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Unfolding the multiscale structure of networks with
dynamical Ollivier-Ricci curvature
Adam Gosztolai 1✉ & Alexis Arnaudon2,3

Describing networks geometrically through low-dimensional latent metric spaces has helped

design efficient learning algorithms, unveil network symmetries and study dynamical network

processes. However, latent space embeddings are limited to specific classes of networks

because incompatible metric spaces generally result in information loss. Here, we study

arbitrary networks geometrically by defining a dynamic edge curvature measuring the

similarity between pairs of dynamical network processes seeded at nearby nodes. We show

that the evolution of the curvature distribution exhibits gaps at characteristic timescales

indicating bottleneck-edges that limit information spreading. Importantly, curvature gaps are

robust to large fluctuations in node degrees, encoding communities until the phase transition

of detectability, where spectral and node-clustering methods fail. Using this insight, we derive

geometric modularity to find multiscale communities based on deviations from constant

network curvature in generative and real-world networks, significantly outperforming most

previous methods. Our work suggests using network geometry for studying and controlling

the structure of and information spreading on networks.
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R
eal-world networks are rarely embedded in physical or
Euclidean spaces, which complicates their analysis. There-
fore, previous works have typically assumed that the net-

work’s nodes lie in a latent metric space1. A well-chosen metric
space can provide a ‘geometric backbone’ to allow the correct
representation of node similarities, and to study symmetries and
dynamical processes on networks at a fundamental level. For
example, assuming an underlying manifold structure2 permits the
efficient functioning of clustering algorithms based on Euclidean
geometric features such as k-means or expectation
maximisation3. Similarly, the hyperbolic space of constant nega-
tive curvature provides a natural parametrisation of complex
networks to unveil their self-similar clusters across scales4,5.
Besides, networks can also be embedded based on a suitable
pseudo-distance metric between dynamical network processes,
which has helped reveal their functional organisation6,7. How-
ever, in general, there is no guarantee that a network is compa-
tible with a given metric space without suffering significant
distortion8. Yet, a network may have several, not necessarily self-
similar, geometric representations owing to multiscale structure,
arising, for example, from clusters at multiple resolutions9. Thus,
there is a need for a geometric notion that does not rely on
predefined embedding spaces, yet allows unfolding the multiscale
structure of a general class of networks.

A promising alternative to embeddings is to define geometry
based on a notion of curvature, such as the Ollivier–Ricci (OR)
curvature10, which intuitively speaking measures the deviation of
the graph from being locally grid-like analogously to being ’flat’ in
continuous spaces. ‘Flatness’ of a network can be understood in
terms of its local connectivity: the distance of a pair of nodes is
the same as the average distance of their neighbourhoods. Thus
positive (or negative) OR curvature of an edge indicates that it
resides in a region of the graph that is more (or less) connected
than a grid. In addition to the intuitive definition, the OR cur-
vature does not impose geometry through embedding but induces
an effective network geometry with a precise interpretation in
limiting cases. In fact, it is the only one among several discrete
curvature notions11,12 known to converge rigorously to the Ricci
curvature of a Riemannian manifold13. The OR curvature has also
been linked to graph-theoretical objects by deriving formal
bounds on the local clustering coefficient and the spectrum of the
graph Laplacian14,15. Moreover, the OR curvature of an edge is
intrinsically linked to network-level robustness to edge removal,
which has led to advances in applications such as studying the
fragility of economic networks16 or characterising the human
brain structural connectivity17.

However, despite recent clustering heuristics based on the OR
curvature18,19, several of its properties have hindered its wide-
spread adoption to study network clusters. Firstly, since the OR
curvature depends on structural neighbourhoods, related clus-
tering methods (including the Ricci flow method19) lack a reso-
lution parameter to tune the geometry to unveil multiscale
structure in real-world networks. Multiscale clustering has been
the subject of intense research and several methods and heuristics
have been proposed, along with a parallel list of goodness mea-
sures for community structures. These include, without claim of
exhaustivity, methods based on statistical mechanical models20,21,
normalised cut22, nonnegative matrix factorisation23,
modularity24–26 and extensions thereof using random walks and
diffusion processes9,27 as well as methods based on graph signal
processing28. The second shortcoming of the classical OR cur-
vature of an edge is that it is a local quantity, which depends on
the degrees of its endpoints14. Thus, it likely provides a sub-
optimal geometric representation of sparse networks—including
many real-world networks where each node connects only to a
few others—in which node degrees vary widely. In fact, the

classical OR curvature is related to the spectral gap of the graph
Laplacian15, the central object of spectral clustering methods29,
which no longer indicates clusters in sparse graphs30, similarly to
other nodes clustering methods24. This lack of robustness of the
OR curvature for sparse networks also precludes its use for
studying the limit of information spreading in graphs31, which is
linked to a phase transition occurring as the community structure
gets weaker and becomes abruptly undetectable31–33.

In other words, there is a need for a geometric notion that does
not rely on embeddings, is capable of generating a family of
geometric representations to encode multiscale clusters as
increasingly coarser features. Moreover, these features should
robustly signal network clusters at different scales until the fun-
damental limit of their detection. Such a notion would hold the
premise to describe multiscale structures of graphs without the
need for statistical null models and to open new avenues to study
and control information spreading phenomena using network
geometry.

Results
Dynamical OR curvature from graph diffusion. We address this
need by combining two distinct frameworks—network-driven
dynamical processes and geometry with OR curvature. The
spreading of network-driven dynamical processes is shaped by
the heterogeneity of the network connectivity. In turn, one may
infer the network structure by observing properties of their
evolution. We focus on Markov diffusion processes9,34–36, a class
of linear dynamical systems which is rich enough to capture
several properties of nonlinear processes on networks37,38. Let us
consider a connected network of n nodes and m edges weighted
by pairwise distances wij. We construct a continuous time diffu-
sion on the network by the standard procedure29 of defining the
normalised graph Laplacian matrix L≔K−1(K−A), where K is
the diagonal matrix of node degrees with Kii=∑jAij and A is the
weighted adjacency matrix encoding similarities between nodes.
To obtain non-negative similarities from node-to-node distances,
one may simply take Aij ¼ maxuvwuv � wij or Aij ¼ e�wij , with
the latter more strongly penalising distant points. Then, the
probability measure of the diffusion started from the unit mass δi
on node i (Fig. 1a, b) evolves according to

piðτÞ ¼ δie
�τL : ð1Þ

In analogy to the Ricci curvature on a manifold, the classical
OR curvature10,39 measures the distance of one-step neighbour-
hoods of a pair of nodes i, j relative the geodesic (shortest path)
distance of i, j (see Supplementary Note 1 for background). Here,
instead of structural neighbourhoods we consider distributions
generated by diffusion processes across scales τ. Specifically, we
start a diffusion process at each node i= 1,…, n to obtain a set of
measures pi(τ). We then define the dynamic OR curvature of an
edge as the distance of the pair of measures started at its
endpoints relative to the weight of the edge

κijðτÞ :¼ 1�
W1ðpiðτÞ; pjðτÞÞ

wij

; ð2Þ

whenever ij is an edge and 0 otherwise. Intuitively, Eq. (2) reflects
the overlap of diffusions over time when started wij distance
apart, measured by W1, the optimal transport distance40. The
latter is obtained as a solution to a minimisation problem (Eq.
(11) in the “Methods” section) yielding the least cost of
transporting the measure pi(τ) to pj(τ) by the optimal transport
plan ζ(τ). The entries of the optimal transport matrix are shown
on Fig. 1c, d representing the quantity of mass moved between

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24884-1

2 NATURE COMMUNICATIONS |         (2021) 12:4561 | https://doi.org/10.1038/s41467-021-24884-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


each pair of nodes u and v along their connecting geodesic of
length duv (Fig. 1e).

By contrast to Eq. (2), previous works have typically defined the
classical OR curvature based on one-step transition probabilities
of lazy random walks pi(τ)≃ pi= αI+ (1 − α)δiK−1A. In this
definition, scale is introduced via a laziness (or idleness) parameter
α, varying the importance of local neighbourhoods relative to wij,
which in effect introduces self-loops in the graph. Our definition
(Eq. (2)) replaces one-step neighbourhoods by probability
measures supported on the whole graph, with the timescale τ of
the diffusion process playing the role of the scale parameter. As
expected, Eq. (2) recovers the classical OR curvature10 as a first-
order approximation. In addition, the dynamical OR curvature
inherits the geometric intuition of the classical definition.
Analogously to the Ricci curvature on planes, spheres and
hyperboloids, κij(τ) is zero on grids but positive and negative on
cliques-like and tree-like networks, respectively, for all finite scales
τ (Supplementary Fig. 1b, c). In the following, we are interested in
studying the curvature distribution across edges when the network
structure deviates from these canonical topologies.

Edge curvature gap differences in rate of information spread-
ing. Most real-world networks exhibit organisation on several
scales. As an illustration Fig. 1a, b shows an unweighted sto-
chastic block model (SBM) network41 of four clusters and two
nontrivial scales. To construct these scales, we drew edges inde-
pendently between clusters with different probabilities (0.1 or
0.02). We varied cluster sizes and within-cluster edge probabilities
but ensured that the latter remained sufficiently high to easily

visualise clusters (see Fig. 1 for parameters). We show that this
multiscale structure can be revealed by scanning through a finite
range of scales τ and studying snapshots of curvature distribution
across edges.

The characteristic scales of a network are related to the overlap
between pairs of diffusion measures pi(τ), pj(τ). This overlap
depends on the starting points i, j and on network clusters which
can confine diffusions on well-connected regions for long times
before reaching the stationary state π9,34,35,42, given by πi=Kii/
∑iKii. This transient phenomenon is reflected by the structure of
the optimal transport matrix ζ(τ). If i, j lie within the same cluster,
the measures quickly overlap (Fig. 1a) and only diagonal entries
of ζ(τ) are positive (Fig. 1c), weighing only short, within-cluster
geodesics. By contrast, started at different clusters, the measures
remain almost disjoint (Fig. 1b) and ζ(τ) is forced to select longer
geodesics (Fig. 1d, e), reflected by the large entries in the off-
diagonal block.

The evolution of the edge curvature κij(τ) (Fig. 1f) aggregates the
information in ζ(τ) into a single number that is related to the rate of
mass exchange between clusters at a given scale. We see in Fig. 1f
that, initially, when all nodes support disjoint point masses and the
diffusions have not yet mixed, limτ!0κijðτÞ ! 1�W1ðδi; δjÞ=
dij ¼ 0. At the other extreme, as the diffusions reach stationary state,
limτ!1κijðτÞ ! 1�W1ðπ; πÞ=dij ¼ 1. At intermediate scales, the
curvature can take values between 1 and some finite negative number
depending on the graph15. We find that, as the curvature of an edge
evolves, the scale at which it approaches unity indicates how easy it is
to propagate information between clusters. More precisely, in the
“Methods” section, we prove that this scale gives an upper bound on

Fig. 1 Dynamical Ollivier–Ricci curvature capturing the spreading of diffusion processes. a Snapshot at time log τ ¼ 0:15 of a pair of diffusion measures

pi(τ) and pj(τ) started at nodes i, j of a stochastic block model network (with four clusters of sizes 30, 40, 35, 50 and respective edge probabilities 0.7, 0.8,

0.9, 0.6 within clusters, and 0.1, 0.02 between clusters). When i and j are in the same cluster, the measures overlap significantly. The size of half-circles is

proportional to the amount of mass on the respective nodes. b For i0; j0 in different clusters the measures remain largely disjoint. c Optimal transport plan ζ

(τ) superimposed with pi(τ), pj(τ). When i, j (coloured dashed lines) lie in the same cluster only diagonal elements ζuu are positive, meaning only geodesics

within a cluster transport significant mass. The white dashed lines correspond to the four clusters. d When the diffusions started at nodes i0 and j0 in

different clusters only entries ζuv with u and v in the corresponding clusters have significant nonzero weight. e Geodesic distance matrix duv showing the

block structure of the network. f The evolution of the edge curvatures κ(τ) (Eq. (2)) against time. There are three distinct curvature bundles and in the

insets we manually highlighted the edges to reveal their position in the graph. The shade of grey within the bundles reflect the density of edges. Here κij(τ)

≃ 0.75 marked by the red dashed line indicates scales when local mixing occurs between the corresponding diffusion pairs. The dashed vertical lines show

two such scales (log τ ¼ 0:15; 0:43). g, h Graph edges coloured by the curvature reveals clusters at the two scales.
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the mixing time τmix

ij of the diffusion pair, namely,

τmix

ij :¼ 1
2∑
uv
jζuvðτÞ � ζuvð1Þj

≤ minfτ : κijðτÞ≥ 0:75g;
ð3Þ

where ζ(τ) is the optimal transport plan with marginals pi(τ) and
pj(τ). Note that κij(τ) ≥ 0.75 does not imply that the corresponding
diffusion processes have approached stationary state independently,
but only that they exchange negligible mass at that or larger scales.

Importantly, a gap in the distribution of curvatures appears
when the curvature exceeds 0.75 for some edges while being <0.75
for others indicating a network bottleneck that limits mass flow.
To illustrate this, Fig. 1f shows three bundles of edges, the edges
within the bundle with most positive curvature are found within
clusters, while edges within the other two bundles lie between
clusters. Figure 1g, h show the two scales on Fig. 1f
(log τ ¼ 0:15; 0:43) where the curvature has exceeded 0.75 for
a given bundle, indicating the diffusions are well mixed across the
corresponding edges, but not across other edges whose curvature
is <0.75. The latter mark bottleneck edges which lie between the
expected partitions with four and two clusters, respectively. This
simple example shows the importance of the scale parameter τ in
our curvature definition to capture network scales. Let us
emphasise that the characteristic scales revealing network clusters
in our framework are indicated by curvature gaps, i.e., differences
in the relative magnitude of curvatures. This is unlike some
previous works18,19, where clusters were identified based on
finding negatively curved edges between clusters. Before applying
this idea to real networks, we take a closer look at the curvature
gap in the theoretical context of the stochastic block model.

Curvature gap is a robust indicator of clusters in stochastic
block models. Since in our example any pair of diffusions are
supported by one (Fig. 1a) or two (Fig. 1b) clusters, we focus on
the subgraph G induced by two clusters (Fig. 2a). Let us simplify
one more step and assume that G is a realisation of
G ¼ SSBM ðn=2; p

in
; p

out
Þ, the symmetric SBM composed of

two planted partitions of equal size. Edges are generated inde-
pendently with probability pin within-clusters and probability pout
between-clusters. This symmetry assumption is not necessary in
general, as illustrated by our other examples, but it allows us to
make links to known theoretical results. We will denote the
ground truth as C�

i 2 f1; �1g for each node i and define �k ¼
nðp

in
þ p

out
Þ=2 as the average degree.

Classical spectral clustering methods29 perform well for dense
graphs (Fig. 2a), where �k is an increasing function of n. This
suppresses fluctuations for large n causing a spectral gap to
appear when the eigenvalue λc of the Laplacian matrix L of G
separates from bulk eigenvalues arising from randomness29

(Fig. 2c). In this dense regime, λc is well approximated by
hλciG ¼ 2p

out
=ðp

in
þ p

out
Þ, the second eigenvalue of the ensemble

averaged Laplacian hLiG (see Supplementary Note 2). Since λc can
be identified due to the spectral gap, clustering involves simply
labelling nodes by the sign of the entries of the corresponding
eigenvector ϕcðuÞ ¼ 1=

ffiffiffi

n
p

when C�
u ¼ 1 and �1=

ffiffiffi

n
p

when
C�
u ¼ �1. However, for sparse graphs (Fig. 2b), where �k is

constant (independent of n), the spectral gap ceases to exist43

(Fig. 2d). Thus, spectral algorithms relying on identifying λc
perform no better than chance. To perform clustering in this
regime, one needs to go beyond spectral clustering using, for
example, the belief propagation method in statistical physics or
the related non-backtracking operator whose spectrum is better
behaved31,33.

To see how robustly the dynamical OR curvature indicates the
presence of clusters in the symmetric SBM, we define the

curvature gap as the difference between the mean curvatures of
within- and between-edges at a given scale

ΔκðτÞ :¼ 1

σ
hκijðτÞiC�

i ¼C�
j

� hκijðτÞiC�
i ≠C

�
j

�

�

�

�

�

�

�

�

: ð4Þ

Here the averages are over within and between-edges, normalised

by σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2 σ2within þ σ2between
� �

q

in terms of the standard deviations

of both sets of curvatures. This measure is adapted from the
sensitivity index in signal detection theory, known to be,
asymptotically, the most powerful statistical test for discriminat-
ing two distributions44. Large curvature gap Δκ(τ) indicates that
the within and between edges have curvatures different enough
for the clusters to be recovered (Fig. 2e, f). Correspondingly, in
the limits τ→ 0,∞ where the curvatures are uniform across the
graph Δκ(τ) vanishes and, likewise, in the absence of structure
(pin ≈ pout in the Erdős–Rényi (ER) limit) we have Δκ(τ)= 0 for
all τ (Fig. 2g). At intermediate scales, we find that the scale of
maximal curvature gap occurs at τκ at which point the curvatures
of within-edges is κij(τκ) ≈ 0.75. In agreement with Eq. (3), this
indicates well-mixed diffusions across these edges relative to low-
curvature bottleneck edges between clusters, which indicate
incomplete mixing. We also find that τκ � λ�1

c (Fig. 2e, f). These
results show that positive curvature gap is associated with the
presence of clusters.

What is the minimum curvature gap needed to detect clusters?
Previous works on the limits of cluster detection has shown that if
the clusters are too weak (high r≔ pout/pin) or the graph too
sparse (low �k), no clustering algorithm performs better than
chance, or distinguish G from an Erdős–Rényi graph (r= 1). This
is known as the limit of weak-recovery or detection and is
characterised by the Kesten–Stigum (KS) threshold

r ¼ rKS ¼ ð�k�
ffiffiffi

�k
p

Þ=ð�kþ
ffiffiffi

�k
p

Þ31,32,45.
To study this limit, we sampled 20 networks from G for a range

of �k and r. For each sample, we computed the maximal curvature
gap Δκ� :¼ max

τ
ΔκðτÞ and formed the ensemble average quantity

hΔκ�iG. As r increases for a given �k we observe that hΔκ�iG
decreases exponentially until a certain noise level (Fig. 2h). The
critical edge density ratio r��k can be estimated as the smallest r
where hΔκ�iG dropped below a threshold background noise level,
estimated here at 0.035 (black horizontal line). This choice of
threshold is not absolute, as it is affected by the finite-size effect of
the SBM graphs. An analytical derivation of this threshold is out
of scope of this work, but our numerical experiment clearly shows
that the curvature gap detects a signal from the planted partitions
up to the KS limit (Fig. 2i).

Geometric cluster detection in the sparse regime. Given that the
curvature gap (Eq. (4)) indicates the presence of clusters until the
fundamental KS limit, we asked if this information could be used
to recover the ground truth partition. The definition of curvature
gap (Eq. (4)) suggests looking for equilibrium configurations of
the unit-temperature Boltzmann distribution over the cluster
assignments C,

PðCjκÞ / e∑ijκijðτÞδðCi ;CjÞ ; ð5Þ

where κ is a matrix with entries κij, the sum is over all edges ij and
δ(Ci, Cj)= 1 if Ci= Cj and 0 otherwise. The distribution involves
only within-edges because finding those is equivalent to finding
between-edges, up to a normalisation factor.

The distribution PðCjκÞ is important because all of its
equilibrium states are equivalent and correlate with the ground
truth partition of the symmetric SBM G. To see this, we connect
PðCjκÞ to the posterior distribution PðCjGÞ of the cluster
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assignments given the graph drawn from G. In the sparse regime,
the likelihood of observing G with a given cluster assignment C is

PðGjCÞ /
Y

ij

p
in

p
out

� �δðCi;CjÞ
/ PðCjGÞ ð6Þ

(see Eq. (15) in the “Methods” section). The second part of Eq. (6)
results from Bayes’ theorem using a uniform prior on C, since a
priori all configurations are equally likely. It has been previously
shown31 that P(C∣G) is equivalent to the Boltzmann distribution
of an Ising model with constant interaction strength

PðCjGÞ / eβ∑ijδðCi;CjÞ ð7Þ

with inverse temperature β ¼ log ðp
in
=p

out
Þ � p

in
� p

out
. Note

that the equilibrium state (1, 1,…, 1) is trivial assigning all nodes
to one cluster. However, asymptotically (n→∞) the probability
of this state vanishes and the Boltzmann distribution is uniform
over all other configurations with group sizes n/2 and poutn/2
between-edges31. The fact that one of these states is the ground
truth partition, and all equilibrium states of Eq. (7) are equivalent
up to a permutation of nodes within clusters means they are
indistinguishable from the ground truth partition.

Due to the equivalence between Eqs. (6) and (7), to prove the
equivalence between Eqs. (5) and (6) we show that Eq. (5) can
also be reduced to Eq. (7). The main insight is that the dynamical
OR curvature (Eq. (2)) is constructed using pairs of diffusions, as
opposed to single diffusions used in previous studies9,20,35. Thus,

eigenmodes arising from random fluctuations, which would
otherwise confound methods relying on the spectrum of the
Laplacian, are reflected equally in the spectrum of both diffusions
and cancel out upon taking differences over all adjacent node
pairs. This allows recovering the community eigenvector ϕc even
in the sparse regime where the spectral gap vanishes and λc is no
longer identifiable from the spectrum (Fig. 2d). To see this, we
consider the difference between a pairs of diffusions and use the
spectral expansion to write ∑ijðpui ðτÞ � puj ðτÞÞ ¼ ∑se

�λsτϕsðuÞΔϕs
where

Δϕs :¼ ∑
ij

ϕsðiÞ � ϕsðjÞ
� �

: ð8Þ

We find that, instead of looking at the eigenvalue distribution
(Fig. 2d), the community eigenvector ϕc can be recovered by the
relative amplitude of Δϕs. Indeed, on a single SBM realisation, Δϕs
is large for only a few eigenvectors ϕs and diminishes for others
Fig. 3a. Importantly, those and only those eigenvectors with large
Δϕs correlate strongly with the ground truth (Fig. 3a inset). As
seen in Fig. 3b, the best eigenvector is not ϕ2, i.e., the one whose
eigenvalue is second in the spectrum and is used by spectral
clustering methods, but the one whose eigenvalue is inside the
bulk in Fig. 2d and thus cannot be identified by looking at the
spectrum alone. The correlation with the ground truth for ϕc with
the highest Δϕs averaged over 50 SBM realisations remains close
to the highest achievable among all eigenvectors as the KS bound
is approached. Meanwhile, ϕ2, the eigenvector used by spectral

Fig. 2 Edge curvature gap indicates the presence of clusters where spectral clustering fails. Two-partition symmetric SBM graph in the a dense regime

(pin= 0.5, pout= 0.1) and b sparse regime (pin= 8/n, pout= 0.5/n). Edges are coloured by the curvature (n= 100, log τ ¼ 0:83). c, d The histogram of

eigenvalues obtained from five SBM realisations in dense and sparse regime, respectively. In the dense regime, the eigenvalue λc corresponding to the

community structure is well separated from the bulk eigenvalues, but overlaps in the sparse regime. e, f The evolution of edge curvatures driven against

diffusion time. A gap between the curvatures of within-edges (orange) and between-edges (grey) is associated with the presence of clusters. When κij >

0.75 (horizontal dashed line) the diffusions are well mixed across the respective edges. The curvature gap is maximal at τκ � λ�1
c (orange and black vertical

lines). g There is no curvature gap in the limiting ER graph (inset, pin= pout= (8+ 0.5)/(2n)). hMaximal curvature gap averaged over 20 SBM realisations

for each fixed �k with 104 nodes, against edge density ratio. The horizontal line marks the estimated background noise level. The intersection of this line with

the mean curvature gap defines r��k , the largest possible edge density ratio to detect clusters. Shaded error bars indicate one standard deviation from the

mean. i Phase diagram of critical edge density ratio against average degree. The numerically obtained critical edge density ratios computed from the

curvature gap are superimposed with the theoretical Kesten–Stigum detection limit (dashed line) and show excellent agreement. Shaded error bars indicate

one standard deviation from the mean. Grey shaded area denotes the regime where detection is possible.
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clustering methods is suboptimal (Fig. 3c). We also found that,
close to the KS bound, often a few other eigenvectors with
similarly high Δϕs appear, suggesting an improved clustering
method combining several top eigenvectors, but this is out of
scope here.

To express the curvature in the exponent of Eq. (5) we use the
dual formulation of the optimal transport distance (Eq. (12) in
“Methods” section). The fact that Δϕc dominates the contribution
from other eigenvectors, allows us to approximate
∑ijðpui ðτÞ � puj ðτÞÞ ¼ e�λcτϕcΔϕc þ ϵϕ / e�λcτϕc þ ϵϕ, where ϵϕ

is an asymptotically small term. We use this expression, together
with the duality formula (Eq. (12)) to express Eq. (5). Finally, in
the sparse regime, we may make a tree-like approximation of the
neighbourhoods of i and j to find that Eq. (5) reduces to

PðCjκÞ / ejpin�p
out

j∑ijδðCi ;CjÞ: ð9Þ

We refer the reader to the “Methods” section for details. Eq. (9) is
the same as Eq. (7) when the communities are assortative (pin >
pout). We then conclude that the curvatures encode the
communities of the symmetric SBM and allow it to be recovered
until close to the Kesten–Stigum bound.

In the next section, we present a clustering algorithm based on
this insight that can find multiscale clusters in real-world
networks.

Geometric modularity for the multiscale clustering of net-
works. To exploit the property of the dynamical OR curvature to
give multiple geometric representations, we develop a multiscale
graph clustering algorithm for real-world networks. Using Eq. (5),
we introduce the geometric modularity function

QκðC; τÞ ¼
1

2mκ

∑
ij
ðκijðτÞ � κ0ÞδðCi;CjÞ ; ð10Þ

where 2mκ=∑ij∣κij∣ is a normalisation factor and κ0 ¼
maxijκijðτminÞ is a constant ensuring that all edges have small non-
positive curvature at the smallest computed scale τmin. Hence
optimising Eq. (10) at small times yields separate communities
for each node whereas at large times, when κij(τ)→ 1 for all ij, all
nodes are merged to a single community. At intermediate scales,
the curvatures will have negative and positive values on different
edges, making the detection of non-trivial clusters possible
without a statistical null-model. This is in contrast to classical
modularity24, which minimises the expected number of edges
between clusters, and requires a statistical null-model (typically
the configuration model), which can hinder identifying functional
communities based on dynamics6.

To detect robust partitions at several scales, we compute the
curvature distribution at scales τ spanning the entire dynamical
range of the curvature and, at each τ, we sample the cluster
landscape Qκ(C, τ) by optimising Eq. (10) using the Louvain
algorithm46,47 with 102 random initialisations. At a given τ, we
take the cluster with the highest geometric modularity and deem
it robust if it has a low variation of information VIτ against 50
other randomly chosen clusters at this scale, as well as low
variation of information VIττ0 against the best cluster assignments
at nearby scales τ0. As an example, we show in Fig. 4a the result of
this computation on our four-partition SBM graph with two
hard-coded scales. We clearly see two large plateaus with low VIτ
and VIττ0 , corresponding to robust clusters, shown in Fig. 4b, c.
At the smallest scales we find no robust communities shown by
the sharp increase in the number of communities and the large
VIτ. We compared geometric modularity to other clustering
methods on the SBM and LFR generative benchmark graphs
achieving near-state-of-the-art accuracy in both cases, close to the
theoretical limit (see Supplementary Fig. 2 and Supplementary
Note 3 for details). Notably, our method performs substantially
better than the Ricci flow19 method based on the classical OR
curvature reinforcing our theoretical insight that combining
diffusion processes and OR curvature allows surpassing the
limitations of previous OR curvature-based methods.

Our algorithm involves several steps including computing the
geodesic distance matrix, computing the diffusions (Eq. (1))
starting from all nodes, computing the curvatures (Eq. (2)) for all
edges and running the Louvain algorithm. We discuss the
complexity in detail in Supplementary Note 5. Briefly, the step
with highest complexity is the computation of the edge curvatures
which using exact algorithms runs in time O(mn5/2), which
denotes that the computation time grows at most as Mn5/2 for a
positive constant M and for m, n sufficiently large. This
complexity arises since the computation involves solving a linear
programme of complexity O(n5/2) for each of the m edges. On
sparse networks this is on par with other random walk9,20 and
probabilistic21,25,27 methods. However, for small times a com-
plexity close to O(mn) can be achieved by ’trimming’ the
probability measures, i.e., reducing their support size by ignoring
the mass on nodes below a certain cutoff value (Supplementary
Fig. 4b). For large times, a complexity reduces to O(mn) by
replacing the the optimal transport distance by the regularised
Sinkhorn distance48 (Supplementary Fig. 4c). This computational
speedups together with the parallelised implementation of
algorithm means that it scales well to moderately sized graphs
(~104 nodes).

Due to the link between high edge curvature and well-mixed
state (Eq. (3)), we expected that at robust scales the clusters will

Fig. 3 Detecting communities using pairs of diffusions near the weak recovery limit. a Difference in eigenvectors Δϕs (Eq. (8)) between diffusion

processes started at adjacent nodes for a single sparse SBM network (pin= 3/n, pout= 0.5/n, n= 104). Each dot marks (λs,Δϕs) for the 50 smallest

eigenvectors, coloured by the correlation of the corresponding eigenvector with the ground truth, shown in the inset. b The eigenvector ϕc with the highest

Δϕs encodes the cluster structure (solid line), whereas the second eigenvector ϕ2, used by spectral clustering methods, are driven by high random

fluctuations. c Correlation of eigenvectors with ground truth against distance to KS limit (n= 105, �k ¼ 3). The eigenvector identified by the highest Δϕs

approaches the correlation with the ground truth of the best eigenvector in the spectrum. All eigenvectors become uncorrelated with the ground truth at

the KS limit. Error bars indicate one standard deviation from the mean.
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correspond to those regions which have a high amount of
redundant information, and thus can be disconnected without
affecting the dynamics within them. To see this, we applied this
clustering algorithm to the European power grid graph in
Fig. 4d–f, an unweighted network of major electrical lines, which
has been previously analysed for robustness49, multiscale
communities50 and centrality36. The multiscale community
structure can be clearly seen with the many minima of the VIτ
function in Fig. 4d. We displayed two scales in Fig. 4e, f which
unfold parts of the power grid which have been historically

independently developed. The smaller scale (at around
log τ ¼ �0:95) marks economical or historical unions and states
(Skandinavia, Benelux, Czechoslovakia, Balkans, etc.). Likewise,
the larger scale (at around log τ ¼ �0:5) divides historical
Eastern–Western Europe. Interestingly with the boundary in
Germany runs along the iron curtain, which also demarcates the
regions between major electricity companies.

Finally, we analysed a recent dataset of homeobox gene
expression in single neurons of C. elegans51. The authors in ref. 51

found based on a multivariate linear regression that the

Fig. 4 Clustering networks based on multiscale geometric modularity. a Clustering statistics computed based on 102 Louvain realisations for the

multiscale stochastic block model graph. Vertical dashed lines show scales at which stable clusters are detected based on low variation of information at a

given scale and persistent low variation of information between Louvain realisations across scales. The communities obtained are shown on b for scales

log τ ¼ �2:3 and c for log τ ¼ �1. Edges are coloured by the curvatures κij(τ) at the respective scales. d Clustering statistics for the European power grid.

Two representative stable scales are shown e for log τ ¼ �0:95 and f for log τ ¼ �0:5. Node colours show community membership. g Clustering statistics

for and the network of C. elegans single-neuron homeobox gene expressions show a plateau of stable scales with very similar partitions. h Clustering

statistics obtained with Markov stability shows stable scales only at small times with single-node communities, indicating overfitting, and many non-robust

partitions at larger scales with high variation of information. i Distance from ground truth based on structural neuronal types or the predicted clusters.

Geometric modularity obtained significantly better performance than Markov stability. j Clustering of the C. elegans homeobox gene expression data

obtained from geometric modularity optimisation superimposed with the ground truth.
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homeobox gene expression profile in a given anatomical neuron
class can explain on average 74% of the expression level of the
remaining genes in that neuron class. We therefore asked whether
the homeobox gene expression profile has sufficient information
to cluster neurons into their known anatomical classes.

The data contains a binary feature vector for each of the 301
neurons, indicating the presence of a protein expressed by any of
the 105 homeobox genes in the given neuron. To convert this data
into a graph with nodes being neurons, we first eliminated all
homeobox genes co-expressed in none or more than 90% of the
neurons to retain 67 homeobox genes. We then constructed an all-
to-all graph adjacency matrix weighted by the Jaccard similarity
index between expression profiles of neurons. To increase the
number of edges with negative curvature, thus improve the
detection at the smallest scales, we sparsified this network using a
geometric sparsification method52 with parameter γ= 0.01. This
method retains at most a fraction γ edges of the original graph as
minimum spanning tree augmented by edges relevant for
preserving local or global geometry of the graph.

The results of our clustering algorithm on this graph is shown
in Fig. 4g and compared with the result of Markov stability9 on
Fig. 4h, a multiscale method based on persistence of diffusions.
Geometric modularity obtains a large range of robust scales with
highly similar clusters—as shown by the low VIτ and VIττ0 . These
scales correlate closely with the known ground truth of 117
anatomical neuron classes (Fig. 4i). In contrast, for Markov
stability9, the scales with low VIτ overfit the graph finding too
many clusters (Fig. 4h) which correlate less with the ground truth
(Fig. 4i). Likewise, hierarchical clustering fails to identify the
ground truth communities51. We also compared our result with
that obtained from a broad range of clustering methods finding
that other methods either overfit the neuron classes or found too
few partitions (Supplementary Note 4 and Supplementary Fig. 3).
Althouth the wavelet method of Tremblay and Borgnat returned
a clustering near the ground truth, this scale was not identifiable
based on their stability metric (Supplementary Fig. 3b). On Fig. 4j
we superimpose the best clustering from geometric modularity
against the ground-truth. We observe little differences, apart from
VA and AS nodes as well as VD and DD often clustered together.
Careful look reveals close biological relationship between these
classes; all four classes correspond to motor neurons, with pairs
expressing the same neurotransmitters—VA, AS expressing
acetylcholine and VD, DD expressing gamma-aminobutyric acid
(GABA). These novel results give direct quantitative support to
the claim that homeobox gene expression patterns encode
structural neuron types. We also observe other stable partitions
at larger scale, but they did not correlate the ground-truth.

Overall, these results give a strong demonstration that our
method is able to find stable clusters in sparse graphs, and
provide meaningful insights into distinct types of real-world
networks.

Discussion. Real-world networks often exhibit community
structure on multiple scales, due to differences between the rates
of information propagation in regions the network on various
timescales. We introduced the concept of dynamical OR curva-
ture which defines a scale-dependent geometry from the evolu-
tion of pairs of diffusion processes on the network. We showed
that the edge curvature carries a precise meaning in this context
bounding the rate of information flow across edges. Con-
sequentially, gaps in the edge curvature distribution arising from
differences between edge curvatures within and between regions
indicate network bottlenecks. Systematically finding these gaps in
the edge curvature distribution captures progressively coarser
community features as the diffusion processes evolve. This result

does not rely on the dynamics being linear diffusions, making it
suitable to study the interaction of arbitrary dynamical processes.
We expect that, in the future, this approach can be used to tune
the geometry of the graph to control the flux or interaction of
network-driven dynamical processes, for example, leading to
insights to metapopulation models53 and synchronisation pro-
blem, for example, to better understand the coexistence of chi-
mera states54,55.

Unlike previous geometric approaches, which rely on embed-
ding a network into a particular latent metric space5–7,35, our
approach constructs an effective object - the weighted and signed
edge curvature matrix. Whilst not requiring specific assumptions
used by latent space approaches it is worth noting that the
dynamical OR curvature is constructed on the metric space
formed by all the shortest paths of the graph. This property
suggests links with the field of fractal geometry which studies
scaling properties of graphs using the shortest path metric56.
Thus, in graph families such as complex networks whose fractal
geometry can be characterised57 one can expect relationships
between coarse-graining schemes based on box-covering techni-
ques and aggregating clusters based on similar dynamical OR
edge curvatures, which could be exploited for controlling the
multifractal geometry of these networks.

Although diffusion processes constructed from the graph
Laplacian have been explored for network clustering9,27,35, our
work differs in the use of diffusion pairs, as opposed to single
diffusions, to construct the curvature. Diffusion pairs are
implicitly coupled through the graph and pick up random
variations independently, which can be exploited to average out
non-informative fluctuations. On stochastic block models, this
feature allows the curvature gap to robustly indicate clusters in
the sparse regime down to the fundamental limit, where
clustering methods relying on the spectral gap in the Laplacian
fail43. We also found a new measure of eigenvalue quality, able to
select the best eigenvector to be used in spectral methods.
Interestingly, the edge curvatures are defined on the set of
shortest paths which cannot contain the same edge twice, a subset
of the set of non-backtracking walks. Our results are therefore
consistent with previous works on the limits of cluster detection
using statistical physics objects including the spectrum of non-
backtracking operator33 or related message passing approaches31.
We expect this insight to provide a new avenue to study the
fundamental limits of efficient clustering from a geometric
perspective.

Finally, we introduced the notion of geometric modularity to
build an easy-to-use multiscale clustering algorithm. Notably, our
algorithm achieved near-state-of-the-art performance in sparse
SBM graphs, better than methods relying on the spectral gap in
the Laplacian matrix (e.g., spectral clustering29 and edge-
betweenness25) as well as those relying on the classical OR
curvature19. This confirms that combining diffusions and OR
geometry allows surpassing the limitations of these methods,
which work well only on dense graphs. We also found robust and
interpretable communities on multiple scales in real-world
networks without the tendency of overfitting. Overall, we expect
our insights connecting dynamical processes, geometry and
network clustering to open new avenues to studying and
controlling the structural and dynamical properties of networks.

Methods
Optimal transport distance. To measure the distance between a pair of measures
pi(τ) and pj(τ) we use the optimal transport distance40 (also known as 1-
Wasserstein or earth-mover distance), defined as

W1ðpiðτÞ; pjðτÞÞ ¼ min
ζ

∑
uv
duvζuv ;

subject to ∑
v
ζuv ¼ pui ðτÞ ; ∑

u
ζuv ¼ pvj ðτÞ :

ð11Þ
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The constraints in Eq. (11) ensure that the optimal transport plan ζðτÞ 2 R
n ´ n is a

coupling of the measures pi(τ), pj(τ), i.e., ζ(τ) is a joint distribution that admits pi(τ)
and pj(τ) as marginals.

An equivalent formulation of this distance can be constructed from the
Kantorovich–Rubinstein duality40, given by

W1ðpiðτÞ; pjðτÞÞ ¼ sup
f

∑
u
f ðuÞ½pui ðτÞ � puj ðτÞ� ð12Þ

where the supremum is taken over all 1-Lipschitz functions f on the graph, that is,

jf ðuÞ � f ðvÞj ≤ duv ð13Þ

for any node pair u, v.

Upper bound on the mixing time in terms of curvature. Here we prove
inequality (3), which gives an upper bound on the mixing time of the coupled
diffusions with measures pi(τ), pj(τ) in terms the dynamical OR curvature. The ϵ-
mixing time is defined as the smallest τ where the law of the coupled process, the
optimal transport plan ζ(τ), is within an ϵ radius of the stationary distribution

τijðϵÞ :¼ minfτ : jjζðτÞ � ζð1ÞjjTV ≤ ϵg; ð14Þ

where the notion of “close to stationarity” is quantified by the total variation
distance jjζðτÞ � ζð1ÞjjTV :¼ 1

2∑uvjζuvðτÞ � ζuvð1Þj. Since pi(τ) and pj(τ) are
marginals of ζ(τ) we have that

τijðϵÞ ¼ minfτ : jjpiðτÞ � πjjTV þ jjpjðτÞ � πjjTV ≤ ϵg
¼ minfτ : jjpiðτÞ � pjðτÞjjTV ≤ ϵg ;

where we used the independence of the diffusion processes. From here, we may
follow ref. 58 and use the Csiszár-Kullback-Pinsker inequality for the optimal
transport distance

jjpjðτÞ � pjð1ÞjjTV ≤ ð1=d0ÞW1ðpjðτÞ; pjðτÞÞ ;

where d0 ¼ min
ij

dij is a global graph constant, which can therefore be absorbed into

ϵ. This gives an upper bound

τijðϵ0Þ≤ minfτ : W1ðpiðτÞ; pjðτÞÞ≤ ϵ0g
¼ minfτ : κijðτÞ≥ 1� ϵ0g ;

with ϵ0 ¼ d0ϵ which is what we set out to show. Note that choosing any ϵ0 2
ð0; 1=2Þ ensures exponential convergence rate to the stationary measure59 and by
convention, we take the middle of this range and define τmix

ij :¼ τmix

ij ð1=4Þ to obtain
Eq. (3).

Connection between geometric modularity and the symmetric stochastic

block model. In this section, we prove that the Boltzmann distribution of cluster
assignments given the edge curvatures PðCjκÞ (Eq. (5)) has equilibrium states
which are indistinguishable from the ground truth partition of the SBM. We show
this by reducing PðCjκÞ as well as the posterior distribution PðCjGÞ, to the same
constant interaction Ising model (Eq. (7)). In the remainder of this section we work
in the sparse regime, where pin, pout=O(1/n).

First, we recap the well-known equivalence of the SBM and the Ising model31.
Let E denote the set of edges. The probability distribution of the symmetric SBM
for two clusters can be written as41

PðGjCÞ ¼ pe
out

ð1� p
out

Þ
n
2ð Þ�e

´

Y

ij2E

p
in

p
out

� �δðCi ;CjÞ
Y

ij=2E

1� p
in

1� p
out

� �δðCi ;CjÞ

/
Y

ij2E

p
in

p
out

� �δðCi ;CjÞ

ð15Þ

where e is the total number of edges and in the last line we used that the effect of
non-edges is weak in the sparse regime. Therefore, by Bayes’ theorem with uniform
prior one obtains the posterior distribution PðCjGÞ / PðGjCÞ. As a result, the
probability of clusters generated by the SBM is equivalent to the Ising model with
uniform interaction with Boltzmann distribution given by Eq. (7)31.

Second, we reduce the Boltzmann distribution of clusters given the edge
curvature to same Ising model in Eq. (7). From Eq. (5) we have

PðCjκÞ / e∑ijκijðτÞδðCi ;CjÞ

/ e∑ij ½1�W1ðpiðτÞ;pjðτÞÞ�δðCi ;CjÞ ;
ð16Þ

where in the last line we used the definition of the curvature in Eq. (2). Comparing
Eq. (16) with Eq. (7) note that 1�W1ðpiðτÞ; pjðτÞÞ is non-constant and has a non-
linear dependence on the scale τ. However, it is possible to express it in terms of
pin, pin to make the connection to the Ising model. Let us write the diffusion

measures in Eq. (1) in terms of the spectral decomposition of L as

pki ðτÞ ¼ ∑
n

s¼1
e�λsτϕsðkÞϕsðiÞ : ð17Þ

At this point let us remark that in the dense regime where pin, pout=O(1), the first
two eigenmodes (λ1, ϕ1) and (λc, ϕc) dominate and the second eigenmode contains
the anti-symmetric eigenvector ϕcðuÞ ¼ 1=

ffiffiffi

n
p

when Cu= 1 and �1=
ffiffiffi

n
p

when Cu

= 2 that is associated with the community structure (Fig. 2c). Thus, one can follow
spectral clustering methods29 to find the sparsest cut between clusters using ϕc. In
contrast, in the sparse regime, the dominant eigenmodes will be driven by random
fluctuations in the node degrees across the graph60, thus spectral clustering
algorithms based on L are suboptimal (Fig. 2d).

However, the coupled diffusion pair allows for cancelling out random
fluctuations in their spectrum. To see this, consider for a between-edge ij the
difference

∑
ij2E

pki ðτÞ � pkj ðτÞ ¼ ∑
ij2E

∑
n

s¼1
e�λsτϕsðkÞ½ϕsðiÞ � ϕsðjÞ�

¼ ∑
n

s¼1
e�λsτϕsðkÞΔϕs ;

ð18Þ

where Δϕs is defined in Eq. (8). The first term involves the constant eigenvector ϕ1
corresponding to the stationary state. Therefore, ϕ1(i)= ϕ1(j) for all ij and thus its
contributions cancels out when taking differences. Further, for eigenvectors ϕs with
s ≠ 1, c we have asymptotically (n→∞) that (Fig. 3)

Δϕs ! 0

As a result, the only contribution we are left with is coming from the anti-
symmetric eigenmode (λc, ϕc). Thus we have that

∑
ij2E

ðpui ðτÞ � puj ðτÞÞ ¼
ϵϕ; if Ci ¼ Cj;

e�λcτϕcΔϕc þ ϵϕ; if Ci ≠ Cj ;

(

ð19Þ

where ϵϕ represents the contribution from the random eigenvectors which is
negligible in the limit n→∞.

To compute W1 in the exponent of Eq. (16), we use Kantorovich–Rubinstein
duality (Eq. (12)). Using Eq. (19) in Eq. (12) and ignoring asymptotically small
terms, we consider the quantity

∑
ij2E

∑
u
f ðuÞ pui ðτÞ � puj ðτÞ

h i

¼ ∑
ij2E

e�λcτ ∑
u
f ðuÞϕcðuÞ

¼ ∑
ij2E

e�λcτ

n
∑

u: Cu¼1
f ðuÞ � ∑

u: Cu¼2
f ðuÞ

� 	

¼ ∑
ij2E

e�λcτ

n
∑

u: Cu¼1
ðf ðuÞ � f ðiÞÞ � ∑

u: Cu¼2
ðf ðuÞ � f ðjÞÞ

�

þ ∑
u: Cu¼1

f ðiÞ � ∑
u: Cu¼2

f ðjÞ
	

:

ð20Þ

In the sparse regime, we may make a tree-like approximation in the neighbourhood
of i. This means that the number of neighbours of i at distance q inside the cluster
is pq

in
ðn=2Þq , ignoring terms of order O(1/n) and beyond. Considering only nodes at

unit distance (q= 1), we approximate Eq. (20) as

∑
ij2E

e�λcτ

n
∑

u: Cu¼1
u�i

ðf ðuÞ � f ðiÞÞ � ∑
u: Cu¼2

u�i

ðf ðuÞ � f ðiÞÞ
"

þ ∑
u: Cu¼1

u�j

ðf ðuÞ � f ðjÞÞ � ∑
u: Cu¼2

u�j

ðf ðuÞ � f ðjÞÞ

þ ∑
u: Cu¼1

u�i

f ðiÞ � ∑
u: Cu¼2

u�i

f ðiÞ þ ∑
u: Cu¼1

u�j

f ðjÞ � ∑
u: Cu¼2

u�j

f ðjÞ

3

5

¼ ∑
ij2E

e�λcτ

n
∑

u: Cu¼1
u�i

ðf ðuÞ � f ðiÞÞ � ∑
u: Cu¼2

u�i

ðf ðuÞ � f ðiÞÞ
"

þ ∑
u: Cu¼1

u�j

ðf ðuÞ � f ðjÞÞ � ∑
u: Cu¼2

u�j

ðf ðuÞ � f ðjÞÞ

þn

2
p
in
ðf ðiÞ � f ðjÞÞ � n

2
p
out

ðf ðiÞ � f ðjÞÞ
i

:

Then, taking the supremum over all 1-Lipschitz functions f, we obtain

∑
ij2E

W1ðpiðτÞ; pjðτÞÞδðCi; CjÞ

� ∑
ij2E

e�λcτ ðp
in
þ p

out
Þ 1þ jp

in
�p

out
j

2ðp
in
þp

out
Þ


 �

δðCi;CjÞ
ð21Þ

Substituting this into Eq. (16) and noting that pin+ pout is constant we obtain at a

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24884-1 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:4561 | https://doi.org/10.1038/s41467-021-24884-1 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


fixed τ

PðCjκÞ / exp
jp

in
� p

out
j

2ðp
in
þ p

out
Þ

� �

∑
ij2E

δðCi; CjÞ
� 	

;

which up to a constant of proportionality equals the expression in Eq. (9).

Data availability
The data generated in this study is available at https://dataverse.harvard.edu/dataverse/
geometric_clustering/.

Code availability
The code to reproduce the results in our paper and to perform geometric modularity
optimisation is available at https://doi.org/10.5281/zenodo.5031276.

Received: 8 February 2021; Accepted: 6 July 2021;

References
1. Boguñá, M. et al. Network geometry. Nat. Rev. Phys. 3, 114–135 (2021).
2. Tenenbaum, J. B., de Silva, V. & Langford, J. C. A global geometric framework

for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000).
3. Ding, C., He, X., Zha, H. & Simon, H. D. Adaptive dimension reduction for

clustering high dimensional data. In 2002 IEEE International Conference on
Data Mining, 2002, Proceedings, 147–154, https://ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=1183878 (2002).

4. Serrano, M. A., Krioukov, D. & Boguñá, M. Self-similarity of complex
networks and hidden metric spaces. Phys. Rev. Lett. 100, 078701 (2008).

5. García-Pérez, G., Boguñá, M. & Serrano, M. Á. Multiscale unfolding of real
networks by geometric renormalization. Nat. Phys. 14, 583–589 (2018).

6. De Domenico, M. Diffusion geometry unravels the emergence of functional
clusters in collective phenomena. Phys. Rev. Lett. 118, 168301 (2017).

7. Brockmann, D. & Helbing, D. The hidden geometry of complex, network-
driven contagion phenomena. Science 342, 1337–1342 (2013).

8. Matousek, J. Lectures on Discrete Geometry, Vol. 212 (Springer, New York,
2013).

9. Delvenne, J.-C., Yaliraki, S. N. & Barahona, M. Stability of graph communities
across time scales. Proc. Natl. Acad. Sci. USA 107, 12755–12760 (2010).

10. Ollivier, Y. Ricci curvature of Markov chains on metric spaces. J. Funct. Anal.
256, 810–864 (2009).

11. Sturm, K.-T. On the geometry of metric measure spaces. Acta Math. 196,
65–131 (2006).

12. Lott, J. & Villani, C. Ricci curvature for metric-measure spaces via optimal
transport. Ann. Math. 169, 903–991 (2009).

13. van der Hoorn, P., Cunningham, W. J., Lippner, G., Trugenberger, C. &
Krioukov, D. Ollivier–Ricci curvature convergence in random geometric
graphs. Phys. Rev. Research 3, 013211 (2021).

14. Jost, J. & Liu, S. Ollivier’s Ricci curvature, local clustering and curvature-
dimension inequalities on graphs. Discret. Comput. Geom. 51, 300–322 (2014).

15. Bauer, F., Jost, J. & Liu, S. Ollivier–Ricci curvature and the spectrum of the
normalized graph Laplace operator. Math. Res. Lett. 19, 1185–1205 (2012).

16. Sandhu, R. S., Georgiou, T. T. & Tannenbaum, A. R. Ricci curvature: an
economic indicator for market fragility and systemic risk. Sci. Adv. 2,
e1501495 (2016).

17. Farooq, H., Chen, Y., Georgiou, T. T., Tannenbaum, A. & Lenglet, C. Network
curvature as a hallmark of brain structural connectivity. Nat. Commun. 10,
4937 (2019).

18. Sia, J., Jonckheere, E. & Bogdan, P. Ollivier–Ricci curvature-based method to
community detection in complex networks. Sci. Rep. 9, 9800 (2019).

19. Ni, C.-C., Lin, Y.-Y., Luo, F. & Gao, J. Community detection on networks with
Ricci flow. Sci. Rep. 9, 9984 (2019).

20. Rosvall, M. & Bergstrom, C. T. Maps of random walks on complex networks
reveal community structure. Proc. Natl. Acad. Sci. USA 105, 1118–1123
(2008).

21. Zhang, P. & Moore, C. Scalable detection of statistically significant
communities and hierarchies, using message passing for modularity. Proc.
Natl. Acad. Sci. USA 111, 18144–18149 (2014).

22. Shi, J. & Malik, J. Normalized cuts and image segmentation. IEEE Trans.
Pattern Anal. Mach. Intell. 22, 888–905 (2000).

23. Du, R., Kuang, D., Drake, B. & Park, H. Hierarchical community detection via
rank-2 symmetric nonnegative matrix factorization. Comput. Soc. Netw. 4, 7
(2017).

24. Newman, M. E. J. Modularity and community structure in networks. Proc.
Natl. Acad. Sci. USA 103, 8577–8582 (2006).

25. Girvan, M. & Newman, M. E. J. Community structure in social and biological
networks. Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002).

26. Arenas, A., Fernandez, A. & Gomez, S. Analysis of the structure of complex
networks at different resolution levels. New J. Phys. 10, 053039 (2008).

27. Reichardt, J. & Bornholdt, S. Statistical mechanics of community detection.
Phys. Rev. E 74, 016110 (2006).

28. Tremblay, N. & Borgnat, P. Graph wavelets for multiscale community mining.
IEEE Trans. Signal Process. 62, 5227–5239 (2014).

29. Chung, F. R. K. Spectral Graph Theory, Vol. 92 (American Mathematical
Society, Providence, 1997).

30. Nadakuditi, R. R. & Newman, M. E. J. Graph spectra and the detectability of
community structure in networks. Phys. Rev. Lett. 108, 188701 (2012).

31. Decelle, A., Krzakala, F., Moore, C. & Zdeborová, L. Asymptotic analysis of
the stochastic block model for modular networks and its algorithmic
applications. Phys. Rev. E 84, 066106 (2011).

32. Abbé, E. & Sandon, C. Community detection in general stochastic block
models: fundamental limits and efficient algorithms for recovery. In 2015 IEEE
56th Annual Symposium on Foundations of Computer Science, 670–688
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7354380
(2015).

33. Massoulié, L. Community detection thresholds and the weak Ramanujan
property. In Proceedings of the 46th Annual ACM Symposium on Theory of
Computing, STOC’14, 694–703 (2014).

34. Gfeller, D. & De Los Rios, P. Spectral coarse graining of complex networks.
Phys. Rev. Lett. 99, 038701 (2007).

35. Coifman, R. R. et al. Geometric diffusions as a tool for harmonic analysis and
structure definition of data: diffusion maps. Proc. Natl. Acad. Sci. USA 102,
7426–7431 (2005).

36. Arnaudon, A., Peach, R. L. & Barahona, M. Scale-dependent measure of
network centrality from diffusion dynamics. Phys. Rev. Res. 2, 033104
(2020).

37. Schaub, M. T., Billeh, Y. N., Anastassiou, C. A., Koch, C. & Barahona, M.
Emergence of slow-switching assemblies in structured neuronal networks.
PLoS Comput. Biol. 11, e1004196–28 (2015).

38. Young, H. P. Innovation diffusion in heterogeneous populations: contagion,
social influence, and social learning. Am. Econ. Rev. 99, 1899–1924 (2009).

39. Veysseire, L. Coarse Ricci curvature for continuous-time Markov processes.
Preprint at https://arxiv.org/abs/1202.0420 (2012).

40. Villani, C. Optimal Transport: Old and New. (Springer, 2009).
41. Holland, P. W., Laskey, K. B. & Leinhardt, S. Stochastic blockmodels: first

steps. Soc. Netw. 5, 109–137 (1983).
42. Gosztolai, A., Carrillo, J. A. & Barahona, M. Collective search with finite

perception: transient dynamics and search efficiency. Front. Phys. 6, 153
(2019).

43. Kawamoto, T. & Kabashima, Y. Limitations in the spectral method for graph
partitioning: detectability threshold and localization of eigenvectors. Phys. Rev.
E 91, 062803 (2015).

44. Kay, S. M. Fundamentals of Statistical Signal Processing: estimation
theory (Prentice Hall, New Jersey, 1993).

45. Mossel, E., Neeman, J. & Sly, A. A proof of the block model threshold
conjecture. Combinatorica 38, 665–708 (2018).

46. Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of
communities in large networks. J. Stat. Mech. Theory Exp. 2008, P10008
(2008).

47. PyGenStability: unsupervised clustering with generalised Louvain and Markov
stability. GitHub https://github.com/barahona-research-group/
PyGenStability (2021).

48. Cuturi, M. Sinkhorn distances: Lightspeed computation of optimal transport
In Proceedings of the 26th International Conference on Neural Information
Processing Systems (eds Burges, C. J. C., Bottou, L., Welling, M., Ghahramani,
Z., Weinberger, K. W.) Vol. 2 (Curran Associates Inc., 2013).

49. Rosas-Casals, M., Valverde, S. & Solé, R. V. Topological vulnerability of the
European power grid under errors and attacs. Int. J. Bifurcat. Chaos 17,
2465–2475 (2007).

50. Schaub, M. T., Delvenne, J.-C., Yaliraki, S. N. & Barahona, M. Markov
dynamics as a zooming lens for multiscale community detection: non clique-
like communities and the field-of-view limit. PLOS ONE 7, 1–11 (2012).

51. Reilly, M. B., Cros, C., Varol, E., Yemini, E. & Hobert, O. Unique homeobox
codes delineate all the neuron classes of C. elegans. Nature 584, 595–601
(2020).

52. Beguerisse-Diaz, M., Vangelov, B. & Barahona, M. Finding role communities
in directed networks using role-based similarity, Markov stability and the
relaxed minimum spanning tree. In 2013 IEEE Global Conference on Signal
and Information Processing, 937–940 https://ieeexplore.ieee.org/stamp/stamp.
jsp?tp=&arnumber=6736792 (2013).

53. Davis, J. T., Perra, N., Zhang, Q., Moreno, Y. & Vespignani, A. Phase
transitions in information spreading on structured populations. Nat. Phys. 16,
590–596 (2020).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24884-1

10 NATURE COMMUNICATIONS |         (2021) 12:4561 | https://doi.org/10.1038/s41467-021-24884-1 | www.nature.com/naturecommunications

https://dataverse.harvard.edu/dataverse/geometric_clustering/
https://dataverse.harvard.edu/dataverse/geometric_clustering/
https://doi.org/10.5281/zenodo.5031276
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1183878
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1183878
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7354380
https://arxiv.org/abs/1202.0420
https://github.com/barahona-research-group/
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6736792
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6736792
www.nature.com/naturecommunications


54. Sawicki, J., Omelchenko, I., Zakharova, A. & Schöll, E. Chimera states in
complex networks: interplay of fractal topology and delay. Eur. Phys. J. Spec.
Top. 226, 1883–1892 (2017).

55. Chouzouris, T. et al. Chimera states in brain networks: empirical neural vs.
modular fractal connectivity. Chaos 28, 045112 (2018).

56. Song, C., Havlin, S. & Makse, H. A. Origins of fractality in the growth of
complex networks. Nat. Phys. 2, 275–281 (2006).

57. Xue, Y. & Bogdan, P. Reliable multi-fractal characterization of weighted
complex networks: algorithms and implications. Sci. Rep. 7, 7487 (2017).

58. Paulin, D. Mixing and concentration by Ricci curvature. J. Funct. Anal. 270,
1623–1662 (2016).

59. Levin, D. A., Peres, Y. & Wilmer, E. L. Markov Chains and Mixing Times
(American Mathematical Society, Providence, 2006).

60. Krivelevich, M. & Sudakov, B. The largest eigenvalue of sparse random graphs.
Combinatorics, Probability and Computing 12, 61–72 (2003).

Acknowledgements
A.G. acknowledges support from an HFSP Cross-disciplinary Postdoctoral Fellowship
(LT000669/2020-C). This study was supported by funding to the Blue Brain Project, a
research center of the École polytechnique fédérale de Lausanne (EPFL), from the Swiss
government’s ETH Board of the Swiss Federal Institutes of Technology. We thank
Mauricio Barahona for insightful discussions on this topic, Jonas Braun and István
Tomon for their helpful comments on the manuscript and Daniel Morales for inspiring
us to analyse the C. elegans dataset. We also thank the three anonymous reviewers for
their constructive comments.

Author contributions
A.G. and A.A. contributed equally to this work.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-24884-1.

Correspondence and requests for materials should be addressed to A.G.

Peer review information Nature Communications thanks Allen Tannenbaum, Paul
Bogdan and the other anonymous reviewer(s) for their contribution to the peer review of
this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24884-1 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:4561 | https://doi.org/10.1038/s41467-021-24884-1 | www.nature.com/naturecommunications 11

https://doi.org/10.1038/s41467-021-24884-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Unfolding the multiscale structure of networks with dynamical Ollivier-Ricci curvature
	Results
	Dynamical OR curvature from graph diffusion
	Edge curvature gap differences in rate of information spreading
	Curvature gap is a robust indicator of clusters in stochastic block models
	Geometric cluster detection in the sparse regime
	Geometric modularity for the multiscale clustering of networks
	Discussion

	Methods
	Optimal transport distance
	Upper bound on the mixing time in terms of curvature
	Connection between geometric modularity and the symmetric stochastic block model

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information


