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UNFOLDING PARTICLE SIZE DISTRIBUTIONS
W. L. Nicholson and K, R. Merckx*

INTRODUCTION

Upon irradiation, uranium undergoes fission and some of
the fission products are the inert gases. The collection of
these inert gases into spherical cavities and the growth of
these cavities produce specimens which can be studied by the
methods described in this paper. The problem of estimating
the distribution and range of size of these cavities was the

motivating factor in this research.

A common problem in quantitative metallography is that
of estimating the density of particles (number of particles
per unit volume) embedded in a three-dimensional specimen,
To estimate this density, a section is usually made of the
specimen and the particles which intersect a given part of the
section are counted. If the counted particles are grouped
according to size then the data consist of a frequency-versus-
size histogram. A particle size distribution can be calcu-
lated from such data if the number of distinct particle sizes
and the true particle shape are specified and if the particle
centers are assumed to be randomly distributed within the
specimen. Formulas can be developed which relate the data
histogram to the true particle size distribution within the
specimen. This estimation of a particle size distribution
from a data histogram is often called "unfolding the

distribution."

This process was first used by Scheil(ls) to unfold
spherical particle distributions. Schwartz(l4) and Saltykov

(11).

* This work was supported by the U. S. Atomic Energy Com-
mission under Contract AT(45-1)-1830.
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modified the original technique and improved the calculation
procedure. The basic observation or measurement in all these
developments was the diameter of the particle's intersection

(7)

extended these unfolding techniques to include,

with a two-dimensional plane section. Johnson and

(15)

respectivel the measured intersection area on a two-
b

Spektor

dimensional section and intersection length on a one-
dimensional section, Fullman(s) points out that the same

unfolding analysis could be applied to rods and plates.

SUMMARY

This paper treats the unfolding problem in terms of a
general framework which extends previous developments. The
method, at least in principle, can be applied to any convex
particle which can be sized in terms of a single character-
istic dimension. A sectioning or sampling process must be
usea which produces a particle intersection which, likewise,
can be sized with a single characteristic measurement. The
general framework is set in terms of a probabilistic model.
In addition to the density estimates, the precision of the
unfolding process is estimated with a standard deviation
estimate for each particle size in the distribution. Such
estimates of precision have not appeared in earlier work.
The general formulation also includes the possibility of
imperfect observation of specimen sections. Thus, the data
may be a distorted or truncated view of the set of possible
particle intersections, but as long as these anomalies can
be modeled mathematically the formulas still give unbiased
estimates of the true specimen structure. This process can
also be used to estimate distribution of sizes of voids

induced by fission gases in irradiated uranium,
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The following two sections present the general particle
distribution model theory and the unfolding formulas in
detail. A section follows which relates our general develop-
ment to the pioneer efforts of Scheil, Schwartz, Saltykov,

(12) 1s treated to

and Johnson. An example from Saltykov
illustrate the importance of standard deviation estimates
when the unfolded distribution is being interpreted. The
last section describes the application of the general theory
to an indirect microscopy analysis of a replicated plane
surface. Indirect microscopy 1s routinely used to analyze
the microstructure of irradiated uranium specimenso(z) An

example 1s included.

Appendix I is a description of the method of numerical
evaluations used to write a FORTRAN IV program called UNFOLD.
This program is used to unfold the frequency data collected
on a Zeiss Particle Size Analyzer. Appendix II is a listing

of the program. Appendix III is a sample input and output.

PARTICLE DISTRIBUTION MODEL

If an appropriate probabilistic or stochastic model is
developed for a material and for the observation of samples
taken from that material then a mathematical treatment can
be formulated which will estimate parameters which describe
the probabilistic model. The model proposed in this treat-
ment 1is limited to random distributions of particles having
a discrete number of particle sizes. The parameters to be
estimated are the density of particles of each size. The
probabilistic model describes the distribution of particles
within a specimen, the intersections of particles with a

sample from the specimen (sampling procedure), and the
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observation of the particle intersections (observation
procedure). The development of this probabilistic model is

presented in this section,

The probabilistic model is for a three-dimensional specimen
of material which has distributed within it particles of
various sizes but of similar geometric shape. This geometric
shape must be definable in terms of a single characteristic
dimension 6: for example, the diameter of a sphere, the edge
of a cube, or the diameter of a circular platelet. Exactly k
distinct characteristic dimensions o < 61 < 8y < e <8y

describe the particles in the specimen., Particles of dimension
84 (i =1, 2, ..., k) are called ”ith size." The number of ith
size particles in the specimen 1is uif The particle distribu-
tion is described with the k-dimensional particle dimension
column vector § = (6162...6k)T and the particle frequency
vector u = (uluz...uk)T. With t the volume of the specimen,

the particle density vector is

p. = (/9w . (1)

* The mathematical nomenclature used in the paper attempts to
distinguish the three levels of reality which characterize
the unfolding problem in practice. Greek letters denote
properties of the three-dimensional specimen under investi-
gation. For example, u; is used to denote total number of
1th size particles in the specimen. Capital English letters
denote true properties of the sample used to estimate
specimen properties. For example, M; is used to denote the
total number of ith size particles in the sample. Lower
case English letters denote properties of the sample as
they are observed. These are the data in the problem, For
example, m; is used to denote the total number of particles
in the sample which fall in the ith observational cell.
Vector and matrixz notation is used whenever possible. The
specific notation is taken from Hohn.(6) The notation for
probability concepts such as random variable, distribution,
mean, and variance is taken from Chapter IX of Feller.
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The probabilistic model specifies the particle distribu-
tion in the specimen by describing the location of particle
centers or centroids. These centers are assumed to be ran-
domly located so that the probability that any center lies in
a given region of the specimen depends only on the volume of
that region. Centers are independently distributed in
the specimen. No allowance is made for either a clustering
or a regular lattice spacing of centers. Such a distribution
is called "uniform'" or '"homogeneous.'" These distributional
assumptions only approximate reality. Data evaluation based
on independence is adequate if the total particle volume
fraction is small, say less than 10%. Sampling of the speci-
men is done with a probe which physically pierces or cuts the
specimen., The probe is characterized by a characteristic
dimension A. Typical probes include one-dimensional linear
sections (A = length), two-dimensional plane sections (A =
area), and three-dimensional thin slice sections (A = volume).
A particular particle in the specimen is in the sample if and
only if it is intersected by the probe. Since particle
centers are uniformly distributed, sampling is random and not
influenced by the orientation of the probe. Samples selected
by different probes are independent if no single particle can

appear in more than one sample.

The probability that a probe intersects a specific ran-
domly located ith size particle is defined as (A/T)Fi and must
be calculable for the characteristic particle shape. In a
particular application of the general theory the calculation
of Fi depends on the geometry of the particle and the
character of the probe. For the case of a linear probe of
length A and a spherical particle of diameter 8.4 intersection
occurs if the particle center lies in a cylindrical region

with the probe as its axis and its radius equal to ai/z.
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With the assumption of a random distribution of particle
centers, the intersection probability is the ratio of the
volume of this region to that of the specimen, or Aﬂ&i/4T; so

_ 2
Fi = ﬂGi/4.

For the case of a planar probe of area A and a spherical
particle of diameter 85 if the center of the particle is
within 61/2 of either side of A then an intersection will
occur. Thus, the volume of the intersection region is Adi

and the intersection probability is Adi/T; SO Fi = di.

Since the My ith size particles are randomly and inde-
pendently placed with respect to the probe, the number Mi of
it size particles in the sample is a random variable with
a binomial distribution [Reference (4), page 135]. Thus, the
probability that M, = x(x =0, 1, 2, ..., ui) is given by the
binomial density function for My trials, with each trial hav-
ing an intersection probability of (A/T)Fi. Specifically,

H.-X

Ui X i
PO, = 0 = (LY (cvoE 1o (avoE]

The mean and variance of the binomially distributed Mi are

E(Mi) = (A/T)Fiui , and (2)
Var(Mi) = (A/T)Fi [1 - (A/T)Fi]ui
Let M = (Mle...Mk)T and F = (Fle...Fk)T be k-dimensional

column vector representations of particles intersected and
of intersection probability per unit probe dimension per
particle per unit volume. M is a random vector with mutually

independent binomially distributed elements. From Equation (2)
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and the independence assumption, the mean vector and

covariance matrix of M are#*

E(M) = (A/t)D(F) u = D(AF) p , and (3)

Var(M) = (A/<)D(E) [I - (A/t)D(E)] D(n)

D(AF) [I - (A/)D(E)] D(p)

If the observational process is such that all intersections can
be identified as to the size of particle causing the inter-
section, then the particle density estimate based on infallible
characterization of a single sample is the column vector

R = (R{R,...R,)" defined by

2 2+ Ry)

R=D1lapM . (4)

Since the matrix D-l(AE) is known, the mean vector and
covariance matrix of R can be evaluated directly with Equation
(4) and substitution of the values of E(M) from Equation (3):

E(R) = p , and (5)
-1
Var(R) = D “(AF) [I - (A/7)D(F)]D(p) .
Thus, é = R is an unbiased estimate of the true specimen
density p. The covariance matrix of é = R involves the unknown
* For any n-dimenstional vector g = (xlx ...xgéT, D(x) is the
nth order diagonal matrix with x; a8 ¢he

diagonal
element [Reference (6), page 296].
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quantity p. An unbiased estimate of this covariance matrix

is
var(s) = D N(AF) [1 - (A/0)D(B)ID() . (6)

Thus, the unbiased estimate ¢ and its variance estimate Vér(é)

can be determined with Equations (4) and (6) if M can be

observed.

The second term in the bracket of Equation (6) cannot be
calculated without knowledge of the specimen volume 1. When
the fraction of the specimen sampled by the probe is small
(e.g., when the particles are small compared to the specimen
size) (A/t)D(F) is a minor term which can be ignored. Elimina-
tion of this term is equivalent to letting 1 » + « with p
fixed; hence, the components of M now become Poisson random

variables [Reference (4), page 176].

This theory is applicable, for example, to observation by
transmission-electron microscopy of nonoverlapping spherical
particles of discrete sizes. When the sample probe is a foil
thinned by etching and the particles are not etched, the
volume sampled with a foil of area A and thickness t for a
particle of diameter 8 is A(t + ai). Thus the probe has a
probability A(t + Gi)/r of intersecting a spherical particle
of diameter 8 Hence, Foo=t+ 6. With M observations of
diameters §, the specimen particle density estimate p and its

variance estimate are given by Equations (4) and (6).

The size of particle intersected by the probe cannot be
recognized in many observational procedures. In planar and
linear probes, only the areal and length characteristics,
respectively, of the intersection can be observed. 1In most
cases several sizes of particle could have given such an

observation. The observation need not be a geometric
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measurement but could be an intensity variation given by an
automated observational instrument. Any type of measurement
can be treated if the observational procedure can be pro-

babilistically modeled.

When a sampling probe intersects a particle, the observa-
tion of the intersection is described by a single character-
istic dimension or signal d which is related to the particle's
characteristic dimension §. At the general development level
it is assumed that all possible d values lie between a lower
limit dO and an upper limit dc’ Note that dC may not depend
on the size of the largest particle and that dO need not be
zero. The range dO to dC is divided into c¢ contiguous cells.,
For this development to be applicable, the calculation of the
probability that an ith size particle is measured and tallied
in the jth of these cells must be possible. This probability
is calculated conditional on a single ith size particle being
intersected by the probe. The geometry of the particle, the
character of the probe, the random distribution of particle
centers, and any pecularities of the measurement process
enter into this calculation.

To formalize these remarks, let dO < d1 < d2 < L. < dC

th

be the cell boundaries; i.e., let the j cell be the interval

dj_1 to dj' Let Pji be the probability that an ith size
particle measurement d satisfies dj_1 <d s dj’ given that the
particle is in the sample. Always,
c
0 £ P.. 51 and |} P.. s1

ji 351 ji
Inequality in the summation over all c cells is allowed because
a sampled particle need not be observed. For example, a
positive resolution point of dO in the measurement process

for the diameter of the intersection of spherical particles
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of diameter 81 with a planar probe means that a fraction
Vﬁ - (do/él)2 of the sampled particles will not be seen and

hence not measured.

If ms . is the number of sampled ith size particles mea-
sured and tallied in the jth cell and m, = (m )T is

1i"2i"*:Hei
the c-dimensional column vector of frequencies for i size

sampled particles, then, conditional on Mi’ the vector m. has
a multinomial distribution* [Reference (3), page 157]. M. is

) N
1i° 21 ci
bability vector. The conditional mean vector and covariance

the number of trials and P. = (P )T is the cell pro-

matrix of m, are

n
=
av)
I
=
o

E(my [M;) = M;Py

]

Var(gi|M.)

T
) = M [D(Py) - P.Pi] . (7)

Since the contributions of the various size particles to the
observations falling in a given cell cannot be separated, the
sum of the contributions for all sizes of particle is the
observed frequency vector m where

k

I_n_:
i=1

ms (8)
With the use of Equation (7) and the independence of the dis-
tributions of particles of different sizes, the conditional
mean vector and covariance matrix of m are expressed in matrix

notation as

e

e
* = -
When jZ] Pji <l, a c + 1 st element mc+1,i Mi jzz m

must be included for m; to have a multinomial distribution.
This modification in no way affects the following
development.

Ji
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E(m|M)

1]
.o~
=
|9
I
=)
=

Var (m|M) [D(P,) - P.P:] = D(PM) - PDQM)PT , (9)

[
I~ K
=

=

where P is the c by k dimensional matrix of probabilities P.i
with ith column P.. Application of conditional probability
calculus to Equations (9) and use of Equation (3) results in
the unconditional moments of the observed frequency vector
being expressed in terms of an overall probability matrix Q and
the particle density. Specifically,

E(m) = E[E(m|M)] = AQp , and
Var(m) = E[Var(m|M)] + Var[E(m|M)]
= AD(Qp) - (A%/7) QD(g)QT ) (10)
where
Q = PD(F)

In Equation (10) Q is completely specified by the character of the
probe and by the conditional probability of observation given that
a particle is in the sample. In any application Q is known and

is independent of the probe dimension. The jit element in the
matrix (A/t)Q is the unconditional probability that a particular
ith size particle, located randomly in the specimen, can be
sampled by the probe and measured and tallied in the jth cell

of the observed frequency vector. The vector r = (1/A)m is the
observational density vector for the probe. Using Equation (10),

the expectation of r is found to be E(r) = Qe. This relationship
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between the expectation of r and p is the relationship of
Delesse(s) between volume fraction in the specimen and area of

linear fraction in the probe, given the proper choice of Q.

DENSITY ESTIMATION

The relationship, Equations (10), between the observed
frequency vector m and the specimen density vector p provides
the basis for estimating the specimen densities with observa-
tional data when the number of frequency distribution cells is
at least as great as the number of distinct particle sizes
(k = c). The development presented in this section covers both
the cases k = ¢ and k < ¢c. The form of the estimate is dif-

ferent for the two cases.

If the rank of the matrix Q is k and k = ¢, (this restric-
tion is equivalent to the statement that no probability vector
for any particle size can be expressed as a linear combination
of several other such vectors) then a generalization of the
Gauss-Markov Theorem [Reference (15), page 285] can be used to
construct an estimate é of the density vector é. Application

of the theorem to the two cases k = ¢ and k < ¢ follows:

Case I: k = c.

The estimate for the particle density vector is given by
~ -1
5 = (1/A)Q " m. (11)

This relationship is the solution of the system AQp = m of k
simultaneous linear equations in k unknowns. The estimate
based on Equation (11) is unbiased; that is, E(p) = p. The
variance matrix of the estimate 1is

1

var(s) = (1/A) [QD71(QeQl ™t - (1/7)D(p). (12)
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Substitution of estimates for parameters in the variance
matrix and inversion of the quantity in the brackets gives
the variance matrix estimate

T
)

var(s) = (1/mQ ey @ Ht - azony . @3

th row and jth column

of Véf(é), then the standard deviation estimate for the ith

If Vi is defined as the element in the i
size particle density Bi is Vs The correlation estimate for
the density pair (pi,pj) is Vij/ Vviivjj'

Case II: k < c,

Now the estimation problem is one of fitting a smooth
function AQp to the observed frequency vector m. A generalized
least-squares method, which takes into account the unequal
variances of m and the correlation among the components of m,
is used to make the estimate. The resulting estimate for

the particle density vector 1is
- T,-1 -1.T
p = 1/A [Q@'D "(m)Q] Q"1 , (14)

where 1 is a k-dimensional column vector of ones. When k = c
the form of Equation (14) reduces to that of Case I. Variance
estimates for estimated particle density given by Equation (14)
are very difficult to calculate using exact variance formulas.
An approximate variance formula is given by substituting é
into Equation (12) of Case I. If this variance formula 1is
used, then the standard deviation and correlation estimates

are calculated as for Case I.

Variance matrix formulas in the particle distribution
model of the last section reflect the randomness associated

with a homogeneous distribution of particle centers in the
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1)

specimen and a particular method of "observing'" the particles
sampled by the probe. Commonly occurring situations which are
inadequately modeled by this approach include nonuniform
distribution of particle centers and continuous distribution
of particle sizes and/or shapes. An additional inadequacy may

be inability to model the observational process correctly.

Since the validity of the variances of the estimates
depends upon the validity of the probability model for the
particle distribution and its sampling and observation, checks
on the validity of the probability model should be made. When
k = ¢, data from a single sampling probe are not sufficient
to check model assumptions, and density estimate variance
calculations must be taken on faith. If several sampling
probes are used then the between-probe density estimate vari-
ability provides a check on the within-probe variance estimate

(8)

be used to determine whether the between-probe variance

based on Equation (13). Analysis of variance methods can
estimates are significantly large. Significance implies
failure of model assumptions. When k < ¢, a check of model
assumptions 1is possible with data from a single sampling probe.
If the assumptions in the model are correct then the goodness-
of-fit statistic,

s - D i mm - A (15)

is approximately a Chi-square random variable with ¢ - k
degrees of freedom [Reference (16), page 183]. Upper per-
centile points of the Chi-square distribution can be used for

tests of significance,
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RELATION TO PREVIOUS DEVELOPMENTS

The application of the general Equations (11) and (13) to
unfolding spherical particle density distributions is used to
illustrate how several previous developments can be obtained

with this general approach.

A spherical particle of diameter 8 randomly placed in a
specimen of volume 1 is intersected by a planar probe or
sample of area A if the center of the sphere is within Gi/Z
of either side of the sampling plane. Thus, the effective
sample volume for an intersection is 6.A. The probability of
sample intersection per ith size partiéle is the ratio of
effective sample volume to specimen volume. Thus the prob-

ability that a given ith size sphere is intersected is given

by
(A/T)F, = As; /T . (16)

Equation (16) defines the sampling probability vector as

F = § and the characteristic sampling dimension A as the area
of the probing plane. The observed diameter d of the circular
intersection of the particle with the sampling plane is the
observational parameter. The observation falls in cell j when
dj—l

<d < dj. Let h be the distance of the sampling plane
below the center of a particle with diameter éi(—éi/Z < h < Gi/Z).

The planar probe has equal probability of intersecting the
particle at any height, so the distribution for h is rectangular

with a probability density function

p(h) = 1/6i for -Gi/Z < h < Gi/Z
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The height expressed in terms of the observed diameter d on

the plane probe is
h(d) = *+ (1/2) V5% - a?

with the restriction that d £ di‘ The plus sign applies if the
sampling plane is below the center and the minus if above.

The situation is illustrated in Figure 1. The total probability
that the observed d from an intersected ith size particle falls

in cell j (i.e., dj-l <d g d.) is the sum of the probabilities

for positive and negative h's., Thus,
h(d.
| (J)’
Pji = 2 p(h)dh

[h(d; ;)]
_ _ 2 _ 2 <
= VAT (dj_l/ﬁi) VAVV (dj/si) for dj = 61
= . 2 < .
"VA' (dj_l/Gi) for dj-l S 68, < dj’
=0 for 6§, < dj-l .7

The resulting P matrix is upper triangular if the cell boundaries
are selected equal to the discrete particle diameters. With

this restriction (di = Gi) the elements of the Q = PD(E) matrix
are from Equations (16) and (17)

Qi = Pyify
) 2 - 7 L
= d, \}/1 - (dy_q/d)° - J1 (dj/di)] for j S i,
= 0 for j > i. (18)
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Particle Diameter

o

X éim
dr2 \
Planar Probe

- d
Observed Diameter
(qmﬁ=mmﬂ+n2

FIGURE 1., Planar Probe Sampling of a Spherical Particle

Previous "unfolding" formulas, which were based on a
planar sampling device, all used Equation (18). The earliest
work of Scheil(ls) used k cells of equal width, expressed all
diameters as fractions of the maximum particle diameter, and
assumed that dO = 0. With di ='(i/k)6k Scheil wrote
Equation (18) in the form

Qy; = (/K108 {Qﬁ 1G-SV (j/i)z}
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He solved the resulting system of linear equations AQp = m by
successively subtracting from lower numbered cells the frequency

contribution for each particle size in turn, starting with Kth

(14)

size particles. Schwartz removed the dependency on maximum

particle size by calculating jS/6k. For k = 5 and 10 he pro-
vided tables of the components of GkQ-l. Now any particle size
density could be estimated directly without back calculation

from the kth size, Saltykov(ll) introduced cell width A = 6k/k
as the fundamental parameter in place of 81+ Now, di = ia and

Equation (18) has the form
Q; = A[Jiz - (G- - Wit jz]

Here, Qij/A is independent of k. DBecause of the upper triangu-

larity of (1/A)Q the inverse for any size case gives inverses
for all smaller sizes as long as the lower end of the observed
distribution of diameters do is an integral multiple of the
common cell width a; i.e., di = (1 + iO)A. Thus, a single table
replaces the size-dependent ones of Schwartz. The coefficients
for any case are the elements of the principal diagonal square

N 1st, i nd th

+ 2 s ees io + Kk

-1 - . ;
rows and columns of the Q matrix for the maximum size case,.

submatrix formed from the 1

Saltykov calculated such a table of the elements of Q"1 for a

maximum size case of k = 15,

To illustrate the method, Saltykov's data [Reference (12),
pages 293-296] on the distribution of cementite grains in
spheroidized steel containing 1% carbon were unfolded. Ilis
data were taken from a photomicrograph of area 26,667 mm2 which
yielded 500 grain sections with 8 mm as the largest section
diameter. The photograph magnification was 2000X. Breakdown
into k = 8 cells with do = 0 gives the unmagnified cell boundary

points as di = (i/2) microns (i = 0, 1, 2, ..., 8). The observed
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frequency distribution of grains in the eight cells and the
results of the unfolding analysis are presented in Table I,
The first four columns of the table reproduce Saltykov's

work, TFigure 2 shows the unfolded distribution given by
Column 4 of the Table. The pattern of the density estimates
vividly suggests a unimodal distribution with well defined
tails. Once the two-sigma limits are attached it is apparent
that only the peak of the distribution is established with
any degree of certainty. To locate the tails precisely,
approximately 50,000 sections would be needed instead of the
500 that were observed, The density estimate correlations
are listed in Table II. Only the correlation for contiguous
cells is appreciable. Tor the largest (four-micron) grains,
2/3 of the observed sections should fall in cells 7 and 8.
This fraction increases as the grain size decreases. Thus,
for medium (two-micron) grains, 7/8 of the observed section
should fall in cells 3 and 4. More than eight cells would
increase the correlations for both contiguous and noncontiguous
cells, Density estimate two-sigma limits would also increase.
To a first approximation these limits are proportional to the

square root of the observed cell frequencies,

TABLE I. Unfolding a Cementite Grain Distribution with a
Uniform-Cell-Size, Eight-Particle-Size Model

Cell dj Pi 9 Si g

i (n) ni  {(particles x 10 7 /cc) (Particles x 10 7/cc)
1 0.5 30 1.485 1.720

2 1.0 110 9.331 1.921

3 1.5 177 18,774 1.836

4 2.0 104 9,934 1,182

5 2.5 39 2.793 0.653

6 3.0 29 2.354 0.495

7 3.5 7 0.461 0.228

8 4.0 4 0.310 0.155

500
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FIGURE 2. Unfolded Cementite Grain Density Distribution
Showing Two-Sigma Limits on FEach Density Estimate

TABLE II. Individual Particle Size Density Estimate Correlation

2 3 4 5 6 7 8

-0.240 -0.075 -0.021 -0.005 -0.003 -0.001 -0.000
-0.,293 -0.062 -0,014 -0.007 -0,002 -0.001

-0.216 -0.035 -0.015 ~-0.003 -0.002

-0.175 -0.050 -0.100 -0.048

-0.274 -0.039 -0.,015

-0.156 -0.042

-0.267

N O RN
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Johnson and Saltykov(7’12) describe a method based on
measuring planar intersection area a, as opposed to diameter
d, and use exponentially increasing cell widths. Apart from
the question of whether diameter or area is a better char-
acteristic to measure, their method is identical with one
based on diameters and exponentially increasing cell widths.

Since a and d satisfy a = (n/4)d2 an exponentially increas-

’

ing cell boundary relationship of the form

based on measuring area is equivalent to an exponentially

increasing relationship

where dO =,/4ao/ﬂ > 0 and r =,/r1 > 1. If diameter 1s used
fewer ith size particles fall in cell i, which increases cor-

relation. If desired this can be remedied by increasing the
diameter cell width factor r. In any event with exponentially

increasing cell widths Equation (18) becomes

ar! [ﬁ C P20 rZ(j-i)]

d;g(i-j, 1) . (19)

2
I}

ji

The Q matrix satisfies Q = GD(d) where G is upper triangular
with each super diagonal in the principal direction having all

components equal; i.e.,
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where g = g(a, 1) of Equation (19). The inverse Q'1 =
D_I(Q)G'l, where G 1 has the same simple upper diagonal form
of G. Let f_ be the common value of elements in the ot" super

diagonal of g_l. The density estimates now take the very
simple form
k-1
o; = (1/d;M) QZO fomiy . (20)

The important thing to notice about Equation (20) is that the
same vector of fa values 1s used for every density estimate.
These fa's are completely determined by r. The simplicity of
Equation (20) is the key to the Johnson-Saltykov calculation
method, Tables of fa values for o« = 0, 1, 2, ..., 29 and
log10 r = 0.1 are given in Reference (12)., This simplicity
carries over to covariance calculation. Matrix manipula-
tions in Equation (13) reduce to

v ke
l..= ) f. .. m, f (21)

1] 0=0 J-1+4a Jjta o

Qo h’

for 1 £ j.

REPLICATION PROBLEM

By forming probabilistic models for the sampling procedure
and the observational procedure, a general method of estimating
distributional densities was formulated. The estimation of
observational data obtained from replicated surfaces of planar
probes sectioning materials with distributions of spherical
voids is included as an illustrative example of the general
method. The physical reasoning used in selecting the model
for the observational process demonstrates the flexibility of
the general method and the actual application to the replica-
tion problem is one of practical significance in quantitative

metallography.
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The examination of replicated surfaces with an electron
microscope is an indirect observational process. Some inter-
sections are distorted and some are not observed. This
observational process(l) begins with the sectioning of a
specimen containing spherical voids, which is followed by a
controlled etching of the sectioned surface. A softened
plastic film is then placed on the etched surface. The film
flows into the cavities formed from the intersection of the
etched surface with the spherical voids. The plastic replica
is hardened and removed from the etched surface of the sample.
Distortion of replicated voids occurs during the replication
process and breakage of the distorted replica occurs during
the removal process. The replica is then shadowed with a
heavy metal and coated with carbon. Not all the replicated
spherical voids cast shadows; thus, further information con-
tained in the sample is lost in the observational process.
Photographs are taken of the electron transmission image of
the shadowed carbon film (Figure 3). The widths of the
observed shadows are measured and counted with the aid of a
Zeiss Particle Size Analyzer. Matching of a variable-diameter
light spot to the maximum width of the shadow is the measure-
ment process used to estimate diameter. After this matching
the Analyzer marks the observed shadows and accumulates the
contribution to the correct observational cell. As used in
this study, the Analyzer has 48 observational cells with
exponentially increasing boundaries. These observational cell
boundaries are defined by the equation

d. = 1.21125(1.0674) 1 [mm]
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v15000X

Electron Photomicrograph of Replicated and
Shadowed Sample (Specimen: Irradiated uranium
after a 10 min pulse anneal at 750 °C, Sample:
Replica shadowed at 15° with UO2 and backed

with carbon)
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Since the probe used to form the sample is a plane section,
the sampling probability vector component Fi is the same as
that used in the previous section [Equation (16)], Fi = Gi = di‘
(This d.l is the true diameter, not the magnified image). The
probe characterization dimension A is the true surface area of
the portion of the replica examined in the electron microscope.
The modeling of the observational procedure provides the means

of accounting for replication distortions.

When the probe passes above the center of the cavity (i.e.,
less than half the spherical void remains to be replicated,
Figure 4) the replication of the cavity by the film is assumed
to be true. However, the replicas with surface tangents
inclined less than the shadowing angle will not cast a shadow.
For a 15 degree shadowing angle, and with the Zeiss Particle
Size Analyzer set for exponential cell boundaries, a maximum
of twenty-one cells have nonzero probabilities. These pro-
babilities are the same as those associated with plane sections.
Because of the proportionality between cell boundaries, the
probability cutoff is not dependent on the sphere size. The
information lost by not observing the intersections which do
not cast shadows is accounted for in the estimation procedure

by the alteration of the conditional probability.

When the probe passes below the center of the cavity (i.e.,
more than half the spherical void remains to be replicated,
Figure 5) two distortional effects must be accounted for. The
first effect occurs if the section 1s too far below the
cavity's center. In this case the replica of the cavity will
break off during the stripping of the plastic replica from the
sampling surface. An estimate of a breakage of one replica in
three hundred was made; hence all sections with (2h/6i) > 0.993
do not contribute to the observed diameters. This is equivalent

to only the first eight cells having nonzero probabilities.
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FIGURE 4. Replicas from Sections Above Center of Cavity
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FIGURE 6. Distortions of Replicas from Sections Below Center
of Cavity
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Additional observational distortion results from incomplete
replication and from extrusion during stripping (Figure 5).
From measurements of shadow length to width ratios and
observed distortions of the shadows, the replicas of the voids
greater than hemispheres are thought to be distorted into a

(2)

the resulting conical shape is the observed diameter. This

truncated ice cream cone shape. The maximum diameter of
distortional effect is estimated by assuming that the observed
shadow width is related to the planar probe displacement from

the cavity's center by the relation
/6, = 1 - O.4119(2h/ai)2

Figure 6 compares the (d/ai) ratio with that obtained from

classical plane sections, both as functions of (h/di).

i (d/()i) - Observed Diameter Ratios

From Shadowed Replica
/ w6, = 1-.4119 (2h/53)2]

/ Breakage Cutoff

Shadowing Cutoff 8 Cells 751

|
21 Cell 27 \\ |
ells
\

\ |

|

,] .25 \\l

i ‘l

I 9% 3 \‘
L | | | | 1 1 N\ >~

T -5 -5 ~25 0 25 5 75 1.00 2h/,)

Height of Section Below Cavity Center

FIGURE 6. Observed Diameters as a Function of Position of
Sampling Probe
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Since the sectioning of any void at a distance h from
the void center is equally probable for all h, the contribu-
tion to the probability matrix from sections above the

particle's center is

(P. )

(1/2) [Jl e

D o< i o8 . . . - . .
for j £ 1 j + 20; otherwise (le)above 0. The contribution

from sections below the particle center is

} 2 >
ji)above - j-1/8)7 - V- CIVATY ]

(P51) below = 4/1/0.8238 [\/1 - (d54/85) - V1 o- (dj/di)]

Co<os o< ) . = -

for j £ i £ j + 7; otherwise (Pii)below 0. The total cell con
tributions are the sum of these two probabilities, If cell

limits are equal to population diameters, di =38, the components

of the Q matrix, or product PD(F), are

0.5 [\/di ; dJ‘?_l ] Jd? _ dJ? ] a5

jS =
+ 0.77907 [Vd.(d. - d, ,) -+d. (4, - d.)] h..
1°71 j-1 ivi ] ji
where a.. =1 if j s 1 £ j + 20
ji

= 0 otherwise;

bjy = 1 ifjsisj+7,

= 0 otherwise.

The unfolding of particle distributions was adapted to real
observational processes by adjusting the estimates of the condi-
tional probabilities Pi.. The distortions and loss of sampled
data which occur during the observational process requ%;id

careful characterization of the observational process. Once
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these distortions were known, no mathematical difficulties

were encountered in adjusting the unfolding procedure. This
example demonstrates howexperimental data are used in altering
the P matrix. The matrix multiplications and inversions
required for any fixed procedure are readily performed by
standard computer codes. The particular Q matrix for the
replication process as observed with a 48-cell particle analyzer
has been inverted and stored for use with the program described
in the Appendices., Athough the particle analyzer has fixed cell
boundaries, the photographs used for evaluating the observa-
tional cell occupancies underwent different magnifications.

The analysis for the Q matrix was performed in terms of the
coordinates of the sample and not those associated with the
observational device. The conditional probability matrix P

is dimensionless and distributes the sampled particles into
observational cells. The sampling probability vector F con-
tains the dimensional quantities and gives a linear variation
with magnification., This linear variation with magnification

is accounted for in the program by adjusting the di of the

cell boundary observed in the particle analyzer and the area

of the picture to the real diameters existing in the sample.

Data obtained from replicas of irradiated and annealed
uranium have been analyzed using the programs for the plane
section and replicated section observational models. Table
III contains a set of representative input data and the
results from plane section and replicated section analyses.
Slight variations in the density estimates are predicted by
the two observational models. The replica section observa-
tional model consistently predicted lower variance estimates
than the plane section observational model; thus, an improve-
ment in the accuracy of the modeling is reflected through the

reduction in variance estimates.



TABLE III. Comparison of Densgity Estimates for Plane Section and Replica
Section Models [Irradiated Uranium Annealed at 750 °C for 10 ming
15,000X; Picture Area (mm2) = 401,086]

Plane Section Model Replica Section Model

Cell Particle Size Observed Density Estimate Standard Deviation Density Estimate Standard Deviation

Number (microns) Frequency  (particles/cc) of Density Estimate (particles/cc) of density estimate
1 9.2030-02 94 4,0715+11 1.8305+11 4.6177+11 1.7395+11
2 9.8231-02 103 4,8340+11 1.7842+11 5.1503+11 1.6946+11
3 1.0485-01 100 2,1872+11 1.6826+11 2.3889+11 1.5996+11
4 1.1191-01 133 6.6415+11 1.7815+11 6.4848+11 1.6909+11
5 1.1945-01 136 6.4621+11 1.6913+11 6.0515+11 1.6050+11
6 1.2750-01 146 8.1313+11 1.6243+11 7.5506+11 1.5401+11
7 1.3609-01 133 6.6497+11 1.4518+11 6.1480+11 1.3766+11
8 1.4526-01 116 3.5266+11 1.3000+11 3.3224+11 1.2344+11
9 1.5505-01 146 7.2544+11 1.3365+11 6.7466+11 1.2670+11
10 1.6549-01 136 6.9020+11 1.2024+11 6.4130+11 1.1395+11
11 1.7664-01 116 5.4079+11 1.0443+11 5.0423+11 9.8977+10
12 1.8854-01 108 5.6631+11 9.2975+10 5.2934+11 8.8044+10
13 2.0124-01 75 3.2952+11 7.2984+10 3,0212+11 6.9131+10
14 2.1480-01 57 1.9590+11 6.0110+10 1.8340+11 5.6990+10
15 2.2927-01 48 9.5828+10 5.3348+10 8.5513+10 5.0649+10
16 2.4472-01 68 2,9163+11 5.6648+10 2.7072+11 5.3621+10
17 2.6121-01 44 1.5685+11 4,3037+10 1,4510+11 4,0762+10
18 2.7881-01 33 9.5298+10 3.5384+10 8.7034+10 3.3536+10
19 2.9759-01 32 1.0711+11 3.2185+10 9.9470+10 3.0477+10
20 3.1764-01 25 9.2273+10 2.5987+10 8.5299+10 2.4575+10
21 3.3904-01 8 -1.1189+10 1.5860+10 -1.2350+10 1.5110+10
22 3.6188-01 22 7.0639+10 2.1673+10 6.6104+10 2.0506+10
23 3.8626-01 13 4.0432+10 1.5501+10 3,7550+10 1.4661+10
24 4,1229-01 6 1.2270+10 1.0209+10 1.1135+10 9.6758+09
25 4.4006-01 6 1.5868+10 9.2776+09 1.4767+10 8.7786+09
26 4.6971-01 3 4.8902+09 6.4535+09 4,8260+09 6.1254+09
27 5.0136-01 4 1.2338+10 6.5274+09 1.1765+10 6.1699+09

1¢

0TZ-TMNE
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Graphical presentation of the unfolded data is useful in
aiding interpretation., Figure 7 is the line diagram of the
discrete density estimates and their two-sigma limits. This
diagram is difficult to interpret in terms of a distribution
of void sizes. For the majority of applications the voids or
particle sizes are continuously distributed. This continuous
distribution 1is best approximated by a fine-scale discrete
distribution. However, to obtain a meaningful graphical repre-
sentation for such fine-scale distributions the amount of data
required is impractical. A fine-scale discrete model can be
used to form a bar distribution by summing up the contributions
from several particle sizes and dividing by an appropriate
width. Figure 8 is such a bar distribution obtained by summing
three density estimates and dividing by the total diameter
range attributed to these densities. This procedure smooths
the data. Variance estimates for such a bar distribution can
still be obtained. Let Er be the density estimate for the rth
cell of the bar distribution which is of width W.. Then

3

c.o= (1/W.) izl B3 (r-1)+i

The variance estimate of the bar distribution estimate 1is

3 3

Aa 2 |
Var(z ) = (1/W) izl jzl Va(r-1)+i,3(r-1)+]j

th

where va is the element in the a row and Bth column of

B
variance matrix estimate, Equation (13). The number of

density estimates combined for such a representation is not

restricted to the three involved in this example.
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Since the probabilistic and statistical techniques used
to form the unfolding equations were not based upon discrete
sized particles, such uniform distribution estimates could
have been made directly. The initial model for the particles
would have been one where uniform distribution of particles
exists over a size range. The F vector is formed from the
probabilities of intersecting one particle in each of the
various size ranges, and the P matrix is formed from the con-
tributions to the observation cells conditional on a particle's
being in a given size range. Generalizations to other distribu-
tional functions could be used to produce smoother estimates.

Application of such concepts is presently under investigation,
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APPENDIX I
NUMERICAL EVALUATION

The matrix formulation for unfolding or estimating particle
density distributions suggests that standard computer matrix
subroutines can be used for numerical evaluation. Although
direct application of general matrix routines will give satis-
factory numerical results, the number of numerical operations
can be greatly reduced in most cases by using special properties
of the unfolding formulas. Development of observational pro-
cedures and counting techniques is required for obtaining suf-
ficient numerical data to be of statistical significance. This
development was formulated so that if a standard probe or method
of sampling and a standard observational method for determining
cell sizes are used then the variable quantities between applica-
tions are the two scalars 7 and A associated with the size of
the specimen and of the sample respectively. The matrix quantity
Q for expressing the combined sampling and observational pro-
bability matrix for a given particle distribution model falling

in observational cells does not change.

If the observed frequency vector m is used to evaluate the
maximum number of particle density distribution parameters,
then the case of k = ¢ will be applicable and Equations (11) and
(13) can be used to perform the unfolding. Besides the observa-
tional data m, the parameters t and A, and the scale factor or
magnification, only the inverse of Q is needed to perform the
unfolding. The inverse of Q need be found only once and unfold-

ing can be done by matrix multiplication thereafter.

For probabilistic models based on geometric observational
parameters, the limits of the observational cells can usually
be made to correspond to size parameter limits used to describe

the particle shapes. Such typical observational cell limits
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are longest intersection for a linear probe and maximum area

of intersection for a planar probe. If each cell boundary

dj is equal to the characteristic dimension 6j’ then the

observational probability matrix P will have elements with

Pji = 0, for i < j., The resulting Q matrix and its inverse

will also be upper triangular matrices. Standard methods

for inverting upper triangular matrices [Reference (9), pages

130-132] can then be used to simplify the inversion of the

Q matrix. Since the Q matrix is triangular, the estimate for

the é vector will not include any terms which are larger than

the largest m component. The same inverse of Q can be used

for all observational data, with the matrix summations limited

to the index of the largest nonzero m component. Also the

ijth term in the matrix product in Equation (13) is for i < j,
Q'lD(m)Q'1T ..o= % Q'l ..om Q_1

1j a=j la « ja

where the upper summation limit k is the index of the largest

nonzero m-component. The matrix product is symmetric.

A computer program called "UNFOLD" uas been written for
unfolding data from an observational process described by an
upper triangular Q matrix. The Q_1 matrices based upon various
models for the particle distributions and observational pro-
cesses are stored on a tape so that the appropriate Q'1 can
be read in at the beginning of the analysis. Standard formats
are used to put in the observational data, assuming a limit
of 48 cells. The output of this program gives the cell
dimensions, observed frequencies, estimated particle densities,
and estimated standard deviations. Output of the correlation
coefficients is optional. A printer controlled plot of the

log of the density estimate versus cell number 1is also
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included as standard output. The matrix handling and input
and output portions of the "UNFOLD" program are listed in
Appendices II and III. Since the Q_l matrices are stored
in a binary form, a listing of unfolding matrices presently

available on tape is not included.

Another program, "SALTY,'" handles the planar section
analysis where the Q and Q'l matrices are created for pre-
scribed particle sizes and cell boundaries. A listing of
this program has been published(lo) which includes subroutine

"TRIVRT" for inverting triangular matrices.
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APPENDIX 11

PROGRAM LISTING FOR COMPUTER PROGRAM UNFOLD

PROGRAM UNFOLD

UNFOLD ESTIMATES THE VOLUME DENSITY OF PARTICLES USING A
STOCHASTIC MODEL OF A NUMBER OF DESCRETE PARTICLE SIZES RANDOMLY
DISTRIBUTEDe K TYPES OF PARTICLES AND OBSERVATIONS FROM K TYPES
ACCOUNTED FOR BY AN UNFOLDING MATRIX WHICH IS STORED IN A DATA
FILE.

VARIABLES
NAME INPUT USE
A YES AREA OF PICTURE
B CELL BOUNDARY IN SPECIMAN
C YES PICTURE NUMBER
cov COVARIANCE MATRIX
D(50) YES CELL BOUNDARIES
DD(50) DENSITY ESTIMATE
EM YES MAGNIFICATION
F(50) SMOOTHED DENSITY
FN(50) N IN FLOATING POINT
IDENT YES IDENTIFICATION INFORMATION
IPRT YES PRINT CONTROL FOR CORe MATRIX
IqQl YES IDENTIFICATION FOR QI RECORv
ISMTH YES NUMBER OF CELLS FOR SMOOTHING
ISTRT YES INITIAL CELL CONSIDERED
K INDEX OF LAST NON ZERO CELL
N(50) YES FREQUENCY
QI(50950) YES UNFOLDING MATRIX
S(50) DENSITY ESTe STARDe DEVIATION
T(50} SMOOTHED DENSITY STARDe DEVIATION
TYPE DEFINES ANALYSIS
v YES VOLUME IF USED

SUBROUTINES
LGSEE-= PRINTS OUT THE SMOOTHED DENSITY HISTOGRAMS BY J E SCHLOSSER
PRTMAT—-~ WRITES MATRICES WHERE NECESSARY
MAXT ~-— FINDS LAST NON-ZERO CELL

INPUT

CONTROL 1 CARD PER RUN (311)
1) 1QI
2) IPRT
3) ISMTH
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FROM TAPE
1) D
2} QI--THESE DO NOT INCLUDE EM HENCE PROGRAM CORRECTS
PARAMETERS 2 CARDS PER CASE (12A6) s (1XsF5091X91291X93F1040)
CARD 1
1) IDENT
CARD 2
1) C - PICTURE NUMBER
2) [STRT =~ INITIAL CELL
3) EM - MAGNIFICATION
4) A - AREA OF SECTION
5) V - VOLUME OF SPECIMAN
DATA 3 CARDS PER CASE (8Xs1614)
1) N(K) FREQUENCIES 0090

QUTPUT
REPORT HEADING 0120
TYPE OF SAMPLING AND OBSERVATIONAL PROCEDURE
AND SAMPLE IDENTIFICATION

SUBHEADING INFORMATION 0150
1) PICTURE NUMBER 0160
2) MAGNIFICATION 0170
3) AREA 0180
4) VOLUME

SUBHEADING = LABELS 0210
17 CELL NO. 0220
2) PARTICLE SIZe (MICRONS) 0230
3) OBSERVED FREQUENCY 0240
4) DENSITY ESTIMATE (PARTICLES/CC.) 0250
5) STANDARD LEVIATION OF DENSITY ESTIMATE 0260
6) SMOOTHED LENSITY (PARTICLES/CCe/MICRON) 0270
7) STANDARD DtVIATION OF SMOOTHEL DENSITY 0280

0290

DENSITY ESTIMATE CORRELATION MATRIX 0300

0310

LOG PLOT~SMOOTHED DENSITY HISTOGRAM
0320

DIMENSION L(50) » N(50) » IDENT{(12) » TYPE(10sl2)

1 » FN(50) » QI(50+50) » LDI(50) » COV(50450)
2 s F(50) » S(50) » T(50) » Ri50950) » B(50)

DATA (TYPE(Llsl)sI=1912) ,/T72HPLANE SECTIONS THROUGH SPERICAL PARTIC
1LES — Zt15S EXPONENTIAL BOUNDARIES/

DATA (TYPE(291)91=1s12) /T72HPLANE SECTIONS THROUGH SPERICAL PARTIC
1LES — ZEIS5S LINEAR OBOUNDARIES /

DATA (TYPE(391)sl=1912) /72HREPLICATED ScCTIONS THROUGH SPEKICAL V
10IDS—- Z£1SS EXPONENTIAL BOUNDARIES/

READING FILE FOR D AND QI



[aXa)

[ala!

aNala]

5010

10
20
5020

40

30

660
5030
5040

5050

1020

1710

1700

READ(595010) IQIs IPRTs ISMTH

FORMAT(311)

IR = 1

IF(IQI-IQR) 20930940

WRITE(6+5020)

FORMAT(1H1945HINCORRECT SPECIFICATION OF IQI READ CONTROL
CALL NTRAN(1s11)

CALL EXIT

READ(1)

IGR = IQR + 1

Go TO 10

READ (1) ( (D(1)sI=1949) » ((QI(I9J)eJ=1948)s1=1948) )

CALL NTRAN(1s11)
INPUT FOR A CASE

READ(545030) (IDENT(I)sI=1912)

FORMAT (12A6)

READ (5+5040) Cs ISTRTs EMs Ay V
FORMAT(1Xs F540 o 1Xeo I29 1Xs 3F1040 )
IF( ISTRT «LTe 1 ) ISTRT =1
READ(595050) (N(J)sJ=1948)

FORMAT( B8Xy 1614 )

CALCULATIONS

K = MAXI(N)

B(1) = D(1)/EM

DO 102U  I=1sK
B(I+1) = D(I+1)/EM

S(I) = Oe

FN(I) = FLOATIN(I))

F(I) = O

T(1) = 0.

DD(1)=040

CONTINUE

ARA = A/(100«% EM*%2 )

DO 1700 I=ISTRT»sK

DO 1710 J=1sK

DD(1) = DD(I) + QI(IsJY%¥FN(J)
CONTINUE

DD(I) = EM*DD(I)/ARA

CONT INUE
CREATE COVARIANCE MATRIX

KK = K
ARD = (EM/ARA)*%2

)

BNWL-210



[aXa¥a!

A.8 BNWL-210

LO 180V I=]STRTsK
IF( (IPRT+ISMTH) etQ@e O )} KK=I
DO 1800 J=1sKK
COV(led) = Us
DO 1810 L=JsK
COVIled) = COVIloJ) + QIUIL)I®QI(JoL)*AMAXO( N(L)sl )
1810 CONTINUE
COViJsel) = COVI(IeJ} * ARD
CoVIIed) = COVIJrl)
1800 CONTINUE
IF(V) 1830+1830s1820
1820 DO 1825 I=ISTRTK
1825 COV(Isl) = COV(Isl) = DD(IYVV
1830 CONTINUE

SMOOTH DENSITY AND CALCULATE ITS VARIANCE

IF( ISMTH oLTe 1 ) ISMTH = 1
KSM = ISTRT + ISMTH * ( (K+1-ISTRT) / ISMTH - 1 )
DO 1850 I=ISTRTsKSMsISMTH
DO 1835 IA=1,I1SMTH
INX = 1 - 1 + IA
F(I) = F(I) + DD(INX)
1835 CONTINUE
DMP = le / ( B(I+ISMTH) - B(I) )
F(I) = DMP*F ()
DO 1840 IA=1,ISMTH
INX = 1 =1 + 1A
FOINX) = F(I)
DO 1840 JA=1,ISMTH
UNX = 1 =1 + JA
T(I) = T(I) + COVIINXsJNX)
1840 CONTINUE
T(I) = DMP * SQRT( T(I) )
DO 1845 IA=1,ISMTH
INX = 1 = 1 + IA
TUINX) = T(I)
1845 CONTINUE

1850 CONTINUE
DO 190U I=ISTRTsK

S(I) = SQRT(COV(IsIl))
1900 CONTINUE

QUTPUT

WRITE(695060) (TYPE(IQI oI )eI=1912)s (IDENT(1)sI=1912)9CrEMrAsV
5060 FORMAT(1H1910Xs12A6 //17H IDENTIFICATION==-4912A6 //
1 9XebH PICTURE 99Xs 14H MAGNIFICATIUNSIYX e 1dH RREAIMM¥EHRL )y YXy

2 9Xs11H VOLUME(CC) 7/ 11XsF6eUs3F21leU



C

5065

3160

350U

1910

5070

4000

5uBu

5085

5090

A.9 BNWL-210
3 /1// 120H CELL PARTICLE SIZE OBSER
4VED UENSITY ESTIMATE STANDARD DEVIATION SMOOTHED DENSITY
5 STANVDARD DEVIATION / 120H NOe (MICRONS) FREQUENCY
6 (PARTICLES/CCe) OF DENSITY ESTIMATE (PARTICLES/CC/MICRON) OF

TSMOOTHEDL DENSITY )
DO 316U I=ISTRTsK
WRITE(695065) T14BII+1)sN(I)sDD(I)eSUI)oF(1})sT(I)

FORMAT(1H +4X912+3Xe1PE11labsb6XsI15s 8Xs £12e49 8Xo ELl2e498X 9 E£l2e

1911Xy El2e4 )
CONT INUE
WRITE OUT CORRELATION MATRIX
IF(IPRT) 400Uy 40QU0s 3500
DO 191u I=ISTRTsK
DO 191U J=ISTRT K
R(IsJ) = COV(IeJ)/ L SUI)%RS(J) )
R{Jel}) = R(IsJ)
CONT INUE
WRITE(695UTU) (IDENTI(I)eI=1912)
FORMAT(1Hly 20HCORRELATION MATRIX~—s 12A6 //)
CALL PRTMAT(RsK#K)
CONT INUE
WRITE OUT SMOOTHEDL UDENSITY HISTOGRAM
WRITE(6s5uBu) (IDENT(I)el=1912)
FORMAT (1Hlys 28HSMOOTHED DENSITY HISTOGRAM=-—, 12A6/7 )
KSP = KSM - 1 + [SMTH
DO 5u85 I=ISTRTsKSP
T(I) = 2%T(1)
CALL LGSEE(FseTsKSP)
WRITE(695050)
FORMAT( 1HO» 30Xs6lH SMOOTHED DENSITY (PARTICLES/CUBIC CM/MICRON)
1- - LOG SCALE )

GO TO 660
END

4

1500

1540

1590
1600



[aNaNaXal

LISTING OF SUBROUTINES

A.10

SUBROQUTINE LGSEE (Vs E» NUM)

PROGRAMED BY JE SCHLOSSER

DIMENSION A(101)sv(2)s E(2)s VLI200)s VBI20Q))

CALL SETIO(3s2)
810 FORMAT(120H

1 3 4
820 FORMAT(19H

1 2(50H 2
83U FORMAT(19H
840 FORMAT(19H
850 FORMAT(19H
860 FORMAT(19H
910 FORMAT(15H
920 FORMAT(15H
930 FORMAT(15H
94U FORMAT(15H
950 FORMAT(15H
960 FORMAT(15H
970 FORMAT(
975 FORMAT
980 FORMAT(1X)

DATA XXX/1HX/ s BLANK/1H /

N=MINO(NUM,200)

VMAX=-1eUE+37

VMIN=1.0E37

DO 5 I=1,101

NEXT(1)=1-4V

A(l) = BLANK

5 CONTINUE

DO 21 I=1sN

VLIl )==1eUE+3U

IF(VII)) 2us2lelu

13Xe1391X91lHeo
13Xel391Xe2He~

#*

*

3 4 5

4(25H
5(20H
10(10H 2

*x % X%

* 20( 5H 4 *

14990X 110)
l4s 2150)
l4s 4125)
l4y 5120)
[4910110)
1492015 )

)

s O/1HO/

10 VL{I)= 0.43429448%ALOG(VI(I))
VTI1)= Uel3429448%AL0OG( VIL)+E(D) )

VMAX= AMAX1(VT(1)sVMAX)
VMIN= AMINL1(VL(I)sVMIN)

IFC V(1) = E(L1) ) 22922911

11 VB(I)= ved3429448*ALOGI V(I)-LI(T) )
Go TO 21

20 VLII) = =levE+3l

22 VB(l) = -1e.0E+31

21 CONTINUE

VT(200)
le5
8
6 8
4
6 8 %)
8%)
)
s»101A1

)

NEXT(1U1)

BNWL-210

0010
0020
0030
0040

0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230

0240
0250
0260
0270
0280

0300
0310
0o3z¢
0330
0340

037v
0380

0390



30

40

50

60

70

80

100

A.11

NTOP = VMAX + Ue5 +SIGN(UeSsVMAX)
NBOT = VMIN =~(0e5 =SION(Qe5sVMINI} )

FNBOT=NBOT

IRANGE=MINO( MAXUINTOP=NBOTs1) s11)

NBOT=NBOT+40
WRITE (3,98U)

GO TO (30Us4Us5095Us6UsTUITUITUT0UsTOWBU) s IRANGE

CONT INUE

VINC=0.01
LAST=NBOT+1

WRITE (3,910)INEXT(I
WRITE (3,810)

GO TO 100

CONT INUE

VINC=0.02
LAST=NBOT+2

WRITE (3+92V) (NEXT(I
WRITE (3,820)

Go TO 1lvo

CONT INUL

VINC=0.04
LAST=NBOT+4

WRITE (39930) (NEXTI(I
WRITE (3,830)

Go TO 100

CONT INUE

VINC=0405
LAST=NBOT+5

WRITE (3994U) (NEXTILI
WRITE (3+840)

Go TO 100

CONT INUE

VINC=0el0
LAST=NBOT+10U

WRITE (39950) (NEXTU(I
WRITE (3+850)

Go TO 100

CONT INUE

VINC=0e20V
LAST=NBOT+20

WRITE (3996V) (NEXT (]
WRITE (3s860)

CONT INUE

1

) o I=NBOT»LAST)

) o I=NBOTsLAST)

)9 I=NBOTsLAST)

Jo I=NBOT»LAST)

10

)9 I=NBOT9LAST)

20

)2 I=NBOTsLAST)

DECADE

DECADES

DECADES

DECADES

DECADES

DECADES

BNWL-210

0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
050u
0510
0520
0530
0540
0550
0560
0570
0580
0590
0600
0610
0620
0630
0640
0650
0660
0670
0680
0690
0700
0710
0720
0730
0740
0750
0760
Q770
0780
0790
0800
0810
0820
0830
0840
0850
0860
0870
0880



115

120

122

121

l3v

140

230

240

250

260

270

280

300

DO 140 I=1,N

Kel

KK = 1

KKK =

IFIVLII)+1e0E+30)

WRITE
A(K)

1

(3097511

= BLANK

GO TO 140
CONT INUE

IF(VB(I)=FNBOT)

CONT INUE

KK= ABS{

A (KK

=0

CONTINUE

KKK=ABS(
K= ABS(

Ks MINU(Ks1U])

A (KKK}
= XXX

A(K)
WRITE
A (KK

A(KKK)
= BLANK

A(K)

=0

(3997V)1 o A
= BLANK
= BLANK

CONT INUE

Go 7O

(230926409250 12509260927092709270927090270+2801)91

CONT INUE

WRITE
WRITE
GO TO
WRITE
WRITE
Go TO
WRITE
WRITE
GO TO
WRITE
WRITE
Go 710
WRITE
WRITE
Go TO
WRITE
WRITE

(39810)
(39910V) INEXT (I
300

(3+820)
(3992V) (NEXTI(I
300

(3+830)
(3993V) (NEXTI(I
300

(39840)
(3994U) INEXTI(I]
300

(3985U)
(39950 ) (NEXT (1]
300

(39860)
(3e960U) (NEXTI(I

RETURN

END

A.12

11591309120

12191219122

VB(I)=FNBOTI/VINC +1le5

VI(1)=FNBOT)/VINC +15
VLIL)I-FNBOT)/VINC +1eb

) o I=NBOT»LAST)

) o L=NBOTsLAST)

)9 [=NBOT»LAST)

1o I=NBOTsLAST)

)9 I=NBOT»LAST)

)9 I=NBOToLAST)

BNWL-210

0890
0900

0910
0920

0940
0950

0960
0970

0990

1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210



[ala!

0 lalNaNalal

9uu
910

10

200
22U
24U

A.13

SUBROUTINE PRTMAT(AsNsM)

PRINTS OUT MATRICES

DIMENSION A(50,50)

FORMAT( 4X» SI1lus [11 ) .

FORMAT (1HU»3X91292XelUF10e5 / ( 1uXs 1OF10e5 ) )
MIN = MINU(1QsM)

WRITE(69900) (JsJ=19MIN)

Do 10 I=1sN

WRITE(69910) Iy {A(IsJd)y J=1sM)

CONT INUE

RETURN

END

FUNCTION MAXI(N)
THIS SUBROUTINE DeTERMINES THE
SUBSCRIPT OF THE LARGEST CtLL
HAVING A NON-ZERO FREQUENCY

DIMENSION N(50)
INITIALLZE
J =49

GO TO 220

J = J-1
IFIN(JI ) 2uuel2UUe 24U
MAXI = J

RETURN

END

BNWL-210

MAXT U0O
MAXT CzU
MAXIT U40
MAXT Uéu
0030
MAXI UbL
MAXI{ 10U
MAXT 12v
MAXI 140
MAXT 16U
MAXI 180
MAXT 20U
MAX] <20
MAXT 26U
MAX[ Z60






APPENDIX II1

SAMPLE INPUT AND OUTPUT FUR THE PROGRAM UNFOLD

SAMPLE INPUT

313

2486 750/1UMe 4A16-CLAD

2488 2 15V0u. 4ulUB88e

2488 3 920 94 103 100 133 136 146 133 116 146 136 116 108 75 57 48
2488 4 6o 44 33 32 25 8 22 13 6 6 3 4

2488 5

SAMPLE OUTPUT

ST-

017 -"IMNY



REPLICATE. 35CT10 S Trne M

ILe T ICATION== 4.8

PICTURE
248430,

PARTICLE SILE
(MICRONS)

962036=0¢
9.5236-ug
ley485=y}
141192=y
141946~ ,
1.2751=(}
ledoll~-_
Le4H27=u,
1¢5505«0)
1e6550=y}
1¢7665=
1¢8855=0
2¢0126=C1
2e1481l=Li
202929~0,
284873~}
2¢6122=y]
247882=01
2¢9761=01
3¢3766=01
J3e33U6=01
3¢6190~01
3e8b26-01
443231-0;
444009=01
Bep9Thmi
SeUlIGey,

SAGNIFLICATI

13490,

wbSERiEU
FroeelE CY

94
1063
104
133
130
l4o
133
slc
pRT
136
ile
vy
75
57
.y
©g
L)
33
32
25
)
22
13

+ oG

SPERICAL VCIDa= JEI15S EXpONENTIAL BQUNDARIES

750712 wAl6=CLAD
J AREAL =%2)
41768,

26 SITY ESTIwAT:
(PATTILLES/CCW)
4,6169+11
Se1l4964. 1
249886411
6.4838+11¢
50504411
Te54G64+411
Bele72411
3,3218+.1
6. T440+11
Ge121i+11
SeQ417+:1
5,2926+11
3.0199+11
1,833¢+11
B,55u3+1"
2,7069+1:.
1.,4509+11
8.,7053+1v
9,9524+10
8.5367+10
-1.2321"10
6.,5718+1¢
3.7713+12
1,1320+.7
1,4958+1C
4,74894(9
1,2077+)

STANDARQU DEVIATIO:,
UF UENSITY ESTIMATE
1,7393+11
1.6044+11
1.5993+11
16900411
145047+11
145399+11
1e376¢11
1,2342+11%
1.2668+11
1.1393+11
9,8961+10
3,8029+10
6.9120+410
5.,6980+410
£,7641+1"
5.3612+410
4e0755+10
3,3530+10
340472410
20“57041(
1,5105+10
2.,0501+10
1.4657410
3,6795+08
8,7778+409
0-100u§09
He 0327470

vIALLHE(CC)
-0,

SMOOTHED DENSITY
(PARTICLES/CC/MICRON)
6.35250+13
6£,5250+413
6,5250+13
5,8658+13
2,8658413
r,B658+13
S.8858+13
5.8858+13
5,8858+13
4,9992+13
4,9992+13
1 e9992413
1,4014+13
1,4014+413
1,4014+13
1,0151+13
1,0151+13
1,0151+13
2.,8649+12
2.8649+12
2.,89649+12
1.5666+12
1,5666+12
1.5666+12
3,5683+11
2,5623+11
2,5683+11

STANDARD CE.1aTICN
OF SMOQTWED CENSITY
1,2024413
1.2024413
1,2024413
9,2637412
9,2637+12
9,2637+12
6,1814¢12
6-151“#12
6,1814412
3,9750412
3.9750412
3.9750+12
2.0276412
2.,0276+12
2.0276412
1,226%5+12
1,2265412
1,2265412
5,8162+11
5¢8162411
5,8162+11
3,0%595+11
3,0595411
3,0595+11
1,0607+11
1.,0607+11
1,7607+11

01V

0TZ-"IMNd



Corntbam, TLul MATRIX== 2488

11

1

30000
WOC0uy
.300°¢

«Oyuui
,00352
- 0003

+0p0U0
+udlu?
-, 000.7

«Oyooo
- 02842
00021

+Ouoou
-,01523
.00052

«0y00o
-,01595
-, 00110

«0y000
- 02271
- 0011d

00000
- 04160
-, L0143

N IHE
- 39445
-,Dalwu

LOuuoo
-, 27992
-,00139

«3yulo
1,00Cuy

~.wlig s

2

» U000
THIONTE
«U00L0

1,00000
- ouli4
-, 0ulet

- 28404
sUudle
-,udllo

-, 0T4g4
0408
«000u3

=, L4458
-~ 02407
.UUUQQ

-‘02666
'091277
00017

-, 02079
- 04397
“.0007?

-,01957
-,u2ltd
-, 0L0L2

- 03364
03974
sl

.MSSLd
-+ 07d3t
L 0U5

20353
~s2661b
sbudd

3

+v 0000
+U0000
+50000

-025“0“
=, 00304
W0u214

1.00000
-, L0236
-, 0u64

-, 24832
00266
-,00016

=, 09344
+04078
-,00003

=s 04262
-,01968
00017

-.G277“
-, 01243
00044

-.91895
-.51556
=-,00108

-, 01608
-, 02445
-. 00098

-su3U61
-.03808
- 00103

05147
- 0848y

el 119

a

00000
+000u0
200000

“.U?ua“
-, QU219
00009

'02“832
-.0022“
«C016u

1,94000
«,00173
= 30041

-,30795
«0u215
- 00015

-.0929&
« 33346
-,00002

-.Cqbgg
-, 01663
00012

--62591
-e01109
00037

-a 11494
-, 014u6
-, 00086

'OCLvaﬁ
-,01770C
-, 0u073

-.02802
=-,03179

=s24083

I5L/100,
&

« 00000
00000
LU0

-eJ4y58
~. 00149
-000007

= 09344
=-+00163
«00008

‘.30795
~+00170
«00104%

1.00p000
-000109
"e00043

- 27432
«002¢8
-+ 30009

-.09029
+ 02825
=.00002

=,03947
~«01637
00010

‘001825
“.01196
080023

=-,01e76
~+01015
=+ 00056

’c01523
s 1437

= (0060

bals=CcLar
& 7
+00000 «00000
+00000 00000
« 00000 Lanoon
-, 02606 ~.02079
-,00112 =, 0022p
=-,00006 -, 00003
-.04282 -, 02774
- 00085 -,0018%
-oG0008 -,00Cu3
-.09290 ‘.0‘699
-,00108 -,0019%
«00008 =,00004
-,27432 ~,09029
-,00093 -, 00196
»J0095% 00008
1.,00000 -,29182
-, 00051 -,00209
'000026 000062
-.29182 1.00000
+00217 -,00168
-, 00012 -, 00037
-, 08457 “.27163
+ 02615 00180
«C00u0 ~«00001
-, 03114 -.08818
-.02084 $ 03423
200310 «0U001
-, 02340 -,03981
- 00756 =,01474
«00024 09004
-,01595 =,0z271
~.00768 -.01031
f:@CQSb e23018

8

« 00000
00000
00000

-, 01957
00073
-, 00006

‘.01696
-, 00177
-,00006

'.02591
-, 00141
-, 00007

-0339“7
-,00127
-,00008

-4 08437
-, 00141
200003

-s27163
-,00150
.00078

1,00000
-,00007

-, 24423
,00168
-,00005

'009107
, 02498
-,00001

‘004160
-, 01327
L00007

9
« 00000
+00000

-,03360
+00020

-.01608
200058

-, 01494
-, 00155

=-,01826
-,3009g

-,03114
=.00096

-,06818
-,00108

-.2““23
-000118

1.00000
=.,00092

-. 31203
+N0lus

-, 09445
« 2217

16
+ 00000
.CONNN

+05518
-, 00608

=-,03061%
06021

=+ 01736
00061

-001676
-,00132

- 02340
-000101

-,03931
-.00111

=. 09107
-,0p129

‘;312“3
-.001“5

1,000p00
'000107

~.2794G2
00128

LT

0T7-"IMNd



13

&l

ad

10

L7

18

19

<

ce

<3

«00000
-,26613
s0Ul(6

+00000
-, 08480
. 02302

QOUUUU
=, U317y
-, 00951

«0pyuou
= Uluo7

Oylus
=,0C76u0
=-,01362

«0uyuoo
=-,010a1
-, 01745

«0u0Go
-, 01327
-,93729

000000
.02217
=.u897Y

+Oubuy
.00126
=.,28976

OOUUUU
-, 013
1,00000

s Oyuilv
+90013
-.10712

sOyuuu
-.wul19
=eu907c

=, Ullik
latb g0t
.UUU36

=,00304
-,29207
+«0U155

=,UUZ19
“eib 7574
.lei“

=eluLlny
=o.l20810
'.vl722

'.Culli

=-eulloy

s G0439

=-.0u2gb
-,01358
=-,0ul68

o 00272
=, JUPu7
=+,00299

V0020
=,01423
-.0070¢€

=, 0u009
02385
=.02120

=.0u03s
«00106
-,1071&

=sUuled
e JLudb
1,0000V

iu2it
- U014l
= db4E]

U316
-,29207
-,00141

-, 00236
1,06000
-,00125

- 'JL‘22“
'025115
Jilew

-.UU163
-, 06456
«02853

-.\JUL’QS
=,022256
-,01366

-,00183
-002102
=,00790

-eUul77
-,01093
'001278

oe0uUUS8
-.00809
=-,0218u

Juub2l
'001512
-,03926

-e006007
02302
-.05672

-el(019
«00155
-.4eu6l

-, 0064
--0U125
1evC000

A T-Y-T:
-,0739u
-.00103

« 00266
-,25115
-,00118

’cUb173
1s0u0G0
-,00121

-,00170
=,25258
s 0C1UY

-,:L105
-.05996
« 02340

-.UUl95
-00“32“
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