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UNFOLDING PARTICLE SIZE DISTRIBUTIONS 

W. L. Nicholson and K. R. Merckx* 

INTRODUCTION 

BNWL-2l0 

Upon irradiation, uranium undergoes fission and some of 

the fission products are the inert gases. The collection of 

these inert gases into spherical cavities and the growth of 

these cavities produce specimens which can be studied by the 

methods described in this paper. The problem of estimating 

the distribution and range of size of these cavities was the 

motivating factor in this research. 

A common problem in quantitative metallography is that 

of estimating the density of particles (number of particles 

per unit volume) embedded in a three-dimensional specimen. 

To estimate this density, a section is usually made of the 

specimen and the particles which intersect a given part of the 

section are counted. If the counted particles are grouped 

according to size then the data consist of a frequency-versus­

size histogram. A particle size distribution can be calcu­

lated from such data if the number of distinct particle sizes 

and the true particle shape are specified and if the particle 

centers are assumed to be randomly distributed within the 

specimen. Formulas can be developed which relate the data 

histogram to the true particle size distribution within the 

specimen. This estimation of a particle size distribution 

from a data histogram is often called "unfolding the 

distribution." 

This process was first used by Scheil(13) to unfold 

spherical particle distributions. Schwartz(14) and Saltykov(ll). 

* This work was supported by the U. S. Atomic Energy Com­
mission under Contract AT(45-1)-1830. 
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modified the original technique and improved the calculation 

procedure. The basic observation or measurement in all these 

developments was the diameter of the particle's intersection 

with a two-dimensional plane section. Johnson (7 ) and 

Spektor CIS ) extended these unfolding techniques to include, 

respectively, the measured intersection area on a two­

dimensional section and intersection length on a one­

dimensional section. Fullman CS ) points out that the same 

unfolding analysis could be applied to rods and plates. 

SUMMARY 

This paper treats the unfolding problem in terms of a 

general framework which extends previous developments. The 

method, at least in principle, can be applied to any convex 

par~icle which can be sized in terms of a single character­

istic dimension. A sectioning or sampling process must be 

useci 'v]'ich produces a particle intersection which, likewise, 

can be sized with a single characteristic measurement. The 

general framework is set in terms of a probabilistic model. 

In addition to the density estimates, the precision of the 

unfolding process is estimated with a standard deviation 

estimate for each particle size in the distribution. Such 

estimates of precision have not appeared in earlier work. 

The general formulation also includes the possibility of 

imperfect observation of specimen sections. Thus, the data 

may be a distorted or truncated view of the set of possible 

particle intersections, but as long as these anomalies can 

be modeled mathematically the formulas still give unbiased 

estimates of the true specimen structure. This process can 

also be used to estimate distribution of sizes of voids 

induced by fission gases in irradiated uranium. 
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The following two sections present the general particle 

distribution model theory and the unfolding formulas in 

detail. A section follows which relates our general develop­

ment to the pioneer efforts of Scheil, Schwartz, Saltykov, 

and Johnson. An example from Saltykov(12) is treated to 

illustrate the importance of standard deviation estimates 

when the unfolded distribution is being interpreted. The 

last section describes the application of the general theory 

to an indirect microscopy analysis of a replicated plane 

surface. Indirect microscopy is routinely used to analyze 

the microstructure of irradiated uranium specimens, (2) An 

example is included. 

Appendix I is a description of the method of numerical 

evaluations used to write a FORTRAN IV program called UNFOLD. 

This program is used to unfold the frequency data collected 

on a Zeiss Particle Size Analyzer. Appendix II is a listing 

of the program. Appendix III is a sample input and output. 

PARTICLE DISTRIBUTION MODEL 

If an appropriate probabilistic or stochastic model is 

developed for a material and for the observation of samples 

taken from that material then a mathematical treatment can 

be formulated which will estimate parameters which describe 

the probabilistic model. The model proposed in this treat­

ment is limited to random distributions of particles having 

a discrete number of partIcle sizes. The parameters to be 

estimated are the density of partIcles of each size. The 

probabilistic model describes the distribution of particles 

within a specimen, the intersections of particles with a 

sample from the specimen (sampling procedure), and the 
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observation of the particle intersections (observation 

procedure). The development of this probabilistic model is 

presented in this section. 

The probabilistic model is for a three-dimensi6nal specimen 

of material which has distributed within it particles of 

various sizes but of similar geometric shape. This geometric 

shape must be definable in terms of a single characteristic 

dimension 0: for example, the diameter of a sphere, the edge 

of a cube, or the diameter of a circular platelet. Exactly k 

distinct characteristic dimensions 0 < °1 < °2 < ••• < ok 

describe the particles in the specimen. Particles of dimension 

0. (i = 1, 2, "', k) are called "ith size." The number of ith 
1 

size particles in the specimen is ~. ~ The particle distribu-
1 

tion is described with the k-dimensional particle dimension 

column vector 0= (0102 ... ok)T and the particle frequency 

vector ~ = (~1~2" '~k)T. With T the volume of the specimen, 

the particle density vector is 

(1) 

* The mathematical nomenclature used in the paper attempts to 
distinguish the three levels of reality which characterize 
the unfolding problem in practice. Greek letters denote 
properties of the three-dimensional specimen under investi­
gation. For example, ~i is used to denote total number of 
ith size particles in the specimen. Capital English letters 
denote true properties of the sample used to estimate 
specimen properties. For example, Mi is used to denote the 
total number of ith size particles in the sample. Lower 
case English letters denote properties of the sample as 
they are observed. These are the data in the problem. For 
example, mi is used to denote the total number of particles 
in the sample which fall in the i th observational cell. 
Vector and matrix notation is used whenever possible. The 
specific notation is taken from Hohn. (6) The notation for 
probability concepts such as random variable, distribution~ 

mean, and variance is taken from Chapter IX of Feller. (4) 
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The probabilistic model specifies the particle distribu­

tion in the specimen by describing the location of paTticle 

centers or centroids. These centers are assumed to be ran­

domly located so that the probability that any center lies in 

a given region of the specimen depends only on the volume of 

that region. Centers are independently distributed in 

the specimen. No allowance is made for either a clustering 

or a regular lattice spacing of centers. Such a distribution 

is called "uniform" or "homogeneous." These distributional 

assumptions only approximate reality. Data evaluation based 

on independence is adequate if the total particle volume 

fraction is small, say less than 10%. Sampling of-the speci­

men is done with a probe which physically pierces or cuts the 

specimen. The probe is characterized by a characteristic 

dimension A. Typical probes include one-dimensional linear 

sections (A = length), two-dimensional plane sections (A = 

area), and three-dimensional thin slice sections (A = volume). 

A particular particle in the specimen is in the sample if and 

only if it is intersected by the probe. Since particle 

centers are uniformly distributed, sampling is random and not 

influenced by the orientation of the probe. Samples selected 

by different probes are independent if no single particle can 

appear in more than one sample. 

The probability that a probe intersects a specific ran­

domly located ith size particle is defined as (A/T)F
i 

and must 

be calculable for the characteristic particle shape. In a 

particular application of the general theory the calculation 

of F. depends on the geometry of the particle and the 
1 

character of the probe. For the case of a linear probe of 

length A and a spherical particle of diameter 0., intersection 
1 

occurs if the particle center lies in a cylindrical region 

with the probe as its axis and its radius equal to 0./2. 
1 
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With the assumption of a random distribution of particle 

centers, the intersection probability is the ratio of the 
2 volume of this region to that of the specimen, or ATIo./4T; so 

2 I 

F. = TIo·/4. 
I I 

For the case of a planar probe of area A and a spherical 

particle of diameter 0., if the center of the particle is 
I 

within 0.12 of either side of A then an intersection will 
I 

occur. Thus, the volume of the intersection region is Ao. 
I 

and the intersection probability is Ao./T; so F. = 0 •• 
I I I 

S . h . th. . 1 dId . d Ince t e ~. I sIze partIc es are ran om y an In e-
I 

pendently placed with respect to the probe, the number M. of 
.th I 
I size particles in the sample is a random variable with 

a binomial distribution [Reference (4), page 135]. Thus, the 

probability that M. = x(x = 0,1,2, ... , ~.) is given by the 
I I 

binomial density function for ~. trials, with each trial hav­
I 

ing an intersection probability of (A/T)F., Specifically, 
I 

P ( M . = x) = (~i) [( AI T ) F . ] x [1 _ (AI T ) F . ] ~ i-x 
I X I I 

The mean and variance of the binomially distributed M. are 
I 

E (M.) = (AI T ) F . ~ . I I I , and 

Let M = (M
l
M

2
" .Mk)T and ~ = (F l F2 " ,Fk)T be k-dimensional 

column vector representations of particles intersected and 

(2) 

of intersection probability per unit probe dimension per 

particle per unit volume. M is a random vector with mutually 

independent binomially distributed elements, From Equation (2) 
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and the independence assumption, the mean vector and 

covariance matrix of M are* 

and 

Var(~) = (A/dD(~) [I 

= D(AF) [I - (A/dD(F)] D(E) 

(3) 

If the observational process is such that all intersections can 

be identified as to the size of particle causing the inter­

section, then the particle density estimate based on infallible 

characterization of a single sample is the column vector 
T 

R = (RIRZ" .Rk) defined by 

(4) 

Since the matrix D-I(A~) is known, the mean vector and 

covariance matrix of ~ can be evaluated directly with Equation 

(4) and substitution of the values of E(M) from Equation (3): 

E (~) = p , and (5) 

Thus, ~ = R is an unbiased estimate of the true specimen 
~ 

density P. The covariance matrix of p = R involves the unknown 

* For any n-dimensional vector ~ = (x
1

x .. ,x~hT, D(~) is the 
nth order diagonaZ matrix with xi as the i diagonaZ 
eZement [Reference (6), page 296J. 
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quantity P. An unbiased estimate of this covariance matrix 

is 

(A/T)D(F)]D(p) (6) 

Thus, the unbiased estimate p and its variance estimate Var(p) 

can be determined with Equations (4) and (6) if M can be 

observed. 

The second term in the bracket of Equation (6) cannot be 

calculated without knowledge of the specimen volume T. When 

the fraction of the specimen sampled by the probe is small 

(e.g., when the particles are small compared to the specimen 

size) (A/T)D(~) is a minor term which can be ignored. Elimina­

tion of this term is equivalent to letting T ~ + 00 with p 

fixed; hence, the components of ~ now become Poisson random 

variables [Reference (4), page 176]. 

This theory is applicable, for example, to observation by 

transmission-electron microscopy of nonoverlapping spherical 

particles of discrete sizes. When the sample probe is a foil 

thinned by etching and the particles are not etched, the 

volume sampled with a foil of area A and thickness t for a 

particle of diameter 0i 1S A(t + 0i)' Thus the probe has a 

probability A(t + O.)/T of intersecting a spherical particle 
1 

of diameter 0 .. Hence, F. = t + 0 .. With M observations of 
111 

diameters i, the specimen particle density estimate p and its 

variance estimate are given by Equations (4) and (6). 

The size of particle intersected by the probe cannot be 

recognized in many observational procedures. In planar and 

linear probes, only the areal and length characteristics, 

respectively, of the intersection can be observed. In most 

cases several sizes of particle could have given such an 

observation. The observation need not be a geometric 
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measurement but could be an intensity variation given by an 

automated observational instrument. Any type of measurement 

can be treated if the observational procedure can be pro­

babilistically modeled. 

When a sampling probe intersects a particle, the observa­

tion of the intersection is described by a single character­

istic dimension or signal d which is related to the particle's 

characteristic dimension o. At the general development level 

it is assumed that all possible d values lie between a lower 

limit d and an upper limit d. Note that d may not depend 
o c c 

on the size of the largest particle and that d need not be 
o 

zero. The range d to d is divided into c contiguous cells. 
o c 

For this development to be applicable, the calculation of the 

probability that an ith size particle is measured and tallied 

in the jth of these cells must be possible. This probability 

is calculated conditional on a single ith size particle being 

intersected by the probe. The geometry of the particle, the 

character of the probe, the random distribution of particle 

centers, and any pecularities of the measurement process 

enter into this calculation. 

To formalize these 

be the cell boundaries; 

d. I to d.. Let P .. be 
J - J J 1 

remarks, let d < d
l 

< d
Z 

< ••• < d 
0th c 

i.e., let the j cell be the interval 

the probability that an ith size 

particle measurement d satisfies d. I < d ~ d., given that the 
J - J 

particle is in the sample. Always, 

o < P .. ~ I 
J 1 

c 

and I 
j=l 

P .. 
J 1 

~ I 

Inequality in the summation over all c cells is allowed because 

a sampled particle need not be observed. For example, a 

positive resolution point of d in the measurement process 
o 

for the diameter of the intersection of spherical particles 
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of diameter 61 with a planar probe means that a fraction 

~l - (d
o

/6
l

)2 of the sampled particles will not be seen and 

hence not measured. 

If m .. is the number of sampled ith size particles mea-
J 1 th T 

sured and tallied in the j cell and m. = (m
l

·m
2

· ... m.) is 
-1 1 1 thC1 

the c-dimensional column vector of frequencies for i size 

sampled particles, then, conditional on M., the vector m. has 
1 -1 

a multinomial distribution* [Reference (3), page 157]. M. is 
1 

the number of trials and P. = (P
l

.P
2 
.... P .)T is the cell pro-

-1 1 1 Cl 

bability vector. The conditional mean vector and covariance 

matrix of m. are 
-1 

E(m·IM.) = M.P. 
-1 1 1-1 

, and 

T 
Var(m.IM.) = M. [D(P.) - P.P.] 

-1 1 1 -1 -1-1 
(7) 

Since the contributions of the various size particles to the 

observations falling in a given cell cannot be separated, the 

sum of the contributions for all sizes of particle is the 

observed frequency vector m where 

k 

m = .L m. 
1=1 -1 

(8) 

With the use of Equation (7) and the independence of the dis­

tributions of particles of different sizes, the conditional 

mean vector and covariance matrix of m are expressed in matrix 

notation as 

c c 

* When \' P .. <1, a c + 1 st element m 1. = M.-
L J~ -- c+,~ ~ 

j=l 
L 

j=l 

m .. 
J~ 

must be included for m· to have a multinomial distribution. 
-~ 

This modification in no way affects the following 
de ve lopmen t. 



11 BNWL-2l0 

k 
E (!!! I M) = L M.P. = PM and 

1-1 
, 

i=l 

k 
Var(!!!IM) L M. [D(P.) 

T 
D(PM) PD(~)pT = - P. P. ] , 

i-I 
1 -1 -1-1 

where P is the c by k dimensional matrix of probabilities P .. 

. h . th 1 PAl· . f d·· 1 b b·l. J 1 W1t 1 co umn .. pp 1cat1on 0 con 1t1ona pro a 1 1ty 
-1 

calculus to Equations (9) and use of Equation (3) results in 

the unconditional moments of the observed frequency vector 

being expressed in terms of an overall probability matrix Q and 

the particle density. Specifically, 

where 

, and 

Var(!!!) = E[Var(~IM)] + Var[E(!!!I~D] 

= AD(Q.e) - (A
2

/T) QD(E)QT 

Q = PDC.£) 

(10) 

(9) 

In Equation (10) Q is completely specified by the character of the 

probe and by the conditional probability of observation given that 

a particle is in the sample. In any application Q is known and 

is independent of the probe dimension. The ji
th 

element in the 

matrix (A/T)Q is the unconditional probability that a particular 

ith size particle, located randomly in the specimen, can be 

sampled by the probe and measured and tallied in the jth cell 

of the observed frequency vector. The vector! = (l/A)!!! is the 

observational density vector for the probe. Using Equation (10), 

the expectation of r is found to be E(£) = QR' This relationship 
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between the expectation of rand p is the relationship of 

Delesse(3) between volume f;actio~ in the specimen and area of 

linear fraction in the probe, given the proper choice of Q. 

DENSITY ESTIMATION 

The relationship, Equations (10), between the observed 

frequency vector ~ and the specimen density vector ~ provides 

the basis for estimating the specimen densities with observa­

tional data when the number of frequency distribution cells is 

at least as great as the number of distinct particle sizes 

(k f c). The development presented in this section covers both 

the cases k = c and k < c. The form of the estimate is dif­

ferent for the two cases. 

If the rank of the matrix Q is k and k ~ c, (this restric­

tion is equivalent to the statement that no probability vector 

for any particle size can be expressed as a linear combination 

of several other such vectors) then a generalization of the 

Gauss-Markov Theorem [Reference (15), page 285] can be used to 

construct an estimate ~ of the density vector p. Application 

of the theorem to the two cases k = c and k < c follows: 

Case I: k = c. 

The estimate for the particle density vector 1S given by 

A -1 
~ = (l/A)Q ~. (11) 

This relationship is the solution of the system AQ~ = m of k 

simultaneous linear equations in k unknowns. The estimate 

based on Equation (11) is unbiased; that is, E(~) = p. The 

variance matrix of the estimate is 

(12) 



13 BNWL-2l0 

Substitution of estimates for parameters in the variance 

matrix and inversion of the quantity in the brackets gives 

the variance matrix estimate 

(13 ) 

If v .. is defined as the element in the ith row and jth column 
IJ h 

of Var(~), then the standard deviation estimate for the it 

size particle density p. is~. The correlation estimate for 
1 11 

the density pair (Pi'P
j

) is v
ij l IViiV

jj
. 

Case II: k < c. 

Now the estimation problem is one of fitting a smooth 

function AQ~ to the observed frequency vector m. A generalized 

least-squares method, which takes into account the unequal 

variances of m and the correlation among the components of ~, 

is used to make the estimate. The resulting estimate for 

the particle density vector is 

where 1 is a k-dimensional column vector of ones. When k = c 

the form of Equation (14) reduces to that of Case I. Variance 

estimates for estimated particle density given by Equation (14) 

are very difficult to calculate using exact variance formulas. 

An approximate variance formula is given by substituting p 
into Equation (12) of Case I. If this variance formula is 

used, then the standard deviation and correlation estimates 

are calculated as for Case I. 

Variance matrix formulas in the particle distribution 

model of the last section reflect the randomness associated 

with a homogeneous distribution of particle centers in the 
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specimen and a particular method of "observing" the particles 

sampled by the probe. Commonly occurring situations which are 

inadequately modeled by this approach include nonuniform 

distribution of particle centers and continuous distribution 

of particle sizes and/or shapes. An additional inadequacy may 

be inability to model the observational process correctly. 

Since the validity of the variances of the estimates 

depends upon the validity of the probability model for the 

particle distribution and its sampling and observation, checks 

on the validity of the probability model should be made. When 

k = c, data from a single sampling probe are not sufficient 

to check model assumptions, and density estimate variance 

calculations must be taken on faith. If several sampling 

probes are used then the between-probe density estimate vari­

ability provides a check on the within-probe variance estimate 

based on Equation (13). Analysis of variance methods(8) can 

be used to determine whether the between-probe variance 

estimates are significantly large. Significance implies 

failure of model assumptions. When k < c, a check of model 

assumptions is possible with data from a single sampling probe. 

If the assumptions in the model are correct then the goodness­

of-fit statistic, 

2 
Xc-k = (~ 

~ T -1 
AQ.e.) D (~) (~ (15) 

is approximately a ChI-square random variable with c - k 

degrees of freedom [Reference (16), page 183]. Upper per­

centile points of the Chi-square distribution can be used for 

tests of significance. 
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RELATION TO PREVIOUS DEVELOPMENTS 

The application of the general Equations (11) and (13) to 

unfolding spherical particle density distributions is used to 

illustrate how several previous developments can be obtained 

with this general approach. 

A spherical particle of diameter o. randomly placed in a 
1 

specimen of volume L is intersected by a planar probe or 

sample of area A if the center of the sphere is within 0./2 
1 

of either side of the sampling plane. Thus, the effective 

sample volume for an intersection is o.A. The probability of 

sample intersection per ith size parti~le is the ratio of 

effective sample volume to specimen volume. Thus the prob­

ability that a given ith size sphere is intersected is given 

by 

(A/ L ) F. = A 0 . / L 
1 1 

(16 ) 

Equation (16) defines the sampling probability vector as 

~ = ~ and the characteristic sampling dimension A as the area 

of the probing plane. The observed diameter d of the circular 

intersection of the particle with the sampling plane is the 

observational parameter. The observation falls in cell j when 

d
j

_l < d ~ d
j

. Let h be the distance of the sampling plane 

below the center of a particle with diameter 0i(-oi/2 ~ h ~ 0i/2). 

The planar probe has equal probability of intersecting the 

particle at any height, so the distribution for h is rectangular 

with a probability density function 

p (h) = 1/0. for -0./2 < h < 0./2 
111 
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The height expressed in terms of the observed diameter d on 

the plane probe is 

h(d) = + (l/Z) Jo~ - d
Z 

I 

with the restriction that d ~ d.. The plus sign applies if the 
I 

sampling plane is below the center and the minus if above. 

The situation is illustrated in Figure 1. The total probability 

h h b d d f . d . th. . 1 f 11 t at teo serve rom an Intersecte I SIze partIc e a s 

in cell j (i.e., d. 1 < d ~ d.) is the sum of the probabilities 
J - J 

for positive and negative h's. Thus, 

I h (d.) I 

P.. = zJ p ~h) dh 
J I 

Ih(d. 1) I 
J -

= ~ - (d. l/O.)Z 
",,1 J - I -J (d./o.) 

J I 
Z 

for d. < 
= o . 

J I 

=jl - (d. l/o.)Z 
J - I 

for d. 1 < o . < d. ; 
J - I J 

for o. < d. 1 (17) 
I J -

o 

The resulting P matrix is upper triangular if the cell boundaries 

are selected equal to the discrete particle diameters. With 

this restriction (d. = 0.) the elements of the Q = PD(F) matrix 
I I 

are from Equations (16) and (17) 

Q .. = P .. F. 
J I J I I 

~l 
'J 

Jl (d. / d. ) z] d. (d. l/d.)"- for j < i , = I J - I J I 

= 0 for j > i. (18) 
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(6. /2)2 = (d/2)2 + h2 
I 
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Planar Probe 

FIGURE 1. Planar Probe Sampling of a Spherical Particle 

Previous "unfolding" formulas, which were based on a 

planar sampling device, all used Equation (18). The earliest 

work of Scheil(13) used k cells of equal width, expressed all 

diameters as fractions of the maximum particle diameter, and 

assumed that do = O. With d
i 

=" (i/k)ok Scheil wrote 

Equation (18) in the form 
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He solved the resulting system of linear equations AQ~ = ~ by 

successively subtracting from lower numbered cells the frequency 

contribution for each particle size in turn, starting with kth 

size particles. Schwartz(14) removed the dependency on maximum 

particle size by calculating Q .. /ok' For k = 5 and 10 he pro-
J 1 

vided tables of the components of 0kQ- l Now any particle size 

density could be estimated directly without back calculation 

from the kth size. Saltykov(ll) introduced cell width ~ = 0k/k 

as the fundamental parameter in place of ok' 

Equation (18) has the form 

Now, d. = i~ and 
1 

Here, Q .. /~ is independent of k. Because of the upper triangu-
IJ 

larity of (l/A)Q the inverse for any size case gives inverses 

for all smaller sizes as long as the lower end of the observed 

distribution of diameters d is an integral multiple of the 
o 

common cell width ~; i.e., d. = (i + i )~. Thus, a single table 
1 0 

replaces the size-dependent ones of Schwartz. The coefficients 

for any case are the elements of the principal dia,Qonal square 

b . f d f h' IS t. 2nd . 1 th su matrIx orme rom t e 1 + ,1 + ,'" 1 + \: 
_10 0 0 

rows and columns of the Q matrix for the maximum size case. 

Saltykov calculated such a table of the elements of Q-l for a 

maximum size case of k = 15. 

To illustrate the method, Saltykov's data [Reference (12), 

pages 293-296] on the distribution of cementite grains in 

sphe ro idi zed s tee 1 containing 1 go carbon iv-ere unfo lded. II is 

data were taken from a photomicrograph of area 26,667 mm
2 

which 

yielded 500 grain sections with 8 mm as the largest section 

diameter. The photograph magnification was 2000X. Breakdown 

into k = 8 cells with d = 0 gives the unmagnified cell boundary 
o 

points as d. = (i/2) microns (i = 0, 1, 2, ... , 8). The observed 
1 
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frequency distribution of grains in the eight cells and the 

results of the unfolding analysis are presented in Table I. 

The first four columns of the table reproduce Saltykov's 

work. Figure 2 shows the unfolded distribution given by 

Column 4 of the Table. The pattern of the density estimates 

vividly suggests a unimodal distribution with well defined 

tails. Once the two-sigma limits are attached it is apparent 

that only the peak of the distribution is established with 

any degree of 

approximately 

500 that were 

certainty. To locate the tails precisely, 

50,000 sections would be needed instead of the 

observed. The density estimate correlations 

are listed in Table II. Only the correlatlon for contiguous 

cells is appreciable. For the largest (four-micron) grains, 

2/3 of the observed sections should fall in cells 7 and 8. 

This fraction increases as the grain size decreases. Thus, 

for medium (two-micron) grains, 7/8 of the observed section 

should fall in cells 3 and 4. Nore than eight cells would 

increase the correlations for both contiguous and noncontiguous 

cells. Density estimate two-sigma limits would also increase. 

To a first approximation these limits are proportional to the 

square root of the observed cell frequencies. 

TABLE I. UnfoZding a Cementite Grain Distribution with a 

Uniform-CeZZ-Size~ Eight-ParticZe-Size ModeZ 

d· 1 
pi Si Cell 

1 hl 
n-1 (Particles -9 

x 10 Icc) (Particles x -9 10 Icc) 

1 
2 
3 
4 

5 
6 
7 
8 

0.5 
1.0 
l.5 
2 . 0 

2 . 5 
3.0 
3.5 
4.0 

30 
110 
177 
104 

39 
29 

7 
4 

500 

1.485 1.720 
9.331 1. 921 

18.774 l. 836 
9.934 1.182 

2.793 0.653 
2.354 0.495 
0.461 0.228 
0.310 0.155 
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FIGURE 2. Unfolded Cementite Grain Density Distribution 
Showi ng Two-Sigma Limi ts on Each Dens i ty Estimate 

TABLE II. Individual Particle Size Density Estimate Correlation 

2 3 4 5 6 7 8 

1 -0.240 -0.075 -0.021 -0.005 -0.003 -0.001 -0.000 
2 -0,293 -0,062 -0,014 -0,007 -0,002 -0,001 
3 -0,216 -0,035 -0,015 -0,003 -0.002 
4 -0,175 -0,050 -0,100 -0,048 
5 -0,274 -0,039 -0,015 
6 -0,156 -0,042 

7 -0,267 
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Johnson and Saltykov(7,12) describe a method based on 

measuring planar intersection area a, as opposed to diameter 

d, and use exponentially increasing cell widths. Apart from 

the question of whether diameter or area is a better char­

acteristic to measure, their method is identical with one 

based on diameters and exponentially increasing cell widths. 

Since a and d satisfy a = (n/4)d 2
, an exponentially increas­

ing cell boundary relationship of the form 

a. 
1 

based on measuring area is equivalent to an exponentially 

increasing relationship 

u. = d r i - l 
1 0 

where do = J4a
o

/n > 0 and r =.JY;" > 1. If diameter is used 

fewer ith size particles fall in cell i, which increases cor­

relation. If desired this can be remedied by increasing the 

diameter cell width factor r. In any event with exponentially 

increasing cell widths Equation (18) becomes 

Q j i • do r i-I [.0 - r 2 (j - i-I) -.0 _ r 2 (j - i) ] 

= dig(i-j, r) (19) 

The Q matrix satisfies Q = GD(~) where G is upper triangul:1T 

with each super diagonal in the principal uirection having all 

components equal; i.e., 

~:o 
g} ... gk-l 

G = ~~l 
;:~ 

go o 0 
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where P
a 

= g(a, r) of Equation (19). The inverse Q-l = 

D-l(~)G-l, where G- l has the same simple upper diagonal form 

of G. Let f be the common value of elements in the a th super 
a_I 

diagonal of G The density estimates now take the very 

simple form 

~ 

p . 
1 

(l/d.A) 
1 

k-i 

I 
a=O 

f m. 
a l+a (20) 

The important thing to notice about Equation (20) IS that the 

same vector of f values is used for every density estimate. 
a 

These f 's are completely determined by r. The simplicity of 
a 

Equation (20) is the key to the Johnson-Saltykov calculation 

method. Tables of f values for a = 0, 1, 2, ... , 29 and 
a 

loglO r = 0.1 are given in Reference (12). This simplicity 

carries over to covariance calculation. Matrix manipula­

tions in Equation (13) reduce to 

for 1 ~ J. 

k- j 

I 
a=O 

f.. m. f 
J-l+a J+a a 

REPLICATION PR08LEM 

(21 ) 

By forming probabilistic models for the sampling procedure 

and the observational procedure, a general method of estimating 

distributional densities was formulated. The estimation of 

observational data obtained from replicated surfaces of planar 

probes sectioning materials with distributions of spherical 

voids is included as an illustrative example of the general 

method. The physical reasoning used in selecting the model 

for the observational process demonstrates the flexibility of 

the general method and the actual application to the replica­

tion problem is one of practical sigIlificance in quantitative 

metallography. 
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The examination of replicated surfaces with an electron 

microscope is an indirect observational process. Some inter­

sections are distorted and some are not observed. This 

observational process(l) begins with the sectioning of a 

specimen containing spherical voids, which is followed by a 

controlled etching of the sectioned surface. A softened 

plastic film is then placed on the etched surface. The film 

flows into the cavities formed from the intersection of the 

etched surface with the spherical voids. The plastic replica 

is hardened and removed from the etched surface of the sample. 

Distortion of replicated voids occurs during the replication 

process and breakage of the distorted replica occurs during 

the removal process. The replica is then shadowed with a 

heavy metal and coated with carbon. Not all the replicated 

spherical voids cast shadows; thus, further information con­

tained in the sample is lost in the observational process. 

Photographs are taken of the electron transmission image of 

the shadowed carbon film (Figure 3). The widths of the 

observed shadows are measured and counted with the aid of a 

Zeiss Particle Size Analyzer. Matching of a variable-diameter 

light spot to the maximum width of the shadow is the measure­

ment process used to estimate diameter. After this matching 

the Analyzer marks the observed shadows and accumulates the 

contribution to the correct observational cell. As used in 

this study, the Analyzer has 48 observational cells with 

exponentially increasing boundaries. These observational cell 

boundaries are defined by the equation 

1 
d. = 1.21125(1.0674) [mm] 

1 
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Neg 2492-E rv15000X 

FIGURE 3. Electron Photomicrograph of Replicated and 
Shado~ed Sample (Specimen: Irradiated uranium 
after a 10 min pulse anneal at 750 °C~ Sample: 
Replica shado~ed at 15 0 

~ith U02 and backed 
~ith carbon) 
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Since the probe used to form the sample is a plane section, 

the sampling probability vector component F. is the same as 
1 

that used in the previous section [Equation (16)], F. = O. = d .. 
111 

(This d. is the true diameter, not the magnified image). The 
1 

probe characterization dimension A is the true surface area of 

the portion of the replica examined in the electron microscope. 

The modeling of the observational procedure provides the means 

of accounting for replication distortions. 

When the probe passes above the center of the cavity (i.e., 

less than half the spherical void remains to be replicated, 

Figure 4) the replication of the cavity by the film is assumed 

to be true. However, the replicas with surface tangents 

inclined less than the shadowing angle will not cast a shadow. 

For a 15 degree shadowing angle, and with the Zeiss Particle 

Size Analyzer set for exponential cell boundaries, a maximum 

of twenty-one cells have nonzero probabilities. These pro­

babilities are the same as those associated with plane sections. 

Because of the proportionality between cell boundaries, the 

probability cutoff is not dependent on the sphere size. The 

information lost by not observing the intersections which do 

not cast shadows is accounted for in the estimation procedure 

by the alteration of the conditional probability. 

When the probe passes below the center of the cavity (i.e., 

more than half the spherical void remains to be replicated, 

Figure 5) two distortional effects must be accounted for. The 

first effect occurs if the section is too far below the 

cavity's center. In this case the replica of the c~vity will 

break off during the stripping of the plastic replica from the 

sampling surface. An estimate of a breakage of one replica in 

three hundred was made; hence all sections with (2h/o.) > 0.993 
1 

do not contribute to the observed diameters. This is equivalent 

to only the first eight cells having nonzero probabilities. 
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Plastic Repl ica 
Plane of Section 

Limiting Observable Diameter 

Heavy Meta I Coati ng 

Shadow Area with 
no Heavy Particles 

! 
No Shadow if Section 

Above This Height 

S hadowi ng Angle L 
!A!IIIii.t:=-=:-=-: _ _ - - _ - - _ 

FIGURE 4. Replicas from Sections Above Center of Cavity 
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Pa rtia I Repl ication 

Plane of Section 

Heavy Metal Particle 
Flux 

Di storted Repl ica 

H Diameter of Circle at Surface 

FIGURE 5. Distortions of RepZicas from Sections BeZow Center 
of Cavity 
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Additional observational distortion results from incomplete 

replication and from extrusion during stripping (Figure 5). 

From measurements of shadow length to width ratios and 

observed distortions of the shadows, the replicas of the voids 

greater than hemispheres are thought to be distorted into a 

truncated ice cream cone shape. (2) The maximum diameter of 

the resulting conical shape is the observed diameter. This 

distortional effect is estimated by assuming that the observed 

shadow width is related to the planar probe displacement from 

the cavity's center by the relation 

d/o. = 1 - O.4ll9(2h/o.)2 
1 1 

Figure 6 compares the (d/o.) ratio with that obtained from 
1 

classical plane sections, both as functions of (h/o
i
). 

Shadowi ng Cutoff 

! 

-1. 00 -.75 

FIGURE 6. 

21 Cells 

1 

-.5 

8 Cells .75 

.5 

.25 

-.25 o 

(d/6i) - Observed Diameter Ratios 

I 
From Shadowed Replica 
[d/6. = 1- .4119 (2h/6·)2] 

I I 

~" / Breakage Cutoff 

l', I 

From Plane Section/ " i 
----------------~--

\ : 

.25 .5 

\ I 
\ I 
\ I 
\1 
\1 

\1 .993,' 
.75 1. 00 (2h/6·) 

1 

Height of Section Below Cavity Center 

Observed Diameters as a Function of Position of 
Sampling Probe 
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Since the sectioning of any void at a distance h from 

the void center is equally probable for all h, the contribu­

tion to the probability matrix from sections above the 

particle's center is 

[Jl - ( d. 1/ 8 . ) 2 - ~ - ( d . / 0 . ) 2] 
J - 1 J 1 

for j ~ i ~ j + 20; otherwise (P .. ) b = O. The contribution 
J 1 a ove 

from sections below the particle center is 

for j ~ i ~ j + 7; otherwise (P")b 1 = O. The total cell con-
11 e ow 

tributions are the sum of these two probabilities. If cell 

limits are equal to population diameters, d. = 8., the components 
1 1 

of the Q matrix, or product PD(I) , are 

Q .. 0.5 ~di 2 Jel? d? J = d. 1 - a .. 
J 1 J - 1 J J 1 

+ 0.77907 [v'd. (d. - d. 1) - Jd. (d. - d. ) ] h .. 1 1 J - 1 1 J J1 

where a .. 1 if j ~ i < 
j + 20 = = J1 

a otherwise; 

b .. = 1 if j 
J 1 

~ i ~ j + 7 , 

= 0 otherwise. 

The unfolding of particle distributions was adapted to real 

observational processes by adjusting the estimates of the condi­

tional probabilities P ... The distortions and loss of sampled 
1J 

data which occur during the observational process required 

careful characterization of the observational process. (2) Once 
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these distortions were known, no mathematical difficulties 

were encountered in adjusting the unfolding procedure. This 

example demonstrates how experimental data are used in altering 

the P matrix. The matrix multiplications and inversions 

required for any fixed procedure are readily performed by 

standard computer codes. The particular Q matrix for the 

replication process as observed with a 48-cell particle analyzer 

has been inverted and stored for use with the program described 

in the Appendices. Athough the particle analyzer has fixed cell 

boundaries, the photographs used for evaluating the observa­

tional cell occupancies underwent different magnifications. 

The analysis for the Q matrix was performed in terms of the 

coordinates of the sample and not those associated with the 

observational device. The conditional probability matrix P 

is dimensionless and distributes the sampled particles into 

observational cells. The sampling probability vector f con­

tains the dimensional quantities and gives a linear variation 

with magnification. This linear variation with magnification 

is accounted for in the program by adjusting the d
i 

of the 

cell boundary observed in the particle analyzer and the area 

of the picture to the real diameters existing in the sample. 

Data obtained from replicas of irradiated and annealed 

uranium have been analyzed using the programs for the plane 

section and replicated section observational models. Table 

III contains a set of representative input data and the 

results from plane section and replicated section analyses. 

Slight variations in the density estimates are predicted bv 

the two observational models. The replica section observa­

tional model consistently predicted lower variance estimates 

than the plane section observational mOllel; thus, an improve­

ment in the accuracy of the modeling is reflected throllgh the 

reduction in variance estimates. 



TABLE III. Comparison of Density Estimates for Plane Section and Replica 
Section Models [Irradiated Uranium Annealed at ?50 °c for 10 min; 
15,000X; Picture Area (mm 2 ) = 401,08~ 

Cell 
Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

Particle Size 
(microns) 

9.2030-02 
9.8231-02 
1. 0485-01 
1.1191- 01 
1.1945-01 
1.2750-01 
1.3609-01 
1. 4526-01 
1.5505-01 
1. 6549-01 
1.7664-01 
1.8854-01 
2.0124-01 
2.1480-01 
2.2927-01 
2.4472-01 
2.6121-01 
2.7881-01 
2.9759-01 
3.1764-01 
3.3904-01 
3.6188-01 
3.8626-01 
4.1229-01 
4.4006-01 
4.6971-01 
5.0136-01 

Observed 
Frequency 

94 
103 
100 
133 
136 
146 
133 
116 
146 
136 
116 
108 

75 
57 
48 
68 
44 
33 
32 
25 

8 
22 
13 

6 
6 
3 
4 

Plane Section Model 

Density Estimate 
(particles/cc) 

4.0715+11 
4.8340+11 
2.1872+11 
6.6415+11 
6.4621+11 
8.1313+11 
6.6497+11 
3.5266+11 
7.2544+11 
6.9020+11 
5.4079+11 
5.6631+11 
3.2952+11 
1.9590+11 
9.5828+10 
2.9163+11 
1.5685+11 
9.5298+10 
1.0711+11 
9.2273+10 

-1.1189+10 
7.0639+10 
4.0432+10 
1.2270+10 
1.5868+10 
4.8902+09 
1.2338+10 

Standard Deviation 
of Density Estimate 

1.8305+11 
1.7842+11 
1.6826+11 
1. 7815+11 
1.6913+11 
1.6243+11 
1.4518+11 
1.3000+11 
1.3365+11 
1.2024+11 
1.0443+11 
9.2975+10 
7.2984+10 
6.0110+10 
5.3348+10 
5.6648+10 
4.3037+10 
3.5384+10 
3.2185+10 
2.5987+10 
1.5860+10 
2.1673+10 
1.5501+10 
1.0209+10 
9.2776+09 
6.4535+09 
6.5274+09 

Replica Section Hodel 

Density Estimate 
(particles/ cc) 

4.6177+11 
5.1503+11 
2.3889+11 
6.4848+11 
6.0515+11 
7.5506+11 
6.1480+11 
3.3224+11 
6.7466+11 
6.4130+11 
5.0423+11 
5.2934+11 
3.0212+11 
1.8340+11 
8.5513+10 
2.7072+11 
1.4510+11 
8.7034+10 
9.9470+10 
8.5299+10 

-1.2350+10 
6.6104+10 
3.7550+10 
1.1135+10 
1.4767+10 
4.8260+09 
1.1765+10 

Standard Deviation 
of density estimate 

1. 7395+11 
1. 6946+11 
1.5996+11 
1. 6909+11 
1.6050+11 
1.5401+11 
1. 3766+11 
1.2344+11 
1.2670+11 
1.1395+11 
9.8977+10 
8.8044+10 
6.9131+10 
5.6990+10 
5.0649+10 
5.3621+10 
4.0762+10 
3.3536+10 
3.0477+10 
2.4575+10 
1.5110+10 
2.0506+10 
1.4661+10 
9.6758+09 
8.7786+09 
6.1254+09 
6.1699+09 

b:I 
Z 
::;;; 
t-< 
I 

N 
I--' 
o 
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Graphical presentation of the unfolded data is useful in 

aiding interpretation. Figure 7 is the line diagram of the 

discrete density estimates and their two-sigma limits. This 

diagram is difficult to interpret in terms of a uistribution 

of void sizes. For the majority of applications the voids or 

particle sizes are continuously distributed. This continuous 

distribution is best approximated by a fine-scale discrete 

distribution. However, to obtain a meaningful graphical repre­

sentation for such fine-scale distributions the amount of data 

required is impractical. A fine-scale discrete model can be 

used to form a bar distribution by summing up the contributions 

from several particle sizes and dividing by an appropriate 

width. Figure 8 is such a bar distribution obtained by summing 

three density estimates and dividing by the total diameter 

range attributed to these densities. This procedure smooths 

the data. Variance estimates for such a bar distribution can 

still be obtained. Let 2 be the density estimate for the rth 
r 

cell of the bar distribution which is of width W. Then 
r 

3 
~r = (l/W r ) \ p 

i~l 3(r-I)+i 

The variance estimate of the bar distribution estimate is 

= (l/W )2 
r 

3 3 

L L v 3(r-I)+i,3(r-l)+J' 
i=l j=l 

where vaS is the element in the a
th 

row and sth column of 

variance matrix estimate, Equation (13). The number of 

density estimates combined for such a representation is not 

restricted to the three involved in this example. 
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Since the probabilistic and statistical techniques used 

to form the unfolding equations were not based upon discrete 

sized particles, such uniform distribution estimates could 

have been made directly. The initial model for the particles 

would have been one where uniform distribution of particles 

exists over a size range. The F vector is formed from the 

probabilities of intersecting one particle in each of the 

various size ranges, and the P matrix is formed from the con­

tributions to the observation cells conditional on a particle's 

being in a given size range. Generalizations to other distribu­

tional functions could be used to produce smoother estimates. 

Application of such concepts is presently under investigation. 
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APPENDIX I 

NUMERICAL EVALUATION 

The matrix formulation for unfolding or estimating particle 

density distributions suggests that standard computer matrix 

subroutines can be used for numerical evaluation, Although 

direct application of general matrix routines will give satis­

factory numerical results, the number of numerical operations 

can be greatly reduced in most cases by using special properties 

of the unfolding formulas. Development of observational pro­

cedures and counting techniques is required for obtaining suf­

ficient numerical data to be of statistical significance. This 

development was formulated so that if a standard probe or method 

of sampling and a standard observational method for determining 

cell sizes are used then the variable quantities between applica­

tions are the two scalars T and A associated with the size of 

the specimen and of the sample respectively. The matrix quantity 

Q for expressing the combined sampling and observational pro­

bability matrix for a given particle distribution model falling 

in observational cells does not change. 

If the observed frequency vector ~ is used to evaluate the 

maximum number of particle density distribution parameters, 

then the case of k = c will be applicable and Equations (11) and 

(13) can be used to perform the unfolding. Besides the observa­

tional data ~, the parameters T and A, and the scale factor or 

magnification, only the inverse of Q is needed to perform the 

unfolding. The inverse of Q need be found only once and unfold­

ing can be done by matrix multiplication thereafter. 

For probabilistic models based on geometric observational 

parameters, the limits of the observational cells can usually 

be made to correspond to size parameter limits used to describe 

the particle shapes. Such typical observational cell limits 
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are longest intersection for a linear probe and maximum area 

of intersection for a planar probe. If each cell boundary 

d. is equal to the characteristic dimension 0., then the 
J J 

observational probability matrix P will have elements with 

P .. = 0, for i < j. The resulting Q matrix and its inverse 
J 1 

will also be upper triangular matrices. Standard methods 

for inverting upper triangular matrices [Reference (9), pages 

130-132] can then be used to simplify the inversion of the 

Q matrix. Since the Q matrix is triangular, the estimate for 

the ~ vector will not include any terms which are larger than 

the largest ~ component. The same inverse of Q can be used 

for all observational data, with the matrix summations limited 

to the index of the largest nonzero m component. Also the 

ijth term in the matrix product in E~uation (13) is for i < j, 

where the upper summation limit k is the index of the largest 

nonzero ~-component. The matrix product is symmetric. 

A computer program called "UNFOLD" ~las been wri tten for 

unfolding data from an observational process described by an 
-1 

upper triangular Q matrix. The Q matrices based upon various 

models for the particle distributions and observational pro-
-1 

cesses are stored on a tape so that the appropriate Q can 

be read in at the beginning of the analysis. Standard formats 

are used to put in the observational data, assuming a limit 

of 48 cells. The output of this program gives the cell 

dimensions, observed frequencies, estimated particle densities, 

and estimated standard deviations. Output of the correlation 

coefficients is optional. A printer controlled plot of the 

log of the density estimate versus cell number is also 
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included as standard output. The matrix handling and input 

and output portions of the "UNFOLD" program are listed in 

Appendices II and III. Since the Q-l matrices are stored 

in a binary form, a listing of unfolding matrices presently 

available on tape is not included. 

Another program, "SALTY," handles the planar section 

analysis where the Q and Q-l matrices are created for pre­

scribed particle sizes and cell boundaries. A listing of 

this program has been published(lO) which includes subroutine 

"TRIVRT" for inverting triangular matrices. 
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APPENflIX " 

PROGRAM LISTING FOR COMPUTER PROGRAM UNFOLD 

C PROGRAM UNFOLD 
C 
C UNFOLD eSTIMATES TH~ VOLUME DENSITY OF PARTICLeS USING A 
C STOCHASTIC MODEL OF A NUM~ER OF DESCRETE PARTICLE SIZES RANDOMLY 
C DISTRI~UTED. K TYPES OF PARTICLES AND OBSERVATIONS FROM K TYPES 
C ACCOUNTED FOR ~Y AN UNFOLDING MATRIX WHICH IS STORED IN A DATA 
C 
C 
C 
C 

C 
( 

C 

C 
C 

C 

C 
C 
C 

C 
C 

C 

C 
C 

C 

C 

C 
C 
C 

C 
C 

C 

C 

FILE. 

VARI ABLES 
NAME 
A 
B 

C 
COV 
D(50) 
DD(50) 
EM 
F(50) 
FN(50) 
I DENT 
IPRT 
I QI 
ISMTH 
ISTRT 
K 
N(50) 
QI(50,5U) 
S(50) 
T(50) 
TYPE 
V 

C SUBROUTINES 

INPUT 
YES 

YES 

YES 

YES 

YES 
YES 
YES 
YES 
YES 

YES 
YES 

YES 

USE 
AREA Of PICTURE 
CELL BOUNDARY IN SPECIMAN 
PICTURE NUMBER 
COVARIANCE MATRIX 
CELL BOUNDARIES 
DENSITY ESTIMATE 
MAGNIFICATION 
SMOOTHED DENSITY 
N IN FLOATING POINT 
IDENTIFICATION INFORMATION 
PRINT CONTROL FOR COR. MATRIX 
IDENTIFICATION FOR QI RECORl 
NUMBER OF CELLS FOR SMOOTHING 
INITIAL CELL CONSIDERED 
INDEX OF LAST NON ZERO CELL 
FREQUENCY 
UNFOLDING MATRIX 
DENSITY EST. STARD. DEVIATION 
SMOOTHED DENSITY STARD. DEVIATION 
DEFINES ANALYSIS 
VOLUME IF USED 

C LGSEE-- PRINTS OUT THE SMOOTHED DENSITY HISTOGRAMS BY J E SCHLOSSER 
C PRTMAT-- WRITES MATRICES WHERE NECeSSARY 
C MAXI-- FINDS LAST NON-ZERO CELL 
C 
C 
C 

C 
C 

C 

INPUT 
CONTROL 1 CARD PER RUN (311) 

1) J QJ 
2) I PRT 
3) ISMTH 



C 

C 
C 

C 

C 

C 
C 
C 
C 

C 
C 
C 

C 
C 

C 
C 
C 

C 

C 
<.: 

C 
C 
C 

C 
C 

C 
C 
C 

C 
C 
C 
C 
C 
C 

C 
C 
C 

C 
C 

C 
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FROM TAPE 
1) D 
2) QI--THESt DU NOT INCLUDE eM HENCE PROGRAM CORRECTS 

PARAMET~RS 2 CARUS PER CASt I12Ab).I1X.F5.0.1X.I2.1X.3F10.O) 
CARD 1 

1) IDENT 
CARD 2 

1) C - PICTURE NUMBER 
2) ISTRT - INITIAL CELL 
3) EM - MAGNIFICATION 
4) A - AREA OF SECTION 
5) V - VOLUME OF SPtCIMAN 

DATA 3 CARDS PER CASE 18X.16I4) 
11 NIK) FREQUENCIES 

OUTPUT 
RePORT HEADING 

TYPE OF SAMPLING AND O~SERVATIONAL PROCEDURE 
AND SAMPLE IDENTIFICATION 

SUBHEADING INFORMATION 
11 PICTURE NUMBER 
2) MAGN I FICA T I ON 
3) AREA 
4) VOLUME 

SUBHtADING - LAbELS 
1) CELL NO. 
2) PARTICLE SIZE IMICRONS) 
3) OBSERVtD FREQUENCY 
4) DENSITY ESTIMATE IPARTICLES/CC.) 
5) STANDARD D~VIATIUN OF DENSITY ESTIMATE 
6) SMOOTH~D uENSITY IPARTICLtS/CL./MICRON) 
7) STANDARD DEVIATIUN OF SMOOTHEU DENSITY 

DENSITY ESTIMATE CORRtLATION MATRIX 

LOG PLOT-SMOOTHED DENSITY HISTOGRAM 

DIMENSION UI5U) • N(50) • IDENT(12) • TYP~I10.12) 

1 • FN(50) • QII50.50) • DD(50) • COV(50.~0) 
2 • F(5U) , S(50) • T(50) • Ri5U.~0) • ~(50) 

DATA ITyPE(1.I).I a 1,12) 172HPLANE SECTIONS THROUGH SPERICAL PARTIC 
1LES - ZEISS EXPONENTIAL tiOUNDARIESI 

DATA (TYPEI2.I).I=1.12) 172HPLANE SECTIONS THROUGH SPERICAL PARTIC 
1LES - ZEI~S LINEAR tiOUNuARIES I 

DATA ITYP~I3.I).I=1.12) 172HR~PLIC~TEu S~CTIONS THRUUGH SPEklCAL V 
lOIDS- ZEISS EXPONENTIAL oUUNDARIESI 

READING FILE FOR u AND QI 

0090 

0120 

0150 
0160 
0170 
0180 

0210 
0220 
023U 
0240 
0250 
02bO 
0270 
028U 
0290 
0300 
0310 

032U 



C 

C 
C 
C 

C 
C 
C 

5010 

10 
20 

5020 

40 

30 

660 
5030 

5040 

5050 

READI5,50101 IQI, IPRT, ISMTH 
FORMATI3I11 
I QR = 1 
IFIIOI-IQRI 20,30,40 
WRITEI6,50201 
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FORMATI1H1,45HINCORRECT SPECIFICATION OF 101 READ CONTROL 
CALL NTRANl1,111 
CALL EXIT 
READ 11 I 
I QR :: I QR + 1 
GO TO 10 
REAl)IlI I (l)(11,I=1,491, «QIII,JItJ=I,481,I=1,481 I 
CALL NTR AN I 1,11 I 

INPUT FOR A CASE 

READI5.5U301 IIDENTIII,I=ltl21 
FORMAT 112M I 
READI5,50401 C, ISTRT, EM, A, V 
FORMATI1X, F5.U , IX, 12, IX, 3F10.0 
IFI ISTRT .LT. 1 I ISTRT = 1 
READI5,50501 IN(JI,J=1,481 
FORMATI 8X, 1614 I 

CALCULATIONS 

K = MAX I I N I 
Be 11 :: D I III EM 
DO 1 u 2 U I:: 1 ,K 
B I 1+1 I = D I 1+1 I I EM 
Sill = O. 
FN I I I = FLOA TIN I I I I 
Fell:: O. 
Till:: O. 
DDIII=O.O 

1020 CONTINUE 
ARA = A/I100.* EM**2 I 
DO 1700 I=ISTRT,K 
DO 1710 J=I,K 
DDIII = DDIII + OIII,JI*FNIJI 

1710 CONTINUE 
DDIII = EM*DDIII/ARA 

1700 CONTINUE 
C 
C CREATE COVARIANCE MATRIX 
C 

KK = K 
ARD :: IEM/ARAI**2 
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C 
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DO 180U I=I~TRT,K 

IF( (IPRT+ISMTH) .t:.(~. 0 ) KK=I 
DO 1800 J=I.KK 
COV(l.J)-u. 
DO 1110 L;: J • K 
COY I 1 • J) • cov I 1 • J) + 0 I I I ,L) *0 I I J, L ) *AMAXO ( NIL), 1 ) 

1810 CONTINUE 
COVIJ.I) a COV(I.J) * ARD 
COV I I ,J) = COV I J • I ) 

1800 CONTINUE 
IF(V) 183U,1830,182U 

182u DO 1825 I=ISTRT,K 
1825 COVII.I) = COVII,I) - DDIII/V 
1830 CONTINUE 

BNWL-210 

C SMOOTH DENSITY AND CALCULATE ITS VARIANCE 
C 

C 

I F I ISM T H • LT. 1 ) ISM TH :: 1 
KSM • ISTRT + ISMTH * ( (K+1-ISTRT) I ISMTH 1) 
DO 185U I=ISTRT,KSM,ISMTH 
DO 1835 IA=l,ISMTH 
INX = I - 1 + IA 
F ( I) = F ( I) + DD ( I N X) 

1835 CONTINUE 
DMP = 1. I I BII+ISMTH) - BII)) 
F ( I) ;: D MP * F I I ) 

DO 1840 IA=l,ISMTH 
INX = I - 1 + IA 
F(INX) = FII) 
DO 1840 JA=I.ISMTH 
JNX :: I - 1 + JA 
T ( I) = T I I) + COV I I NX ,JNX) 

1840 CONTINUE 
TIll:: DMP * SQRTI TIl) ) 
DO 1845 IA=1.ISMTH 
I NX = I - 1 + I A 
T(INX) = TIl) 

1845 CONTINUE 
1850 CONTINUE 

DO 19UU 1=15TRT.K 
5(1) :: SQRTICOV(I,I)) 

1900 CONTINUE 

C OUTPUT 
C 

WRITEI6,5U6U) ITYP~( IQI,I) ,1=1,12),1 IDENT( 1).1~1,12).C,cM,A.V 
~U60 FORMATIIH1.10X.12A6 1I17H IDtNTlfICATIUN--,12A6 II 

1 9X.bH PIlTURt.9X,14h MAGNlfllATIU~.~X.1~H ~k~A(MM**~), ~X. 

2 9X.11H VOLUMt(CC) I 11X,F6.U.3F21.U 

> . 
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3 III 120H CELL PARTICLE SIZE OBSER 
4VEU utNSITY ESTIMATt STANDARD DtVIATIUN SMOUTHED DENSITY 
5 STANUARD DEViATION I 120H NO. (MICRONS) FREQUENCY 
6 (PARTICLES/CC.) OF DENSITY ESTIMATE (PARTICLES/CC/MICRON) OF 
7SMOOTHtD DENSITY ) 

DO 316U I=ISTRT.K 
WR I T E ( 6 • 506 5) 1.13 ( I + 11 • N ( I ) • D D ( I ) • S ( I ) • F ( I ) • T ( I ) 

5u65 FORMAT(lH .4X.I2.3X.1PE11.4.6X.I5. BX. t12.4. ax. E1£.4.BX • E12.4 
1.11X. E12.4 I 

3160 CONTINUE 1500 
C WRITE OUT CORRELATION MATRIX 

IF(IPRTI 40Uu. 40UO. 35UO 
35uU UO 191u I=ISTRT.K 

DO 191U J=ISTRT.K 
R(I.J) = COV(I.JI/( S(I)*S(J) ) 
R(J.I) = R(I.J) 

1910 CONTINUE 
WRITE(6.5u7U) (IDENT(II.I=1.12) 

5070 FORMAT(lH1. 20HCORRELATION MATRIX--. 12A6 III 

CALL PRTMAT(R.K.K) 1540 
4UOO CONTINUE 

C WRITE UUT SMOUTHEU DENSITY HISTOGRAM 

C 

ItIRITE(6.5uBu) (IUENT(II.I=l.l£) 
5uBu FORMAT(lHl. 2BHSMUUTHtU DtNSITY hlSTUGkAM--. 12A6/) 

KSP = KSM - 1 + ISMTH 
DO 5u85 I=ISTRT.KSP 

5U85 T(II = 2.*T(II 
CALL LGSEE(F.T.KSPI 
WRITE(6.50901 

5u~U FORMAT( 1HO. 30X.61H SMOOTHED DENSITY (PARTICLES/CUI3IC CM/MICRON) 
1- - LOG SCALE ) 

GO TO 660 
END 

1590 
1600 



C 
C 
C 

C 

A.IO 

LISTING OF SUBROUTINES 

SUBROUTINE LGSEE IV. E. NUM) 

PROGRAMED BY JE SCHLOSSER 

DIMENSION AIIUll.V(2). E(2). VL(200lo Vt:H2UO). VTI2UO). NEilTllUll 
CALL St:.T 101 3.:2 ) 

810 FQRMATI120H 
1 3 4 

820 FORMA Tl19H 
1 2150H 2 

* 
5 

* 
3 4 

* 4 I 25H 
* 5 I 20H 
* 10110H 2 

83U FORMATI19H 
840 FORMATI19H 
850 FORMATI19H 
860 FORMATI19H 
910 FORMATI15H 
920 FORMA T I 15H 
93U FORMATI15H 
94U FORMATI15H 
950 FORMATI15H 
960 FORMATI15H 
97U FORMATI 
975 FORMAT I 
980 FORMATI1X) 

* 201 5H 4 
14.90X 110) 
14. 2150) 
14. 4125) 

13Xol3.1XoIH •• 
13Xol3.1X.2H.-

14. 5120) 
1401(110) 
14.2015 ) 

DATA XXX/IHX/ • BLANK/IH / • O/lHO/ 
N=MINOINUM.2UU) 
VMAX=-1.UE+37 
VMIN=1.0E37 
DO 5 1=1.101 
NEXTII)=I-4U 
All) = bLANK 

5 CONTINUE 
DO 21 1= 1. N 
VLI I) =-I.uE+3u 
IFIVII)) 2u.21oIu 

10 VLII)= 0.43429448*ALOGIVI I)) 
VTII)= u.43429448*ALOGI VII)+tll) 
VMAX= AMAXIIVTII).VMAX) 
VMIN= AMINIIVLII).VMIN) 
IFI VII) - Ell) ) 22.22011 

11 VBII)= u.43429448*ALOGI VII)-tll) 
GO TO 21 

2u VLI I) = -1.uE.+31 
22 VBI I) = -1.0E+31 
21 CONTINUE 

1.5 2 
6 7 8 9 * 

5 6 B * ) 

2 4 6 6 *) ) 
2 4 6 8 * ) ) 

4 8*) ) 

* ) 

oIOlAI ) 

) 
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0010 
0020 
0030 
0040 

0070 
0080 
0090 
0100 
011U 
0120 
0130 
0140 
0150 
0160 
0170 
0180 
0190 
0200 
0210 
0220 
0230 

0240 
0250 
0260 
0270 
0280 

0300 
0310 
o 32~' 
033u 
0340 

037u 
038U 

0390 
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NTOP .. VMAX + U. 5 +SIGN(U.5.VMAX) 0400 
NBUT :: V/>'IIN -(U.5 -SI('N(0.5.VMIN) 0410 
FNbOT=NdOT 0420 
IRANGE=MINO( MAXU(NTUP-NBOT.l) 011) 0430 
NBOT=NBOT+40 0440 
WRI T E D .9IlU) 0450 
('0 TO (JU.4u.5U.5u.6U.7u.7u.7u.7u.70.tiO).I~ANGE:: 0460 

30 CONTINUE 0470 
C DECADE 0480 

V I NC= o. 01 0490 
LAST =Nt:!OT+l 050u 
WR I T E (3.91u)(NEXT(1 )oI=NBOT.LAST) 0510 
WRITE (3.810) 0520 
GO TO 100 0530 

40 CONTINUE:: 0540 
C 2 LJECADES 0550 

VINC=O.02 0560 
LAST::Nt:!UT+2 0570 
WRI It D.92u) (NtXT( I ).I=Nt:!OT.LAST) 05110 
WRITE (3.82U) 0590 
GO TO luO 0600 

5u CONTINUE 0610 
C 4 LJECAlJES 0620 

V INC =0.04 0630 
LAST::NBOT+4 0640 
WRI Tt (J.93U)(NEXT(1 )oI=NBOT.LAST) 0650 
WRI TE (3.B3U) 0660 
GO TO 100 0670 

60 CONTINUE:. 0680 
C 5 DECADES 0690 

VI NC =0.05 0700 
LAST=NdOT+5 0710 
WRITE (3.94u)(NEXT(1 )oI=NClOT.LAST) 0720 
WRITE:: (J.1l4U) 0730 
GO TO 100 0740 

70 CONTINUE 0750 
C 10 lJECALJES 0760 

VINC=O.lu 0770 
LAST=Nt:!OT+IU 07BO 
WRITE (3.950) (NEXT (j )oI=NBOT.LAST) 0790 
WRITE (3.850) 0800 

GO TO 100 0810 
80 CONTINUE 0820 

C 20 L)ECALJES OB30 
VI NC =0.2 U 0&40 
LAST=NiJUT+2U 0850 
WRITE (3.96u)(NEXT(1 ).I=NClOT.LAST) OB60 
WRITE (3 .B6u) 0&70 

100 CONTINUE:: 08BO 



DO 140 I-l.N 
K-l 
KK - 1 
KU. - 1 
IF'VLIII+1.0~+301 115.130.120 

115 WRITE 13,97511 
AIKI - BLANK 
GO TO 140 

120 CONTINUE 
IFIVBIII-FNt:WTI 121,121,122 

122 CONTINUE 
KKK AtiSI VB(II-FNbOTI/VINC +1.5 
AIKK 1 = 0 

121 CONTINUE 
KKK=AbSI VTIII-FNbOTI/VINC +1.5 
K- A~SI VLIII-FNbOTIIVINC +l.~ 
K- MINUIK,lull 
A 1 KKK 1 = 0 
AIKI - XXX 

13u WRITE 13.97ull • A 
AIKK 1 = BLANK 
AIIC.KKI - BLANK 
AIKI .. BLANK 

140 CONTINUE 

A.12 

GO TO (23U,24U.25U.250.260.27U,270.270.270.270.2801.IRANGE 

230 CONTINUE 
WRITE 13,81UI 
WRITE (3.91uIlNi:.XTII I.I=NtiOT.LA::.TI 
60 TO 3UU 

240 WRITE 13.82UI 
WRITE (3,92uIlNEXTII I.I=NBOT.LASTI 
GO TO 300 

250 WRITE 13.8301 
WRITE 13.93uIlNEXTII I.I=NBOT.LASTI 
GO TO 3UU 

260 WRITE (3,84UI 
WRITE (3.94uIlNEXTII ltI=NBOT.LASTI 
GO TO 3UO 

27U WRITE (3.85UI 
WRITE (3.95UIINEXT(1 I.I=NBOT.LASTI 
GO TO 300 

280 WRITE 13.86UI 
WRITE (3.96UIlNEXTII ltI=NBOT.LI-\!)TI 

300 RETURN 
END 
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0890 
0900 

0910 
0920 

0940 
0950 

0960 
0970 

0990 

1010 
1020 
1030 
1040 
1050 
1060 
1070 
1080 
1090 
1100 
lllO 
ll2U 
1130 
ll40 
1150 
ll60 
ll70 
1180 
1190 
1200 
1210 



C 

C 

C 

C 
C 
C 

C 

C 

C 

C 
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SUBROUTINE PRTMAT(A.N.MJ 

PRINTS OUT MATRICES 

DIMENSION A(SO.50J 
9uU FORMAT( 4X. 9Ilu. III I 
91U FORMAT(IHu.3X.12.2X.luFIU.5 / 

MIN = MINU(10.MI 
( lUX. 10FlO.~ J I 

WRITE(6.9UUJ (J.J=I.MINJ 
DO 10 l=l.N 
WRITE(6.91UI 1. (A(I.JJ. J=I.MJ 

10 CONTINUE 
RETURN 
END 

FUNC T I ON MAXI(NI 
THIS SUBROUTINE 1)t.H.RMINES 

SUBSCRIPT OF THE LARGEST 
THE 

CELL 
HAVING A NON-ZERO fREQUENCY 

UIMtNSIUN N (5U) 
INITIALIZt. 

J =49 

GO TO 220 

200 J ;: J-l 
l2U iF(N(JJI2uu.2uu.24U 
24u MAXI = J 

RETURN 
END 

BNWL-ZIO 

MAXl UOO 
MAXI 02U 
MAXI U40 
MAXl U6U 

0030 
1'1 AX I UbU 
I'IAX ( IOU 
MAXI uu 
MAXI 140 

MAX I 16u 
MAXi IBO 

t-1AXI ZOU 
I'I"X j i/U 
I'i "x j ,'4U 
I'IAX I c: 6() 





.H.3 
248b 
2488 
2488 
2488 
2488 

APPENDIX III 

SAMPLE INPUT AND OUTPUT FOR THE PROGRAM UNFOLD 

SAMPLE INPUT 

7'::10/1uM. 4A16-CLAD 
2 15uuu. 4ulu88. 

3 920 94 103 100 133 136 146 133 116 146 136 116 108 
4 6 b 44 33 32 2. 5 ~ 22 1 3 6 6 .3 4 
5 

SAMPLE OUTPUT 

75 57 48 

N 
,...... 
o 



fJICTUKE 
24880. 

PAl'HIc~E ~LE 

,MICR:JNS) 
9.2036-(lc 
9.8236- ... , 
1.u485-~1 

1'1l92-~1 

1'1 946- ... 
1.2751-C1 
1t301:J-~~ 

1 ... ~27-",.1. 
1.5505-01 
1.6550-;;1 
1.7b65-i..J. 
1.d855-,,~ 

2.0126-~J. 

2.1,+Sl-ld. 
2.2929-u~ a., .. 73-u1 
i.6122-1IJ. 
2.7882-01 
2.9761-01 
3'1766-u1 
3.3906-01 
3.6.1.90-01 
3.86~b-U1 

4'1231-0:i, 
..... 009-01 
4.6974-~. 
:J.u13'7-I., 

:AGNIFLCI,7IJ 
15C.r:G. 

"RE>\( •• 2) 
411;61'1. 

... bS£k,Ew 
F, L. .. LE ,C 1 

94 
1()~ 

10" 
.1.3,3 
l~o 

140 
133 
.1 .. 
lito 
130 
UI;) 

lUd 
75 
57 
'OJ 

00 

'+ .. 
3,3 

32 
25 

d 
2c 
13 

Jc."SlTl ESTI'.:AT, 
(P>\~1r;:'LES/Cl.) 

,+.6169 +11 
5.1496+ .. 1 
2.3886 +11 
6.40,38+11 
0.050'++11 
7.549'++ 11 
0.1 ... 72+11 
~.321d+d 

6.74'+0+11 
6."121+11 
5.0417+j,l 
5.2926+ 11 
3.0199+11 
1.8J3~+1l 

8.55 .. 3+1" 

2.7069+1~ 

1.4509+U 
8.705.3+1u 
9.952"+lli 
8.5367+g 

-1.2321+10 
6.571 8 +1C 
3. 771~+lJ 
1.1320+ .. ;" 
1.4958+10 
4.7'+8 9+<;9 
1.2077 +1' 

STA"CJ/<qW DEli UTIO', 
(IF uE::SIH ESTIMATE 

1.7393+11 
1.694 4+11 
1.5993+ 11 
1.6906+11 
1.50107+11 
1.5399+11 
~.3764+11 

1.23"'2+11 
1.2668+11 
1.1393+11 
9.8961+10 
~.8029+1n 

6.9120+10 
5.6980+10 
<;.'J6'+1"'11 
5.3612+10 
4.0755+10 
3.353u+1l' 
3.1J,+72+F' 
2.4570+H 
1.5105+10 
2.05'Jl+1~ 

1.4657+10 
9.671)5+09 
'1.77'19+09 
(\.100\.1+09 
h.n3P7+~q 

-0. 

S~00T'ED DENSITY 
(PARTICLES/CC/~ICRO~) 

6. 52 50+13 
6. 5 25;)+13 
6.5250+13 
~.8658+13 

". 86~8+13 
1'1.8658+13 
5.8858+13 
5.8858+13 
5.8858+13 
1.1. 9992+13 
10. 9992+13 
~.9992+13 

1.401,++13 
1.4014+13 
1. 10 01'0+13 
1. 0 151+13 
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