous event into a
single one. For example, synchronised transitions n2 and u2 in Figure 2 could
be fused into a single transition. One would then be able to apply the standard
unfolding to this Petri net based representation. However, the efficiency of such
an approach would suffer from the introduction of exponentially many new tran-
sitions, as well as the loss of the merging on channel places which is due to the
use of occurrence depth. �

4 Completeness of branching processes

In this section, we introduce the concept of a complete prefix of the unfolding of
a cspt-net. The prefix is a truncated part of possibly infinite unfolding which
contains full reachability information about the original cspt-net. The idea is
to consider global configurations of the unfolding taking into account single runs
across different component pt-nets. Then we show that the final states of all
the finite global configurations correspond to the reachable markings of original
cspt-net. Using this result, it is possible to consider a finite truncation which is
sufficient to represent all reachable markings.

4.1 Global configurations

A global configuration of a bcson consists of a set of (standard) configurations,
each coming from a different component branching process, joined together by
channel places.

Definition 5 (global configuration). Let BCSON be as in Definition 4.

A global configuration of BCSON is a set of events

C = C1 ∪ · · · ∪ Ck

Unfolding CSPT-nets 13

such that each Ci is a configuration of the process Πi, and the following hold:

1. •C ∩Q′ ⊆ C•.
2. The relation

(@ ∪ ≺)∗◦ ≺ ◦(≺ ∪ @)∗

over C is irreflexive, where:
– e ≺ f if there is p ∈

⋃
P ′i with p ∈ e• ∩ •f ; and

– e @ f if there is r ∈ Q′ with r ∈ e• ∩ •f .

Moreover, if the configuration C is finite, then Fin(C) = (MBCSON ∪ C•) \ •C
is the final state of C.

The set of all global configurations of BCSON will be denoted by Conf BCSON . �

Definition 5(1) reflects the nature of a/synchronous communication between
component (standard) configurations. Intuitively, if we start with an event of
the global configuration which is an output event of a channel place, then there
exists an input event of the same channel place that also belongs to the global
configuration. Moreover, Definition 5(2) states that there are no asynchronous
cycles in a global configuration.

Proposition 3 (configuration is non-branching). Let C be a configuration
as in Definition 5. Then, for all distinct e, f ∈ C, •e ∩ •f = e• ∩ f• = ∅.

Proof. Suppose that •e ∩ •f 6= ∅. Then by Definitions 4(1) and 5 and the
definition of a configuration of a branching occurrence net, e, f belong to the
same net Πi and there is r ∈ Q′ such that r ∈ •e∩•f . This, however, contradicts
Proposition 1. As a result, •e∩ •f = ∅. The proof of e• ∩ f• = ∅ is similar. ut

Proposition 4 (configuration is causally closed). Let C be a configuration
as in Definition 5. Then, for every e ∈ C, p ∈

⋃
P ′i and p ∈ e•∩•f imply f ∈ C.

Moreover, if r ∈ Q′ ∩ •e then there is f ∈ C such that r ∈ f•.

Proof. Follows from the definition of a configuration of a pt-net, Proposition 1
and Definition 5. ut

Since in bcson we use the merging technique in the case of channel places
(i.e., different events with same occurrence depth and label will link with same in-
stance of channel place), it is possible for a channel place to have multiple inputs
or outputs. Propositions 3 and 4 imply that global configuration are guaranteed
to be non-branching and causally closed w.r.t. the flow relations F ′ and W ′. In-
deed, if a channel place has more than one input (or output) events, these events
are in conflict w.r.t. the flow relation F ′. Hence the events belong to different
configurations, and each channel place in global configuration has exactly one
input and no more than one output. As a result, a global configuration retains
key properties of the standard configurations, and it represents a valid execution
of transitions of the original cspt-net.

Consider the branching process in Figure 5. It has a configuration C =
{e0, e1, e2, e4, e7} which consists of two configurations C1 = {e0, e1} and C2 =

14 Bowen Li and Maciej Koutny

{e2, e4, e7}, whereas C ′ = {e0, e1, e2, e4} and C ′′ = {e0, e1, e2, e4, e6, e7} are not
valid configurations (C ′ has non input event for the channel place r1, while C ′′

includes two configurations of a single component pt-net).
Each finite configuration C has a well-defined final state determined by the

outputs of the events in C. Intuitively, such a state comprises the conditions
and channel places on the frontier between the events of C and events out-
side C. Note that a final state may contain channel places which were involved
in asynchronous communications. No channel place involved in a synchronous
communications can appear in Fin(C), as such channel place must provide in-
put for another event. For instance, the final state of the global configuration
example above is Fin(C) = {c2, c9}, whereas the final state of another global
configuration C ′′′ = {e2, e4, e6} is Fin(C ′′′) = {r0, r2, c8} which contains two
asynchronous channel places.

The next result shows that a global configuration together with their outputs
and the initial state form a cson representing a non-branching process of the
original cspt-nets. And, similarly, the events of a non-branching process included
in a branching one form a global configuration.

Proposition 5. Let BCSON be as in Definition 4.

1. Let C be a global configuration as in Definition 5. Then MBCSON ∪ C ∪ C•
are the nodes of a non-branching process of CSPT included in BCSON .

2. The events of any non-branching process CSON included in BCSON and
satisfying MCSON = MBCSON form a global configuration.

Proof. (1) Let C = C1∪· · ·∪Ck be as in Definition 5. From the standard theory
we know that, for each i, MON i ∪ Ci ∪ C•i form the nodes of a non-branching
process Π ′i of PT i included in Πi and satisfying MΠ′i

= MΠi
. Define CSON as

composed of Π ′1, . . . ,Π
′
k, the channel places in C• and the connecting arrows.

We need to show that CSON satisfies Definition 3.
We then observe that: Definition 3(2) follows from Proposition 3 and Defini-
tions 5(1) and 4(2); Definition 3(3) follows from Definition 4(3); Definition 3(4)
follows from Definition 5(2); and Definition 3(5) follows from Definition 5(2) and
MΠ′i

= MΠi
.

(2) Follows from Definition 3 and an argument reversing that carried out in
part (1). ut
Proposition 6. Let C be a global configuration as in Definition 5. Then h(Fin(C))
is a reachable marking in the original cspt-net.

Proof. Follows from Proposition 5(1) and the properties of non-branching pro-
cesses of cspt-nets.

By combining Propositions 5 and 6, we obtain that finite global configurations
provide a faithful representation of all the reachable marking of the original
cspt-net.

Theorem 1. Let BCSON CSPT be the unfolding of CSPT . Then M is a reach-
able marking of CSPT if and only if M = h(Fin(C)), for some global configu-
ration C of BCSON CSPT .

Unfolding CSPT-nets 15

4.2 Complete prefixes of CSPT-nets

A complete prefix of the unfolding of a cspt-net contains a full reachability
information about the original cspt-net. Such a property is referred to as com-
pleteness.

Finite complete prefixes of Petri nets were first introduced in McMillan’s
seminal work in order to avoid the state explosion problem in the verification of
systems modelled with Petri nets. McMillan also provided an algorithm to gen-
erate a complete finite prefix of the unfolding which contains a full reachability
information. Later, [3] refined McMillan’s prefix construction algorithm to avoid
creating prefixes larger than necessary.

The semantical meaning of completeness has been further addressed in [6],
which extended it to more general properties. Basically, [6] associated complete-
ness with some additional information, provided by the cut-off events which were
only considered as an algorithm issue in the previous works. We can adapt the
resulting notion to the current context as follows.

Definition 6 (completeness). Let BCSON be as in Definition 4, and Ecut be
a set of events of BCSON . Then BCSON is complete w.r.t. Ecut if the following
hold:

– for every reachable marking M of CSPT , there is a finite global configuration
C such that C ∩ Ecut = ∅ and Fin(C) = M ; and

– for each global configuration C of BCSON CSPT such that C ∩ Ecut = ∅
and, for each event e /∈ C of BCSON CSPT such that C ∪ {e} is a global
configuration of BCSON CSPT , it is the case that e belongs in BCSON .

Moreover, bcson is marking complete if it satisfies the first condition. �

5 Unfolding algorithm for CSPT-net

We will now describe an algorithm for the construction of the unfolding of a
cspt-net. A key notion used by the algorithm is that of an executable event (i.e.,
an event which is able to fire during some execution from the default initial state)
as well as that of an reachable condition or channel place (i.e., one produced by an
executable event). Note that whether an event is executable in a cspt-net is not
only determined by the corresponding pt-net, but also by the behaviours of other
pt-nets. This means that a component branching process in cspt unfolding may
not preserve its own unfolding structure (see Remark 1 and Figure 6(a)). In other
words, there may exist events which are valid extensions in the unfolding process
of a component pt-net, but become invalid when considering communication.

In particular, due to synchronous communication, it may be difficult to make
sure that every extension is executable before appending it to the unfolding.
Unlike the standard unfolding methods, an algorithm for cspt-net cannot sim-
ply unfold the component branching processes adding one event at a time, and
connecting it to already existing channel places. This is because a synchronous
communication in cspt unfolding forms a cycle. It is therefore impossible to add

16 Bowen Li and Maciej Koutny

(a)

(b)

Fig. 6. (a) A valid cspt branching process of Figure 2 (top), and (b) an invalid one
(bottom).

only one of the synchronised events and guarantee its executability at the same
time. Similarly, adding a synchronous event set together with all related channel
places in one step may also be difficult to achieve since the use of merging may
produce infinitely many events which are connected to the same channel place.

Instead, our idea is to design an algorithm which will sometimes generate non-
executable events requiring tokens from channel places which have not yet been
generated, in the anticipation that later on a suitable (possibly synchronous)
events will provide such tokens. Roughly, the algorithm appends possible ex-
tensions together with their output conditions one by one. A new event is first
marked as non-executable. The algorithm then performs an executability check
for the event after constructing its a/synchronous communications. In this way,
we in general obtain an ‘over-approximating unfolding’. The final stage of the
algorithm can then be used to remove all the non-executable nodes.

Unfolding CSPT-nets 17

Before providing the details of the algorithm, we introduce some auxiliary
notions. In what follows, we assume that CSPT is as in Definition 1.

Definition 7 (local CSPT configuration). Let e ∈ C, where C is a global
configuration of BCSON as in Definition 5. Then the local CSPT configuration
of e in C, denoted by C[e], is defined as

C[e] = {f ∈ C | (f, e) ∈ (≺ ∪ @)∗} ,

where the relations ≺ and @ are as in Definition 5. Moreover,

Conf (e) = {C[e] | C ∈ Conf BCSON ∧ e ∈ C}

is the set of all CSPT local configurations of e. �
The cspt local configuration of an event e in C is the set of events that

are executed before (or together with) e. In general, it consists of a configu-
ration comprising the standard local configuration of e together with a set of
standard configurations coming from other branching processes. Note that an
event may have different local cspt configurations, e.g., if one of its inputs is
a channel place which has multiple input events. Each such local configuration
belongs to a different non-branching process. For instance, consider a global
configuration C = {e0, e1, e2, e4, e7} in Figure 5. The cspt local configuration
of event e0 in C is C[e0] = {e0, e2, e4, e7} which involves two standard local
configurations, [e0] and [e7]. Moreover, we can observe that the C[e0] is not the
unique local configuration of e0, as another one is C ′[e0] = {e0, e3, e5, e8}, where
C ′ = {e0, e1, e3, e5, e8}.

An event may even have infinitely many local configurations. Consider again
the net in Figure 5. If we continue to unfold the net, we will construct infinitely
many n0 and n1 labelled events with occurrence depth equal to 1. All of them
are input events for q0 and q1 labelled channel places and belong to different
non-branching processes.

5.1 A/sync graphs

In order to improve the efficiency of unfolding procedure, checking for the exis-
tence of a local cspt configuration of an event can be reduced to the problem
of exploring the causal dependencies between channel places.

Below we assume that if Ci is a configuration of the unfolding of the i-th
component pt-net, and e ∈ Ci and q ∈ Q are such that (h(e), q) ∈ W (or
(q, h(e)) ∈ W), then r = (q, depthq(e)) belongs to the set of implicit channel
places QCi connected to Ci. Moreover, the label of r is q, and (e, r) ∈WCi (resp.
(r, e) ∈WCi

) is the corresponding implicit arc.

Definition 8 (a/sync graph). Let Ci be a configuration of the unfolding of
the i-th component pt-net.

Then the a/sync graph of Ci is defined as:

G(Ci) = (QCi , ≺̂Ci , @̂Ci)

where ≺̂Ci
, @̂Ci

are two binary relations over QCi
such that, for every r, r′ ∈ QCi

:

18 Bowen Li and Maciej Koutny

– r ≺̂Ci r
′ if there are two distinct e, f ∈ Ci such that (r, e), (f, r′) ∈WCi , and

e precedes f within C; and
– r @̂Ci

r′ if there is e ∈ Ci with (r, e), (e, r′) ∈WCi
. �

G(Ci) captures relationships between the input and output channel places of
a configuration of the unfolding of an individual component system. Its nodes
are the channel places involved in Ci. Moreover, r ≺̂Ci

r′ if there is a path from
r to r′ involving more than one event of Ci, and r @̂Ci

r′ if r is an input and r′

an output of some event in Ci.
Figure 7(a) shows the unfolding of each component pt-net of Figure 2 to-

gether with their input and output channel places. By exploring the relations
between those channel places, we are able to generate a/sync graph for any con-
figuration. For example, Figure 7(b) shows five a/sync graphs of the configura-
tions derived from Figure 7(a), where the relations ≺̂Ci

and @̂Ci
are represented

by solid arcs and thick dashed arcs, respectively. For the left-hand side pt-net
Π1, we have that:

G(C1) = ({r0},∅,∅) G(C ′1) = ({r1},∅,∅)

The a/sync graphs of the configurations in Π2 are:

G(C2) = ({r2, r3, r4, r5}, {(r2, r4), (r3, r4)}, {(r5, r4)})

G(C ′2) = ({r6, r7, r8},∅, {(r8, r7)}
and for the right-hand side pt-net Π3, we have that:

G(C3) = ({r9, r10, r11}, {(r9, r11)}, {(r10, r11)})

Given a set of a/sync graphs G(C1), . . . ,G(Ck) extracted for the k component
systems, we call these graphs compatible if all inputs are produced and there is
no cycle involving ≺̂.

Definition 9 (compatibility of a/sync graphs). Let Ci (i = 1, . . . , k) be
a configuration of the unfolding of the i-th component pt-net, and G(Ci) =
(QCi , ≺̂Ci , @̂Ci).

Then C1, . . . , Ck are compatible configurations if the following hold:

1. if (r, e) ∈WCi then that there is j 6= i such that r ∈ QCj ; and
2. the relation

(@̂ ∪ ≺̂)∗ ◦ ≺̂ ◦ (≺̂ ∪ @̂)∗

is irreflexive, where ≺̂ =
⋃
≺̂Ci

and @̂ =
⋃
@̂Ci

. �

In Figure 7, configurations C1, C
′
2, C3 are compatible since the q3-labelled

input channel place r8 in G(C ′2) is present in G(C3) (i.e., r11), and the input
channel places r9, r10 (labelled by q2 and q4 respectively) in G(C3) are all present
in G(C ′2). On the other hand, we can observe that there are no compatible config-
urations which involve C2, i.e., neither configurations C1, C2, C3 nor C ′1, C2, C3

are compatible. This is because the producers of r2 and r3 are in conflict in Π1.

Unfolding CSPT-nets 19

C1={e0}

C2={e2, e4}

C3={e6, e8}

1 2

3

(a)

(b)

C2'={e3, e5}
C1'={e1}

Fig. 7. (a) unfoldings of three component pt-nets of Figure 2 (together with their
implicit channel places), and (b) a/sync graphs of configurations derived from these
unfoldings.

20 Bowen Li and Maciej Koutny

Theorem 2. Let C1, . . . , Ck be configurations of the unfoldings of the compo-
nent pt-nets, and C = C1 ∪ · · · ∪ Ck. Then C is a global configuration if and
only if C1, . . . , Ck are compatible.

Proof. (=⇒) If C is a global configuration then, Proposition 4, every input chan-
nel place of a global configuration C is produced in C, and from Definition 1(2),
the producer e and consumer f belong to separate configurations. Hence Defini-
tion 9(1) holds. Moreover, Definition 9(2) follows from Definition 5(2).

(⇐=) We observe that Definition 5(1) and Definition 5(2) respectively follow
from Definition 9(1) and Definition 9(2). ut

Therefore, one can obtain the cspt local configurations of an event e by
checking whether there are compatible configurations C1, . . . , Ck such that e
belongs to one of them. Such a task can be made efficient by working with the
graphs G(C1), . . . ,G(Ck). In fact, one can just check those configurations which
have dependencies on e.

5.2 Unfolding algorithm

The unfolding algorithm we are going to present significantly differs from the
existing net unfolding algorithms. The key difference is that during the unfold-
ing procedure we will be constructing nodes and connections which will not
necessarily be the part of the final unfolding. This is due to the presence of
synchronous communication within our model. More precisely, in the net being
constructed there will be executable and non-executable events and conditions.
The former will definitely be included in the resulting unfolding, whereas the
latter cannot be yet included due to the absence of event(s) which are needed
for communication. If, at some later stage, the missing events are generated, then
the previously non-executable event and the conditions (and channel places) it
produced become executable.

Although the net Unf generated by the algorithm may not strictly speaking
be a branching process during its creation, we will as far as it is possible treat
it as such. In particular, we will call an event e executable if Conf (e) 6= ∅.
This happens if we have generated enough events to find at least one local cspt
configuration of e in Unf .

Intuitively, an executable event is the event belonging to at least one single
run of a bcson. For the example net in Figure 6(b), e6 is an executable event
since there exists a local cspt configuration of e6: C[e6] = {e0, e3, e6}, where
C = {e0, e3, e6}. On the other hand, event e2 is non-executable because it does
not have any local configuration (we have seen the example of Figure 7 that
there are no compatible configurations which involve e2). Therefore, Figure 7(b)
is not a valid cspt branching process since according to Definition 4(3) every
event in BCSON is executable. If we remove e2 together with its successors, then
all events in the new net become executable indicating the net is a valid bcson
(Figure 6 (a)).

Unfolding CSPT-nets 21

Proposition 7. Let e be an executable event in BCSON . Then each event ap-
pearing in Conf (e) is executable.

Proof. From Definition 7 it follows that f ∈ Conf (e) implies that there exist a
global configuration C such that e, f ∈ C. Hence Conf (f) 6= ∅, and so the result
follows from the definition of executable events. ut

Algorithm 1 (unfolding of cspt-net)

input: CSPT — cspt-net
output: Unf — unfolding of BCSON

nonexe ← ∅
Unf ← the empty branching process
add instances of the places in the initial marking of CSPT to Unf
add all possible extensions of Unf to pe

while pe 6= ∅ do
remove e from pe
addConnections(e)
if Conf (e) 6= ∅ then

for all event f in configurations of Conf (e) do
remove f and all its output conditions from nonexe (if present there)

add all possible extensions of Unf to pe

delete the nodes in nonexe together with adjacent arcs from Unf

The procedure for constructing the unfolding of a cspt-net is presented as
Algorithm 1.

The first part of the algorithm adds conditions representing the initial mark-
ing of the cspt-net being unfolded. Notice that the set nonexe of non-executable
events and conditions is set to empty. It also adds possible extensions to the
working set pe. The concept of a non-executable condition greatly improves the
efficiency of the above algorithm since a possible extension of Unf is a pair
e = (t, B) with h(e) = t where t is a transition of CSPT , and B is a set of
conditions of Unf such that:

– B is a co-set in one of the subnets of Unf and B ∩ nonexe = ∅;
– h(B) are all the input non-channel places of t; and
– (t, B) /∈ pe and Unf contains no t-labelled event with the non-channel place

inputs B.

The pair (t, B) is an event used to extend bcson without considering channel
places. We use the standard condition of a possible extension to choose events
that can be added to a component branching process (i.e., h(B) = •t ∩ P ′),
while constructing the related a/synchronous communications in a separate step.

22 Bowen Li and Maciej Koutny

In such a way, the complexity of appending groups of synchronous events is
significantly reduced. Note that a possible extension e has precisely determined
channel place connections since the depth values are fully determined.

Algorithm 2 (adding new event and a/sync connections)

procedure addConnections (input: e = (t, B))
add e to Unf and nonexe
create and add all the standard post-conditions of e to Unf and nonexe
for all channel place q ∈ •t• do

let r = (q, k) where k = depthq(e)
if there is no r = (q, k) in Unf then

add q-labelled channel place r to Unf and nonexe
add a corresponding arc between r and e

Algorithm 2 provides the details of appending a possible extension e to bcson
as well as constructing related channel place structure after removing e from pe.
Each new extension and its output conditions are immediately marked as non-
executable. The conditions in nonexe set also indicate that they are unable to
be used for deciding any further possible extension. In this way we can avoid
any unnecessary extension and make sure the predecessors of every new event is
executable.

The procedure then creates the a/synchronous communications of the input
event if it is required. Given an event e, for every input or output channel place
q of its corresponding transition h(e) in the original cspt-net, we search in Unf
for the matching channel place (i.e., its label is q and its depth value equals to
the occurrence depth of e). Then we create a direct connection if such a channel
place exists. Otherwise, we add a new instance of the channel place together
with the corresponding arc.

After adding the implicit channel places connected to e (or creating the con-
nection for those which already existed) together with the corresponding arcs,
we are able to obtain the local configuration of e by looking for compatible con-
figurations C1, . . . , Ck of the component nets (which may contain non-executable
events) such that e belongs to one of the Ci’s. If e is executable (Conf (e) 6= ∅),
we make all non-executable events in Conf (e) together with their post-conditions
executable (see Proposition 7). We also generate new potential extensions (each
such extension must use at least one of conditions which have just been made
executable). Then another waiting potential extension (if any) is processed.

The algorithm generally does not terminate when the original cspt-net is not
acyclic, and the non-executable nodes are removed at the end of the algorithm.

We now use the cspt-net in Figure 2 as an example to illustrate the al-
gorithm. The unfolding process is shown in Figure 8. It starts by appending
instances of the initial marking s0,m0 and v0 of the cspt-net to Unf . Then we
go to the first iteration which adds a possible extension e0 = (t0, {c0}) together
with its post-condition to both Unf and nonexe (nodes belonging to nonexe are

Unfolding CSPT-nets 23

shaded). It is not possible to confirm the executability of e0 at this point due to
the absence of a suitable channel place: to generate related communications, we
search in the Unf for a q0-labelled and depthq0(e0) = 1 channel place. Appar-
ently, there is no such place, and so we need to add a copy of q0 to the unfolding
and connect it with e0. After executing addConnection(e0) procedure, we find
that there is a local configuration of e0 (which is in fact {e0} itself) by build-
ing a/sync graph and verifying compatibility. This local configuration indicates
h(e0) is executable in one of the single runs of the original cspt-net, and hence
is also an executable event in the corresponding unfolding. Therefore, we are
allowed to remove e0 and its output condition c1 from nonexe. c1 then can be
used to generate further extensions after our first complete iteration.

Stage C shows the result after three iterations (i.e., appending e0, e1 and
e2). Notice that in the AddConnection(e2) procedure, it is possible to add only
arcs from existing channel places r0 and r1 to the chosen event e2. This is so
because suitable channel places were already added in the previous iterations.
Moreover, e2 and c4 remain in nonexe after their own iteration since there is no
local configuration containing e2. Such a condition cannot be used for generating
new possible extension until it becomes executable.

Stage D and E illustrate the way to generate synchronous communication
between e4 and e7. After adding e4 to the unfolding, we first create ‘half’ of the
synchronous communication, i.e., we add channel places r3, r4 and the relations
(r3, e4), (e4, r4). It can be observed that there is no compatible configurations
involving e4 at the moment since the producer of r3 is missing. Therefore, e4 is a
non-executable event. However, this non-executable event and its post-condition
can be removed from nonexe after adding another ‘half’ of the synchronous
communication i.e., event e7 and the related connections. More precisely, after
AddConnection(e7), we have nonexe = {e2, c4, e7, c10}. We can then find compat-
ible configurations C1 = {e1}, C2 = {e3, e4}, C3 = {e5, e7} which contain both
non-executable events e4 and e7. These two events and their output conditions
can then be removed from nonexe.

After adding all possible extensions from pe to Unf (in this example, the
unfolding is finite states since the original cspt-net is acyclic), the final stage is
to remove from the unfolding all the nodes in nonexe. As a result, we obtain a
correct unfolding by removing e2 and c4 (it is the net shown in Figure 6(a)).

6 Conclusions and Future Work

We introduced the concept of a branching process of a cspt-net — a new class
of branching nets which can capture complete behaviours of cspt-nets. The
model extends the standard branching processes by combining multiple compo-
nent branching processes with channel places. We then formulated the property
of completeness for bcsons. The concept relies on the notion of a global config-
uration which describes a single run of transitions crossing different pt-nets.

24 Bowen Li and Maciej Koutny

stage A:

nonexe = {}

Stage B:

nonexe = {}

Stage C:

nonexe = {e2, c4}

Stage D:

nonexe = {e2, c4, e4, c6}

Stage E:

nonexe = {e2, c4}

Fig. 8. Unfolding the cspt-net of Figure 2: (Stage A) starting point of the unfolding,
(Stage B) after first complete iteration, (Stage C) chosen event e2 is non-executable,
(Stage D) chosen event e4 is non-executable, (Stage E) e4 becomes executable due to
the missing event is generated.

Unfolding CSPT-nets 25

Our investigation has led to an algorithm for constructing the unfolding of
a cspt-net which is its unique maximal bcson. A central part of the unfolding
algorithm is the test of whether a non-executable event can become executable.
This is done by checking whether there are global configurations such that the
event belongs to one of them. Moreover, only conditions marked as executable
can to be used for constructing new possible extensions, so that we always gen-
erate further extensions on the basis of executable elements.

The algorithm presented in this paper is based on standard unfolding method,
which essentially works by appending possible extension one by one. A poten-
tially very efficient approach for the construction of the unfolding could be to use
the parallel unfolding technique [4]. One can, for example, unfold each component
branching process in parallel, by temporarily ignoring any a/synchronous issues.
The procedures of appending channel places as well as executability checking
(removing unnecessary events) would proceed in a separate step. In this way,
we might significantly improve the efficiency of the algorithm since different
component net unfoldings can be constructed on multiple computer processors.

In future we intend to explore the generation of finite complete prefixes of
cspt-nets. In the case of pt-nets, this relies on the notion of cut-off events, which
are roughly events in the unfolding that produce a marking already produced
by other events with smaller histories. In cspt unfolding, we may instead use
global configurations to determine the repetition of markings.

In general, it is impossible to generate a finite complete prefix of the unfold-
ing of a cspt-net even if the component pt-nets are safe. The reason is that the
channel places linking the component pt-nets can be unbounded due to asyn-
chronous communication. However, if all communications are synchronous, this
is no longer a problem.

We intend to implement the cspt model and its analysis tools in Workcraft
platform [12]. The platform provides a flexible common underpinning for graph
based models. The facilities for entering, editing, validating, visualising and sim-
ulating structured occurrence nets have been implemented in Workcraft [10].

Acknowledgement

We would like to thank Victor Khomenko for several very helpful comments on
the previous versions of this paper.

References

1. Best, E., Fernández, C.: Nonsequential Processes: A Petri Net View, vol. 13 of
EATCS Monographs in Theoretical Computer Science. Springer-Verlag (1988)

2. Engelfriet, J.: Branching processes of Petri nets. Acta Informatica 28(6), 575–591
(1991)

3. Esparza, J., Römer, S., Vogler, W.: An improvement of McMillan’s unfolding algo-
rithm. In: Formal Methods in System Design. pp. 87–106. Springer-Verlag (1996)

26 Bowen Li and Maciej Koutny

4. Heljanko, K., Khomenko, V., Koutny, M.: Parallelisation of the Petri net unfold-
ing algorithm. In: Proceedings of the 8th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. pp. 371–385. TACAS
’02, Springer-Verlag, London, UK, UK (2002)

5. Khomenko, V., Kondratyev, A., Koutny, M., Vogler, W.: Merged processes: A new
condensed representation of Petri net behaviour. Acta Informatica 43(5), 307–330
(2006)

6. Khomenko, V., Koutny, M., Vogler, W.: Canonical prefixes of Petri net unfoldings.
Acta Inf. 40(2), 95–118 (2003)

7. Kleijn, J., Koutny, M.: Causality in structured occurrence nets. In: Dependable and
Historic Computing. vol. 6875, pp. 283–297. Springer Berlin Heidelberg (2011)

8. Koutny, M., Randell, B.: Structured occurrence nets: A formalism for aiding system
failure prevention and analysis techniques. Fundamenta Informaticae 97(1), 41–91
(Jan 2009)

9. Li, B.: Branching processes of communication structured PT-nets. In: Proceed-
ing. vol. 13th International Conference On Application of ConCurrency to System
Design (ACSD), pp. 243–246 (2013)

10. Li, B., Randell, B.: Soncraft user manual. Tech. Rep. CS-TR-1448, School of Com-
puting Science, Newcastle University (Feb 2015)

11. McMillan, K.L., Probst, D.: A technique of state space search based on unfolding.
Formal Methods in System Design 6(1), 45–65 (Jan 1995)

12. Poliakov, I., Khomenko, V., Yakovlev, A.: Workcraft – A framework for interpreted
graph models. In: Applications and Theory of Petri Nets, pp. 333–342. Springer
Berlin Heidelberg (Jun 2009)

13. Randell, B.: Occurrence nets then and now: the path to structured occurrence nets.
In: Applications and Theory of Petri Nets. pp. 1–16. Springer Berlin Heidelberg
(Jun 2011)

14. Randell, B., Koutny, M.: Failure: their definition, modelling and analysis. In: The-
oretical Aspects of Computing–ICTAC 2007. pp. 260–274. Springer (Sep 2007)

15. Watson, P.: A multi-level security model for partitioning workflows over federated
clouds. In: IEEE 3rd International Conference on Cloud Computing Technology
and Science, CloudCom 2011, Athens, Greece, November 29 - December 1, 2011.
pp. 180–188 (2011)

	MasterTRCover1463
	MasterTRAbstract1463
	TECHNICAL REPORT SERIES
	B. Li and M. Koutny
	Abstract

	MasterTRBibliography1463
	TR1463

