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Abstract. In a recent paper, mimicking Winskel’s construction for Petri nets,
a concurrent semantics for (double-pushout) DPO graph grammars has been
provided by showing that each graph grammar can be unfolded into an acyclic
branching structure, that is itself a (nondeterministic occurrence) graph gram-
mar describing all the possible computations of the original grammar.
This paper faces the problem of providing a closer correspondence with
Winskel’s result by showing that the unfolding construction can be described
as a coreflection between the category of graph grammars and the category of
occurrence graph grammars. The result is shown to hold for a suitable subclass
of graph grammars, called semi-weighted graph grammars. Unfortunately the
coreflection does not extend to the whole category of graph grammars: some
ideas for solving the problem are suggested.

1 Introduction

In recent years, various concurrent semantics for graph rewriting systems have been
proposed in the literature, some of which are inspired by their correspondence with
Petri nets (see [5] for a tutorial introduction to the topic and for relevant references).
A classical result in the theory of concurrency for Petri nets, due to Winskel [18], shows
that the event structure semantics of safe nets can be given via a chain of coreflections
starting from the category Safe of safe nets, through category Occ of occurrence
nets. The event structure associated with a net is obtained by first constructing a
“nondeterministic unfolding” of the net, and then by considering only its transitions
and the causal and conflict relations among them. In [14, 15] it is shown that essentially
the same constructions work for the larger category of semi-weighted nets, i.e., P/T nets
where the initial marking is a set and transitions can generate at most one token in each
post-condition. Winskel’s result has been also extended, in [2], to a more general class
of nets called (semi-weighted) contextual nets or nets with read (test) arcs. Contextual
nets generalize classical nets by adding the possibility of checking for the presence of
a token in a place, without consuming it. Their capability of “preserving part” of the
state in a rewriting step makes this kind of nets closer to graph grammars. Indeed,
starting from these results, the paper [3] shows that a Winskel’s style construction
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allows one to unfold each graph grammar into a nondeterministic occurrence grammar
describing its behaviour. The unfolding is used to define a prime algebraic domain and
an event structure semantics for the grammar.

In this paper we make a further step towards full correspondence with Winskel’s
result by facing the problem of characterizing the unfolding construction for DPO graph
grammars just mentioned as a true coreflection.

Section 2 reviews the basics of DPO typed graph grammars and introduces the
notion of grammar morphism, a slight variation of the morphisms in [6], making the
class of graph grammars a category GG. Section 3 recalls the notion of nondetermin-
istic occurrence grammar [3], which are grammars satisfying suitable acyclicity and
well-foundedness requirements, representing in a unique “branching” structure several
possible “acyclic” grammar computations. The full subcategory of GG having occur-
rence grammars as objects is denoted by OGG. By exploiting the notions of occurrence
grammar and of grammar morphism, Section 4 defines nondeterministic graph process.
As in Petri net theory, a nondeterministic process of a grammar G consists of a (suit-
able) grammar morphism from an occurrence grammar to G. Nicely, deterministic finite
processes turn out to coincide with the graph processes of [1].

Section 5 presents the unfolding construction that, when applied to a given grammar
G, yields a nondeterministic occurrence grammar U(G), which describes its behaviour.
The unfolding is endowed with a morphism χG into the original grammar G, mak-
ing U(G) a process of G. Next, Section 6 faces the problem of turning the unfolding
construction into a functor establishing a coreflection between the categories of graph
grammars and of occurrence grammars. As in the case of Petri nets we restrict to
those grammars where the initial graph and the items produced by each production
are injectively typed. Such grammars, by analogy with the corresponding subclass of
Petri nets, are called semi-weighted, and the corresponding full subcategory of GG
is denoted by SGG. We show that the unfolding construction extends to a functor
U : SGG → OGG which is right adjoint to the inclusion IO : OGG → SGG, and
thus establishes a coreflection between the two categories.

In Section 7, we show that unfortunately the result cannot be extended in a trivial
way to the whole category GG of graph grammars. Even worse, a counterexample
shows that there is no way of turning the unfolding construction into a functor which
is right adjoint to the inclusion I : OGG → GG. Starting from this negative result
some possible ways of solving the problem are singled out.

Because of space limitations we are forced to defer to the full version the detailed
comparison with the related work in the literature, comprising different notions of
graph grammar morphisms [6, 12, 17, 4] as well as the unfolding construction for SPO
grammars in [17]. For the same reason also the proofs of our statements are omitted.

2 Typed graph grammars and their morphisms

This section first summarizes the basic definitions about typed graph grammars [8],
a variation of classical DPO graph grammars [10, 9] which uses typed graphs, namely
graphs labelled over a structure (the graph of types) that is itself a graph. Next some
insights are given on the relationship between typed graph grammars and Petri nets.



Finally, the class of typed graph grammars is turned into a categoryGG by introducing
a notion of grammar morphism.

2.1 Typed graph grammars

LetGraph be the category of (directed, unlabelled) graphs and total graph morphisms.
For a graph G we will denote by NG and EG the sets of nodes and arcs of G, and by
sG, tG : EG → NG its source and target functions. Given a graph TG, a typed graph G

over TG is a graph |G|, together with a morphism tG : |G| → TG. A morphism between
TG-typed graphs f : G1 → G2 is a graph morphisms f : |G1| → |G2| consistent with
the typing, i.e., such that tG1

= tG2
◦ f . A typed graph G is called injective if the

typing morphism tG is injective. The category of TG-typed graphs and typed graph
morphisms is denoted by TG-Graph and can be sinthetically defined as the comma
category (Graph ↓ TG).

Fixed a graph TG of types, a (TG-typed graph) production (L
l
← K

r
→ R) is a pair

of injective typed graph morphisms l : K → L and r : K → R, where |L|, |K| and
|R| are finite graphs. It is called consuming if morphism l : K → L is not surjective.
The typed graphs L, K, and R are called the left-hand side, the interface, and the
right-hand side of the production, respectively.

Definition 1 (typed graph grammar). A (TG-typed) graph grammar G is a tuple
〈TG,Gin, P, π〉, where Gin is the initial (typed) graph, P is a set of production names,
and π is a function which associates a graph production to each production name in P .

We denote by Elem(G) the set NTG ∪ETG ∪ P . Furthermore, we will assume that for

each production name q the corresponding production π(q) is Lq

lq
← Kq

rq
→ Rq, where,

without loss of generality, the injective morphisms lq and rq are inclusions.
Since in this paper we work only with typed notions, we will usually omit the quali-

fication “typed”, and, sometimes, we will not indicate explicitly the typing morphisms.
Moreover, we will consider only consuming grammars, namely grammars where all pro-
ductions are consuming: this corresponds, in the theory of Petri nets, to the common
requirement that transitions must have non-empty preconditions.

Definition 2 (direct derivation). Given a typed graph G, a production q, and a
match (i.e., a graph morphism) g : Lq → G, a direct derivation δ from G to H using
q (based on g) exists, written δ : G⇒q H, if and only if the diagram

Lqq :

g

��

Kq

lqoo rq //

k

��

Rq

h

��
G D

b
oo

d
// H

can be constructed, where both squares have to be pushouts in TG-Graph.

Given an injective morphism lq : Kq → Lq and a match g : Lq → G as in the above
diagram, their pushout complement (i.e., a graph D with morphisms k and b such that



the left square is a pushout) exists if and only if the gluing condition is satisfied. This
consists of two parts:

– the identification condition, requiring that if two distinct nodes or arcs of Lq are
mapped by g to the same image, then both must be in the image of lq;

– the dangling condition, stating that no arc in G − g(Lq) should be incident to a
node in g(Lq− lq(Kq)) (because otherwise the application of the production would
leave such an arc “dangling”).

A derivation over a grammar G is a sequence of direct derivations (over G) starting
from the initial graph, namely ρ = {Gi−1 ⇒qi−1

Gi}i∈{1,...,n}, with G0 = Gin.

2.2 Relation with Petri nets.

The notion of grammar morphism, and many definitions and constructions in this paper
are better understood keeping in mind the relation between Petri nets and DPO graph
grammars. The basic observation (which belongs to the folklore, see, e.g., [5]) is that
a P/T Petri net is essentially a rewriting system on multisets, and that, given a set
A, a multiset of A can be represented as a discrete graph typed over A. In this view
a P/T net can be seen as a graph grammar acting on discrete graphs typed over the
set of places, the productions being (some encoding of) the net transitions: a marking
is represented by a set of nodes (tokens) labelled by the place where they are, and, for
example, the unique transition t of the net in Fig. 1.(a) is represented by the graph
production in the top row of Fig. 1.(b). Notice that the interface is empty since nothing
is explicitly preserved by a net transition.
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Fig. 1. Firing of a transition and corresponding DPO direct derivation.

It is easy to check that this representation satisfies the properties one would expect:
a production can be applied to a given marking if and only if the corresponding tran-
sition is enabled and, in this case, the double pushout construction produces the same
marking as the firing of the transition. For instance, the firing of transition t, leading
from the marking 3A+ 2B to the marking A+ B + C +D in Fig. 1.(a), becomes the
double pushout diagram of Fig. 1.(b).



2.3 Grammar Morphisms

The notion of grammar morphism we are going to introduce is very similar to the
one originally defined in [6], which was in turn introduced as a generalization of Petri
nets morphisms. Recall that a Petri net morphism [18] consists of two components: a
multirelation between the sets of places, and a partial function mapping transitions of
the first net into transitions of the second one. Net morphisms are required to “preserve”
the pre-set and post-set of transitions, in the sense that the pre- (post-)set of the image
of a transition t must be the image of the pre- (post-)set of t.

Since the items of the graph of types of a grammar can be seen as a generalization of
Petri net places, the first component of a grammar morphism will be a span between the
type graphs of the source and target grammars, arising as a categorical generalization
of the notion of multirelation. For an extensive discussion of this idea we refer the
reader to [6, 4]. The following definitions will be useful.

Definition 3 (spans). Let C be a category. A (concrete) span in C is a pair of
coinitial arrows f = 〈fL, fR〉 with fL : xf → a and fR : xf → b. Objects a and b are
called the source an the target of the span and we will write f : a↔ b. The span f will
be sometimes written as 〈fL, xf , f

R〉, explicitly giving the common source object xf .
Consider now the equivalence ∼ over the set of spans with the same source and

target defined, for f, f ′ : a↔ b, as f ∼ f ′ if there exists an isomorphism k : xf → xf ′

such that f ′L ◦ k = fL and f ′R ◦ k = fR (see Fig. 2.(a)). The isomorphism class of a
span f will be denoted by [f ] and called a semi-abstract span.

Definition 4 (category of spans). Let C be a category with pullbacks. Then the
category Span(C) has the same objects of C and semi-abstract spans on C as arrows.
More precisely, a semi-abstract span [f ] is an arrow from the source to the target of
f . The composition of two semi-abstract spans [f1] : a ↔ b and [f2] : b ↔ c is the
(equivalence class) of a span f constructed as in Fig. 2.(b) (i.e., fL = fL

1 ◦ y and
fR = fR

2 ◦ z), where the square is a pullback. The identity on an object a is the
equivalence class of the span 〈ida, ida〉, where ida is the identity of a in C.

It can be shown that composition is well-defined, namely it does not depend on the
particular choice of the representatives, and that it is associative.
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Fig. 2. Equivalence and composition of spans.

Let G1 and G2 be two graph grammars and let [fT ] : TG1 ↔ TG2 be a semi-abstract
span between the corresponding type graphs. Observe that [fT ] induces a relation
between TG1-typed graphs and TG2-typed graphs. In fact, let G1 be in TG1-Graph.



Then we can transform G1 as depicted in the diagram below, by first taking a pullback
(in Graph) of the arrows fL

T : XfT → TG1 and tG1
: |G1| → TG1, and then typing

the pullback object over TG2 by using the right part of the span fR
T : XfT → TG2.

|G1|

tG1

��

|G2|
tG2

""E
EE

EE
EE

E
xoo

y

��
TG1 XfT

fL
T

oo
fR
T

// TG2

The TG2-typed graph G2 = 〈|G2|, f
R
T ◦ y〉 obtained with this construction, later re-

ferred to as pullback-retyping construction induced by [fT ], is determined only up to
isomorphism. This is due to the definition of pullback and to the fact that, considering
semi-abstract spans, we can choose any concrete representative f ′

T ∼ fT . Sometimes
we will write fT {x, y}(G1, G2) (or simply fT (G1, G2) if we are not interested in mor-
phisms x and y) to express the fact that G1 and G2 are related in this way by the
pullback-retyping construction induced by [fT ].

We are now ready to define grammar morphisms. Besides the component specifying
the relation between the type graphs, a morphism from G1 to G2 includes a (partial)
mapping between production names. Furthermore a third component explicitly relates
the (untyped) graphs underlying corresponding productions of the two grammars, as
well as the graphs underlying the initial graphs.

Definition 5 (grammar morphism). Let Gi = 〈TGi, Gini
, Pi, πi〉 (i ∈ {1, 2}) be two

graph grammars. A morphism f : G1 → G2 is a triple 〈[fT ], fP , ιf 〉 where

– [fT ] : TG1 ↔ TG2 is a semi-abstract span in Graph, called the type-span;

– fP : P1 → P2 ∪ {∅} is a total function, where ∅ is a new production name (not in
P2), with associated production ∅ ← ∅ → ∅, referred to as the empty production;

– ιf is a family {ιf (q1) | q1 ∈ P1}∪ {ι
in
f } such that ιinf : |Gin2

| → |Gin1
| and for each

q1 ∈ P1, if fP (q1) = q2, then ιf (q1) is triple of morphisms

〈ιLf (q1) : |Lq2 | → |Lq1 |, ι
K
f (q1) : |Kq2 | → |Kq1 |, ι

R
f (q1) : |Rq2 | → |Rq1 |〉.

such that the following conditions are satisfied:

1. Preservation of the initial graph.
There exists a morphism k such that fT {ι

in
f , k}(Gin1 , Gin2), namely such that the

following diagram commutes and the square is a pullback:

|Gin1
|

tGin1

��

|Gin2
|

tGin2

##G
GG

GG
GG

GG

ιinfoo

k

��
TG1 XfT

fL
T

oo
fR
T

// TG2



2. Preservation of productions.
For each q1 ∈ P1, with q2 = fP (q1), there exist morphisms kL, kK and kR such that
the diagram below commutes, and fT {ι

X
f (q1), k

X}(Xq1 , Xq2) for X ∈ {L,K,R}.

|Rq1 |

tRq1

��
��
��

����
��
��
��
��

|Rq2 |
ιRf (q1)oo

kR
��
��
��

����
��
��
��
�� tRq2

,,
,,
,,
,

��,
,,
,,
,,
,

|Kq1 |

zzuu
u

::uuuu

tKq1

��

|Kq2 |

zzuu
u

::uuuuιKf (q1)oo

kK

��

tKq2

BB
BB

BB

!!B
BB

BB
BB

|Lq1 |

tLq1

<<<

��<
<<

|Lq2 |
ιLf (q1)oo

kL

<<<

��<
<< tLq2

SSSS
SSSS

SS

))SSS
SS

TG1 XfT
fL
T

oo
fR
T

// TG2

The grammar morphisms in [6] rely on the assumption of having a fixed choice of pull-
backs. Consequently the pullback-retyping construction is deterministic and morphisms
are required to preserve the initial graphs and the productions “on the nose”. This re-
quirement is very strict and it may imply the absence of a morphism between two
grammars having isomorphic initial graph and productions. The notion of morphism
just introduced is, in a sense, more liberal: we avoid a global choice of pullbacks, and,
influenced by the notion of graph process in [1], we fix “locally”, for each morphism f ,
only part of the pullback diagrams, namely the morphisms in the family ιf .

It is worth noticing that, for technical convenience, the partial mapping on pro-
duction names is represented as a total mapping by enriching the target set with a
distinguished point ∅, representing “undefinedness”. In this way the condition asking
the preservation of productions (Condition 2) faithfully rephrases the situation of net
theory where the pre- and post-set of a transition on which the morphism is undefined
are necessarily mapped to the empty multiset.

As in [6] one can show that grammar morphisms are “simulations” in the sense that
for every derivation ρ1 in G1 there is a corresponding derivation ρ2 in G2, related to ρ1
by the pullback-retyping construction induced by the morphism. As already observed,
as a consequence of the partial arbitrariness in the choice of the pullback components,
such correspondence, differently from [6], is not “functional”.

3 Nondeterministic occurrence grammars

Nondeterministic occurrence grammars, as introduced in [3], are intended to represent
the computations of graph grammars in a static way, by recording the events (pro-
duction applications) which can appear in all possible derivations and the dependency
relations between them. Analogously to what happens for nets, occurrence grammars
are “safe” grammars, where the dependency relations between productions satisfy suit-
able acyclicity and well-foundedness requirements. While for nets it suffices to take into
account only the causality and conflict relations, for grammars the fact that a produc-
tion application not only consumes and produces, but also preserves a part of the state
leads to a form of asymmetric conflict between productions. Furthermore, because of



the dangling condition, also the graphical structure of the state imposes some prece-
dences between productions.

A first step towards the definition of occurrence grammar is a suitable notion of
safeness [8], generalizing the usual one for P/T nets which requires that each place
contains at most one token in any reachable marking.

Definition 6 ((strongly) safe grammar). A grammar G = 〈TG,Gin, P, π〉 is
(strongly) safe if, for all H such that Gin ⇒

∗ H, H is injective.

Without loss of generality, injective typed graphs can be identified with the cor-
responding subgraphs of the type graph (just thinking of injective morphisms as in-
clusions). In particular, each TG-typed graph G reachable in a safe grammar can be
identified with the subgraph tG(|G|) of the type graph TG. With the above identifica-
tion, in each computation of a safe grammar starting from the initial graph a production
can only be applied to the subgraph of the type graph which is the image via the typing
morphism of its left-hand side. Therefore according to its typing, we can think that a
production produces, preserves or consumes items of the type graph. Using a net-like
language, we speak of pre-set •q, context q and post-set q• of a production q, defined in
the obvious way. Similarly, for a node or arc x in TG we write •x, x and x• to denote
the sets of productions which produce, preserve and consume x. Consider, for instance,
the grammar G in Fig. 3, where the typing morphisms for the initial graph and the
productions are represented by suitably labelling the involved graphs with items of the
type graph TG. The pre-set, context and post-set of production q1 are •q1 = {A,L},
q1 = {B} and q1

• = {C}, while for the node B, •B = ∅, B = {q1} and B• = {q2}.
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Fig. 3. The safe grammar G.

Although the notion of causal relation is meaningful only for safe grammars, it
is technically convenient to define it for general grammars. The same holds for the
asymmetric conflict relation introduced below.

Definition 7 (causal relation). The causal relation of a grammar G is the binary
relation < over Elem(G) defined as the least transitive relation satisfying: for any node
or arc x in the type graph TG, and for productions q1, q2 ∈ P

1. if x ∈ •q1 then x < q1;
2. if x ∈ q1

• then q1 < x;
3. if q1

• ∩ q2 6= ∅ then q1 < q2;

As usual ≤ is the reflexive closure of <. Moreover, for x ∈ Elem(G) we denote by ⌊x⌋
the set of causes of x in P , namely {q ∈ P : q ≤ x}.



Notice that the fact that an item is preserved by q1 and consumed by q2, i.e.,
q1 ∩

•q2 6= ∅ (e.g., the node B in grammar G of Fig. 3), does not imply q1 < q2.
Actually, since q1 must precede q2 in any computation where both appear, in such
computations q1 acts as a cause of q2. However, differently from a true cause, q1 is not
necessary for q2 to be applied. Therefore we can think of the relation between the two
productions as a weak form of causal dependency. Equivalently, we can observe that
the application of q2 prevents q1 to be applied, so that q1 can never follow q2 in a
derivation. But the converse is not true, since q1 can be applied before q2. Thus this
situation can also be interpreted naturally as an asymmetric conflict between the two
productions (see [2, 16, 13]).

Definition 8 (asymmetric conflict). The asymmetric conflict relation of a grammar
G is the binary relation ր over the set of productions, defined by:

1. if q1 ∩
•q2 6= ∅ then q1 ր q2;

2. if •q1 ∩
•q2 6= ∅ and q1 6= q2 then q1 ր q2;

3. if q1 < q2 then q1 ր q2.

Condition 1 is justified by the discussion above. Condition 2 essentially expresses the
fact that the ordinary symmetric conflict is encoded, in this setting, as an asymmetric
conflict in both directions. Finally, since < represents a global order of execution, while
ր determines an order of execution only locally to each computation, it is natural to
impose ր to be an extension of < (Condition 3).

Definition 9 ((nondeterministic) occurrence grammar). A (nondeterministic)
occurrence grammar is a grammar O = 〈TG,Gin, P, π〉 such that

1. its causal relation ≤ is a partial order, and, for any q ∈ P , the set ⌊q⌋ is finite and
the asymmetric conflict ր is acyclic on ⌊q⌋;

2. the initial graph Gin is the set Min(O) of minimal elements of 〈Elem(O),≤〉 (with
the graphical structure inherited from TG and typed by the inclusion);

3. each item x in TG is created by at most one production in P , namely | •x |≤ 1;
4. for each production q, the typing tLq

is injective on the “consumed part” |Lq| −
lq(|Kq|), and similarly tRq

is injective on the “produced part” |Rq| − rq(|Kq|).

We denote by OGG the full subcategory of GG having occurrence grammars as objects.

Since the initial graph of an occurrence grammar O is determined by Min(O), we
often do not mention it explicitly. One can show that, by the defining conditions, each
occurrence grammar is safe.

Intuitively, conditions (1)–(3) recast in the framework of graph grammars the anal-
ogous conditions of occurrence nets (actually of occurrence contextual nets [2]). In par-
ticular, in Condition (1), acyclicity of asymmetric conflict on ⌊q⌋ corresponds to the
requirement of irreflexivity for the conflict relation in occurrence nets. Condition (4),
instead, is closely related to safeness and requires that each production consumes and
produces items with multiplicity one. Together with acyclicity of ր, it disallows the
presence of some productions which surely could never be applied, because they fail to
satisfy the identification condition with respect to the typing morphism.



It is worth stressing that because of the dangling condition, some productions of
an occurrence grammar might never be applicable, as, for example, the production q3
of grammar G in Fig. 3. The reason why we did not consider the dangling condition in
the definition of occurrence grammar is that checking such negative (non-monotonic)
condition on a production, would require to find a possible computation which removes
the potentially dangling arcs, and to verify the consistency of such computation with
the production at hand. By using the Turing completeness of DPO graph grammars,
it can be shown that such verification is undecidable for infinite occurrence grammars,
which can be obtained as unfolding of finite grammars.

The restrictions to the behaviour imposed by the dangling condition are considered
when defining the configurations of an occurrence grammar, which represent exactly
all the possible deterministic runs of the grammar.

Definition 10 (configuration). A configuration of an occurrence graph grammar
O = 〈TG,P, π〉 is a subset C ⊆ P such that

1. if րC denotes the restriction of the asymmetric conflict relation to C, then (րC)
∗

is a partial order, and {q′ ∈ C : q′(րC)
∗q} is finite for all q ∈ C;1

2. C is left-closed w.r.t. ≤, i.e., for all q ∈ C, q′ ∈ P , q′ ≤ q implies q′ ∈ C;
3. for all e ∈ TG and n ∈ {s(e), t(e)}, if n• ∩ C 6= ∅ and •e ⊆ C then e• ∩ C 6= ∅.

If C satisfies conditions (1) and (2), then it is called a pre-configuration.

The first two conditions are equivalent to those defining configurations of asymmetric
event structures and thus of occurrence contextual nets [2]. Condition 3, instead, for-
malizes the dangling condition. If a configuration contains a production q consuming
a node n and a production q′ producing an arc e with source (or target) n, then arc
e must be removed by some production in the configuration, otherwise, due to the
dangling condition, q could not be executed. Similar considerations apply if the arc e

is present in the initial graph, i.e., •e = ∅.
A production which does not satisfy the dangling condition in any graph reachable

from the initial graph is not part of any configuration. For example, q3 does not appear
in the set of configurations of grammar G in Fig. 3, Conf (G) = {∅, {q1}, {q2}, {q1, q2}}.

4 Nondeterministic graph processes

In the theory of Petri nets the notion of occurrence net is strictly related to that of
process. A (non)deterministic net process is a (non)deterministic occurrence net with a
suitable morphism to the original net. Similarly, nondeterministic occurrence grammars
can be used to define a notion of nondeterministic graph processes, generalizing the
deterministic graph processes of [8, 1].

A nondeterministic graph process is aimed at representing in a unique “branch-
ing” structure several possible computations of a grammar. The underlying occurrence
grammar makes explicit the causal structure of such computations since each produc-
tion can be applied at most once and each items of the type graph can be “filled” at

1 As usual, for a binary relation r, with r
∗ we denote its transitive and reflexive closure.



most once. Via the morphism to the original grammar, productions and items of the
type graph in the occurrence grammar can be thought of, respectively, as instances of
applications of productions and instances of items generated in the original grammar
by such applications. Actually, to allow for such an interpretation, some further re-
strictions must be imposed on the process morphism. Recall that process morphisms
in Petri net theory must map places into places (rather than into multisets of places)
and must be total on transitions [11]. Similarly, for graph process morphisms the left
component of the type-span is required to be an isomorphism in such a way that the
type-span can be thought of simply as a graph morphism. Furthermore a process mor-
phism cannot map a production to the empty production, a requirement corresponding
to totality.

Definition 11 (strong morphism). A grammar morphism f : G1 → G2 is called
strong if fL

T : Xf → TG1 is an isomorphism and fP (q1) 6= ∅, for any q1 ∈ P1.

Hereafter we will always choose as concrete representative of the type-span of a strong
grammar morphism f , a span fT such that the left component fL

T is the identity idTG1
.

It is not difficult to verify that, if f is a strong morphism then, by Condition 1
of the definition of grammar morphism (Definition 5), ιinf : |Gin2

| → |Gin1
| is an

isomorphism. Similarly, by Condition 2, for each production q1 ∈ P1, ιf (q1) is a triple
of isomorphisms, namely each production of G1 is mapped to a production of G2 with
associated isomorphic (untyped) span.

Definition 12 (graph process). Let G be a graph grammar. A graph process of G
is a strong grammar morphism χ : Oχ → G, where Oχ is an occurrence grammar.

We will denote by TGχ, Ginχ
, Pχ and πχ the components of the occurrence grammar

Oχ underlying a process χ.
Using the notions above we are naturally led to the definitions of deterministic

occurrence grammar and process. In fact we can take an occurrence grammar O to be
deterministic if the set P of its productions is a configuration of O. Then a process
χ is deterministic if the underlying occurrence grammar Oχ is deterministic. Nicely,
deterministic finite processes are exactly the (non-concatenable) graph processes of [1],
which are shown there to be equivalent with the more classical trace semantics (e.g.,
as described in [7]).

5 Unfolding construction

This section introduces the unfolding construction which, applied to a consuming gram-
mar G, produces a nondeterministic occurrence grammar U(G) describing the behaviour
of G. The unfolding is equipped with a strong grammar morphism χG to the original
grammar, making it a process of G.

The idea consists of starting from the initial graph of the grammar, then applying in
all possible ways its productions, and recording in the unfolding each occurrence of pro-
duction and each new graph item generated in the rewriting process, both enriched with
the corresponding causal history. According to the discussion in the previous section,



during the unfolding process productions are applied without considering the dangling
condition. Moreover we adopt a notion of concurrency which is “approximated”, again
in the sense that it does not take care of the precedences between productions induced
by the dangling condition.

Definition 13 (quasi-concurrent graph). Let O = 〈TG,P, π〉 be an occurrence
grammar. A subgraph G of TG is called quasi-concurrent if

1.
⋃

x∈G⌊x⌋ is a pre-configuration;
2. ¬(x < y) for all x, y ∈ G.

Another basic ingredient of the unfolding is the gluing operation. It can be seen as a
“partial application” of a rule to a given match, in the sense that it generates the new
items as specified by the production (i.e., items of right-hand side not in the interface),
but items that should have been deleted are not affected: intuitively, this is because
such items may still be used by another production in the nondeterministic unfolding.

Definition 14 (gluing). Let q be a production, G a graph and m : Lq → G a graph
morphism. We define, for any symbol ∗, the gluing of G and Rq along Kq, according
to m and marked by ∗, denoted by glue∗(q,m,G), as the graph 〈N,E, s, t〉, where:

N = NG ∪m∗(NRq
) E = EG ∪m∗(ERq

)

with m∗ defined by: m∗(x) = m(x) if x ∈ Kq and m∗(x) = 〈x, ∗〉 otherwise. The source
and target functions and the typing are inherited from G and Rq.

The gluing operation keeps unchanged the identity of the items already in G, and
records in each newly added item from Rq the given symbol ∗. Notice that the gluing,
as just defined, is a concrete deterministic definition of the pushout of the arrows

G
m
← Lq

lq
←֓ Kq and Kq

rq
→֒ Rq.

As described below, the unfolding of a grammar is obtained as the limit of a chain of
occurrence grammars, each approximating the unfolding up to a certain causal depth.

Definition 15 (depth). Let O = 〈TG,P, π〉 be an occurrence grammar. The function
depth : Elem(O)→ N is defined inductively as follows:

depth(x) = 0 for x ∈ |Gin| = Min(O);
depth(q) = max{depth(x) | x ∈ •q ∪ q}+ 1 for q ∈ P ;
depth(x) = depth(q) for x ∈ q•.

It is not difficult to prove that depth is a well-defined total function, since infinite
descending chains of causality are disallowed in occurrence grammars. Moreover, given
an occurrence grammar O, the grammar containing only the items of depth less or
equal to n, denoted by O[n], is a well-defined occurrence grammar.

As expected an occurrence grammar O is the (componentwise) union of its sub-
grammars O[n], of depth n. Moreover it is not difficult to see that if g : O → G is a
grammar morphism, then for any n ∈ N, g restricts to a morphism g[n] : O[n] → G. In
particular, if TG[n] denotes the type graph of O[n], then the type-span of g[n] will be
the equivalence class of



TG[n] X [n] gR
T

[n] //gL
T

[n]oo TGG

where X [n] = {x ∈ Xg | g
L
T (x) ∈ TG[n]}. Vice versa each morphism g : O → G is

uniquely determined by its truncations at finite depths.
We are now ready to present the unfolding construction.

Definition 16 (unfolding). Let G = 〈TG,Gin, P, π〉 be a (consuming) graph

grammar. We inductively define, for each n, an occurrence grammar U(G)[n] =

〈TG[n], P [n], π[n]〉 and a morphism χ[n] = 〈χT
[n], χP

[n], ι[n]〉 : U(G)[n] → G. Then the
unfolding U(G) and the folding morphism χG : U(G)→ G are the occurrence grammar

and strong grammar morphism defined as the componentwise union of U(G)[n] and χ[n],
respectively.

Since each morphism χ[n] is strong, assuming that the left component of the type-

span χT
[n] is the identity on TG[n] we only need to define the right component χR

T

[n]
:

TG[n] → TG, which, by the way, makes 〈TG[n], χR
T

[n]
〉 a TG-typed graph.

(n = 0) The components of the grammar U(G)[0] are TG[0] = |Gin|, P
[0] = π[0] = ∅,

while morphism χ[0] : U(G)[0] → G is defined by χR
T

[0]
= tGin

, χP
[0] = ∅, and ι[0]

in
=

id|Gin|.

(n→ n+ 1) The occurrence grammar U(G)[n+1]
is obtained by extending U(G)[n] with

all the possible production applications to quasi-concurrent subgraphs of its the type
graph. More precisely, let M [n] be the set of pairs 〈q,m〉 such that q ∈ P is a production

in G and m : Lq → 〈TG
[n], χR

T

[n]
〉 is a match satisfying the identification condition,

with m(|Lq|) quasi-concurrent subgraph of TG[n]. Then U(G)[n+1]
is the occurrence

grammar resulting after performing the following steps for each 〈q,m〉 ∈M [n].

– Add to P [n] the pair 〈q,m〉 as a new production name and extend χP
[n] so that

χP
[n](〈q,m〉) = q. Intuitively, 〈q,m〉 represents an occurrence of q, where the match

m is needed to record the “history”.

– Extend the type graph TG[n] by adding to it a copy of each item generated by the ap-
plication q, marked by 〈q,m〉 (in order to keep trace of the history). The morphism

χR
T

[n]
is extended consequently. More formally, the TG-typed graph 〈TG[n], χR

T

[n]
〉

is replaced by glue〈q,m〉(q,m, 〈TG[n], χR
T

[n]
〉).

– The production π[n](〈q,m〉) has the same untyped span of π(q) and the morphisms
ι[n](〈q,m〉) are identities, that is ι(〈q,m〉) = 〈id|Lq|, id|Kq|, id|Rq|〉. The typing of
the left-hand side and of the interface is determined by m, and each item x of the
right-hand side which is not in the interface is typed over the corresponding new
item 〈x, 〈q,m〉〉 of the type graph.

It is not difficult to verify that for each n, U(G)[n] is a (finite depth) nondeterministic

occurrence grammar, and U(G)[n] ⊆ U(G)[n+1]
, componentwise. Therefore U(G) is a

well-defined occurrence grammar. Similarly for each n ∈ N we have that χ[n] is a well-

defined morphism from U(G)[n] to G, which is the restriction to U(G)[n] of χ[n+1]. This
induces a unique morphism χG : U(G)→ G.



It is possible to show that the unfolding construction applied to an occurrence
grammar yields a grammar which is isomorphic to the original one.

6 Functorial unfolding for semi-weighted grammars

The unfolding construction has been defined, up to now, only at “object level”. This
section makes a further step towards a full correspondence with Winskel’s construction,
by facing the problem of characterizing the unfolding as a coreflection between the cat-
egories of graph grammars and of occurrence grammars. As in the case of (contextual)
Petri nets [15, 2], we restrict to a full subcategory SGG of GG where objects satisfy
conditions analogous to those defining semi-weighted P/T Petri nets. Then we show
that the unfolding construction can be extended to a functor U : SGG→ OGG that
is right adjoint to the inclusion functor IO : OGG → SGG and thus establishes a
coreflection between SGG and OGG.

A graph grammar is semi-weighted if the initial graph is injective and the right-
hand side of each production is injective if restricted to produced items (namely, items
which are not in the interface). It is possible to show that, if we encode a Petri net N
as a grammar GN , as sketched in Section 2, then N is a semi-weighted net if and only
if GN is a semi-weighted grammar.

Definition 17 (semi-weighted grammars). A TG-typed production L ← K →
R is called semi-weighted if tR is injective on the “produced part” of R, namely on
|R| − r(|K|). A grammar G is called semi-weighted if the initial graph Gin is injective
and for any q ∈ P the production π(q) is semi-weighted. We denote by SGG the full
subcategory of GG having semi-weighted grammars as objects.

The coreflection result strongly relies on the technical property which is stated in
the next lemma. This is a key point where the restriction to semi-weighted grammars
plays a rôle, since, as we will see, the lemma fails to hold for arbitrary grammars.

Lemma 1. Let G = 〈TG,Gin, P, π〉 be a semi-weighted grammar, let O =
〈TG′, G′

in, P
′, π′〉 be an occurrence grammar and let f : O → G be a grammar mor-

phism. Then the morphism k, such that fT {ι
in
f , k}(Gin, Gin′) (see Definition 5, Con-

dition 1) is uniquely determined. Similarly, for each q ∈ P , with q′ = fP (q), the
morphisms kL, kK and kR such that fT {ι

X
f (q), kX}(Xq, Xq′) for X ∈ {L,K,R} (see

Definition 5, Condition 2) are uniquely determined.

A relevant property of morphisms between occurrence grammars which plays a
central rôle in the proof of the coreflection is the fact that they “preserve” quasi-
concurrency. This lemma can be proved along the same lines of an analogous result
which hold for morphisms of contextual nets [2]. In fact, the notion of quasi-concurrency
disregards the dangling condition, taking into account only causality and asymmetric
conflict, whose treatment is basically the same for grammars and contextual nets.

Lemma 2 (preservation of concurrency). Let O1 and O2 be occurrence grammars,
let f : O1 → O2 be a grammar morphism, and consider, for i ∈ {1, 2}, a TGi-typed
graph Gi. If fT (G1, G2) and tG1

(|G1|) is a quasi-concurrent subgraph of TG1 then
tG2

(|G2|) is a quasi-concurrent subgraph of TG2.



Occurrence grammars are particular semi-weighted grammars, thus we have the
inclusion functor IO : OGG → SGG. The next theorem shows that the unfolding of
a grammar U(G) and the folding morphism χG are cofree over G. Therefore U extends
to a functor that is right adjoint of IO, thus establishing a coreflection between SGG
and OGG.

Theorem 1 (coreflection between SGG and OGG). Let G be a semi-weighted
grammar, let U(G) be its unfolding and let χ : U(G) → G be the folding morphism as
in Definition 16. Then for any occurrence grammar O and morphism g : O → G there
exists a unique morphism h : O → U(G) such that the following diagram commutes:

U(G)
χ // G

O

h

OO

g

=={{{{{{{{{

Therefore IO ⊣ U .

The proof of the existence of the morphism h uses Lemma 2 to inductively define, for
each n, a morphism h[n] : O[n] → U(G), while uniqueness basically relies on Lemma 1.

7 Conclusions and future work

A natural question regards the possibility of extending the result of this paper to the
whole category GG of graph grammars. We remark that the proof of the uniqueness
of the morphism h in Theorem 1 strongly relies on Lemma 1 which in turn requires
the grammar G to be semi-weighted. Unfortunately the problem does not reside in our
proof technique: the cofreeness of the unfolding U(G) and of the folding morphism χG

over G may really fail to hold if the grammar G is not semi-weighted.
For instance, consider grammars G1 and G2 in Fig. 4, where typed graphs are rep-

resented by decorating their items with pairs “concrete identity:type”. The grammar
G2 is not semi-weighted since the initial graph is not injective, while G1 is clearly an
occurrence grammar. The unfolding U(G2) of the grammar G2, according to Defini-
tion 16, is defined as follows. The initial graph and type graph of U(G2) coincide with
|Gin2

|. Furthermore, U(G2) contains two productions q′2 = 〈q2,m
′〉 and q′′2 = 〈q2,m

′′〉,
which are two occurrences of q2 corresponding to the two possible different matches
m′,m′′ : Lq2 → Gin2

(the identity and the swap).
Now, let g : G1 → G2 be a grammar morphism, with gP (q1) = q2 and the type

span gT defined as follows: XgT is a discrete graph with two nodes x and y, gLT (x) =
gRT (y) = A and gLT (x) = gRT (y) = B (see the bottom row of the diagram in Fig. 4).
Consider the pullback-retyping diagram in Fig. 4, expressing the preservation of the
initial graph for morphism g (Condition 1 of Definition 5). Notice that there are two
possible different morphisms k and k′ from |Gin2

| to XgT (represented via plain and
dotted arrows, respectively) making the diagram commutes and the square a pullback.
This provides a counterexample, showing that Lemma 1 cannot be extended to general
(non semi-weighted) grammars.
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Fig. 4. The grammars G1 and G2, and the pullback-retyping diagram for their initial graphs.

Now, it is not difficult to see that, correspondingly, we can construct two different
morphisms hi : G1 → U(G2) (i ∈ {1, 2}), such that χG2

◦ hi = g, the first one mapping
production q1 into q

′
2 and the second one mapping q1 into q

′′
2 . An immediate consequence

of this fact is the impossibility of extending U to morphisms, in order to obtain a functor
which is right adjoint of the inclusion I : OGG→ GG.

A possible way to overcome this problem could be the choice of a different notion of
grammar morphism, constraining in some way also the “k”-component of the pullback-
retyping diagram. Some insights could come again from the theory of Petri nets [15],
where the treatment of general P/T nets reveals similar problems which are solved
there via the notions of decorated occurrence net and family morphism, at the price of
obtaining a proper adjunction rather than a coreflection.

To conclude, it is worth stressing that a similar construction has been proposed by
Ribeiro in her doctoral thesis [17] for the single-pushout (SPO) approach. She defines
an unfolding functor from the category of graph grammars to a category of (abstract)
occurrence grammars , showing that it is a right adjoint to a suitable folding functor .
Although the basic ideas are very similar, concretely, the differences between the two
settings, like the absence of the application conditions in the SPO approach, a different
notion of “enabling” allowing for the concurrent application of productions related by
asymmetric conflict and a different choice of grammar morphisms, makes difficult a
synthetic direct comparison. For lack of space we defer to the full version a detailed
analysis of the relation between the two approaches.
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