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Abstract. Ultra low frequency, kHz and MHz electromag-

netic (EM) anomalies were recorded prior to the L’Aquila

catastrophic earthquake that occurred on 6 April 2009. The

main aims of this paper are threefold: (i) suggest a procedure

for the designation of detected EM anomalies as seismogenic

ones. We do not expect to be able to provide a succinct and

solid definition of a pre-seismic EM emission. Instead, we

aim, through a multidisciplinary analysis, to provide the el-

ements of a definition. (ii) Link the detected MHz and kHz

EM anomalies with equivalent last stages of the earthquake

preparation process. (iii) Put forward physically meaning-

ful arguments for quantifying the time to global failure and

the identification of distinguishing features beyond which the

evolution towards global failure becomes irreversible. We

emphasize that we try to specify not only whether a sin-

gle EM anomaly is pre-seismic in itself, but also whether

a combination of kHz, MHz, and ULF EM anomalies can

be characterized as pre-seismic. The entire procedure un-

folds in two consecutive parts. Here in Part 1 we focus on

the detected kHz EM anomaly, which play a crucial role

in our approach to these challenges. We try to discrimi-

nate clearly this anomaly from background noise. For this

purpose, we analyze the data successively in terms of var-

ious concepts of entropy and information theory including,

Shannon n-block entropy, conditional entropy, entropy of the
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source, Kolmogorov-Sinai entropy, T -entropy, approximate

entropy, fractal spectral analysis, R/S analysis and detrended

fluctuation analysis. We argue that this analysis reliably dis-

tinguishes the candidate kHz EM precursor from the noise:

the launch of anomalies from the normal state is combined

by a simultaneous appearance of a significantly higher level

of organization, and persistency. This finding indicates that

the process in which the anomalies are rooted is governed

by a positive feedback mechanism. This mechanism induces

a non-equilibrium process, i.e., a catastrophic event. This

conclusion is supported by the fact that the two crucial sig-

natures included in the kHz EM precursor are also hidden

in other quite different, complex catastrophic events as pre-

dicted by the theory of complex systems. However, our view

is that such an analysis by itself cannot establish a kHz EM

anomaly as a precursor. It likely offers necessary but not

sufficient criteria in order to recognize an anomaly as pre-

seismic. In Part 2 we aim to provide sufficient criteria: the

fracture process is characterized by fundamental universally

valid scaling relationships which should be reflected in a real

fracto-electromagnetic activity. Moreover, we aim to answer

the following two key questions: (i) How can we link an

individual EM precursor with a distinctive stage of the EQ

preparation process; and (ii) How can we identify precursory

symptoms in EM observations that indicate that the occur-

rence of the EQ is unavoidable.

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


1954 K. Eftaxias et al.: Characterizing ULF, kHZ and MHz EM anomalies

1 Introduction

A catastrophic earthquake (EQ) occurred on 6 April 2009

(01 h 32 m 41 s UTC) in central Italy (42.33◦ N–13.33◦ E).

The majority of the damage occurred in the city of L’Aquila.

A vital problem in material science and in geophysics is

the identification of precursors of macroscopic defects or

shocks. An EQ is essentially a large scale fracture so, as

with any physical phenomenon, science should have some

predictive power regarding its future behaviour.

Earthquake physicists attempt to link the available obser-

vations to the processes occurring in the Earth’s crust.

Fracture-induced physical fields allow a real-time monitoring

of damage evolution in materials during mechanical loading.

When a material is strained, electromagnetic (EM) emissions

in a wide frequency spectrum ranging from kHz to MHz are

produced by opening cracks, which can be considered as so-

called precursors of general fracture. These precursors are

detectable both on a laboratory and a geological scale (Ba-

hat et al., 2005; Eftaxias et al., 2007a; Hayakawa and Fu-

jinawa,1994; Hayakawa, 1999; Hayakawa and Molchanov,

2002).

Since 1994, a station has been installed and operating at a

mountainous site of Zante Island in the Ionian Sea (Western

Greece). Its purpose is the detection of EM precursors. Clear

ultra-low-frequency (ULF), kHz and MHz precursors have

been detected over periods ranging from a few days to a few

hours prior to catastrophic EQs that have occurred in Greece

since its installation.

We emphasize that the detected precursors were associ-

ated with EQs that occurred in land (or near the coast-line),

and were strong (magnitude 6 or larger) and shallow (Con-

toyiannis et al., 2005; Karamanos et al., 2006). Recent re-

sults indicate that the recorded EM precursors contain infor-

mation characteristic of an ensuing seismic event (e.g., Ef-

taxias et al., 2002, 2004, 2006, 2007; Kapiris et al., 2004,

2005; Contoyiannis et al., 2005; Contoyiannis and Eftaxias,

2008; Kalimeri et al., 2008; Papadimitriou et al., 2008).

The L’Aquila EQ occurred in land, was very shallow and

its magnitude was 6.3. MHz, kHz and ULF EM anoma-

lies were observed before this EQ. An important feature, ob-

served both on a laboratory and a geological scale, is that the

MHz radiation precedes the kHz one (Eftaxias et al., 2002

and references therein). The detected anomalies followed the

temporal scheme listed below.

(i) The MHz EM anomalies were detected on 26 March

2009 and 2 April 2009.

(ii) The kHz EM anomalies emerged on 4 April 2009.

(iii) The ULF EM anomaly was continuously recorded from

29 March 2009 up to 2 April 2009.

We point out that despite fairly abundant circumstantial

evidence, pre-seismic EM signals have not been adequately

accepted as real physical quantities. Many of the problems of

fundamental importance in seismo-EM signals are unsolved.

Thus, the question naturally arises as to whether the recorded

anomalies were seismogenic or not.

We stress that the experimental arrangement affords us the

possibility of determining not only whether or not a single

kHz, MHz, or ULF EM anomaly is pre-seismic in itself, but

also whether a combination of such kHz, MHz, and ULF

anomalies can be characterized as pre-seismic. Some key

open questions are the following.

(i) How can we recognize an EM observation as a pre-

seismic one? We wonder whether necessary and suffi-

cient criteria have been established that permit the char-

acterization of an EM observation as a precursor.

(ii) How can we link an individual EM precursor with a dis-

tinctive stage of the EQ preparation process?

(iii) How can we identify precursory symptoms in EM ob-

servations that indicate that the occurrence of the EQ is

unavoidable?

Here we shall study the possible seismogenic origin of

the anomalies recorded prior to the L’Aquila EQ within the

frame work of these key questions.

Recent studies have provided us with relevant experi-

ence (e.g., Kapiris et al., 2004; Contoyiannis et al., 2005,

2008; Papadimitriou et al., 2008; Eftaxias et al., 2006, 2007,

2009a). This experience affords us the possibility of verify-

ing the results of the present study by comparing it with the

results of previous ones.

Here, in Part 1, we present our procedure for answering

key question (i) above. This procedure applies to both the

kHz and MHz anomalies, but for now we restrict our study

to the kHz anomaly. In Part II we focus on the MHz and ULF

EM anomalies and key questions (ii) and (iii).

Our approach. An anomaly in a recorded time series is

defined as a deviation from normal (background) behaviour.

In order to develop a quantitative identification of EM pre-

cursors, concepts of entropy and tools of information theory

are used in order to identify statistical patterns. It is expected

that a significant change in the statistical pattern represents

a deviation from normal behaviour, revealing the presence

of an anomaly. Symbolic dynamics provides a rigorous way

of looking at “real” dynamics. First, we attempt a symbolic

analysis of experimental data in terms of Shannon n-block

entropy, Shannon n-block entropy per letter, conditional en-

tropy, entropy of the source, and T -entropy. It is well-known

that Shannon entropy works best in dealing with systems

composed of subsystems which can access all the available

phase space and which are either independent or interact via

short-range forces. For systems exhibiting long-range cor-

relations, memory, or fractal properties, Tsallis’ entropy be-

comes the most appropriate mathematical tool (Tsallis, 1988,

2009). A central property of the EQ preparation process is

the possible occurrence of coherent large-scale collective be-

haviour with a very rich structure, resulting from repeated
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nonlinear interactions among the constituents of the system

(Sornette, 1999). Consequently, Tsallis entropy is an appro-

priate tool for investigating the launch of an EM precursor.

The results show that all the techniques based on symbolic

dynamics clearly discriminate the recorded kHz anomalies

from the background: they are characterized by a signifi-

cantly lower complexity (or higher organization).

For purpose of comparison we also analyze the data by

means of Approximate Entropy (ApEn), which refers just to

the raw data. This analysis verifies the results of symbolic

dynamics.

Fractal spectral analysis offers additional information con-

cerning signal/noise discrimination by doing two things. (i)

It shows that the candidate kHz precursor follows the frac-

tional Brownian motion (fBm)-model while, on the contrary,

the background follows the 1/f-noise model. (ii) It implies

that the candidate kHz precursor has persistent behaviour.

The existence of persistency in the candidate precursor is

confirmed by R/S analysis, while the conclusion that the

anomaly follows the persistent fBm-model is verified by De-

trended Fluctuation Analysis.

The abrupt simultaneous appearance of both high orga-

nization and persistency in a launched kHz anomaly im-

plies that the underlying fracto-electromagnetic process is

governed by a positive feedback mechanism (Sammis and

Sornette, 2002). Such a mechanism is consistent with the

anomaly’s being a candidate precursor.

The paper is organized as follows. Section 2 briefly de-

scribes the configuration of the Zante station. It also presents

the candidate ULF, kHz and MHz EM precursors. Section 3

refers to theoretical background of the present study. More

precisely, it introduces the idea of symbolic dynamics and

provides a brief overview of (Shannon-like) n-block entropy,

differential or conditional entropy, entropy of the source

or limit entropy, and Kolmogorov-Sinai entropy, nonexten-

sive Tsallis entropy, T -entropy, approximate entropy, fractal

spectral analysis, R/S analysis, and fractal detrended analy-

sis. In Sect. 4 all the aforementioned methods of analysis are

applied to the data. Section 5 discusses the results in terms of

the theory of complex systems. Finally, Sect. 6 summarizes

and concludes the paper.

2 Data presentation

Since 1994, a station has been functioning at a mountainous

site of Zante island (37.76◦ N–20.76◦ E) in the Ionian Sea

(western Greece) with the following configuration: (i) six

loop antennas detecting the three components (EW, NS, and

vertical) of the variations of the magnetic field at 3 kHz and

10 kHz respectively; (ii) two vertical λ/2 electric dipole an-

tennas detecting the electric field variations at 41 and 54 MHz

respectively, and (iii) two Short Thin Wire Antennas (STWA)

of 100 m length each, lying on the Earth’s surface, detecting

ultra low frequency (ULF) (<1 Hz) anomalies in the EW and

Fig. 1. Critical excerpts of the 41 MHz electric field strength time

series on 26 March 2009 (upper panel) and 2 April 2009 (lower

panel), respectively. The behaviour of the EM fluctuations included

in each time interval is analogous to a continuous (second order)

phase transition. The vertical axis shows the output of sensor (in

mV) that measures the electric field.

NS directions respectively. The 3 kHz, 10 kHz, 41 MHz, and

54 MHz were selected in order to minimize the effects of the

man-made noise in the mountainous area of Zante. All the

EM time-series were sampled once per second, i.e sampling

frequency 1 Hz. The distance between the Zante station and

the epicentre of the L’Aquila EQ is approximately 800 km.

A sequence of MHz, kHz and ULF EM anomalies were

observed one after the other before the L’Aquila EQ, as fol-

lows.

2.1 MHz EM anomalies

EM anomalies were simultaneously recorded at 41 MHz and

54 MHz on 26 March 2009 and 2 April 2009. Figure 1

shows excerpts of the recorded anomalies by the 41 MHz

electric dipole. In Part 2 we will show that the excerpts of

the recorded MHz EM emission presented in Fig. 1 may be

described in analogy with a thermal continuous (second or-

der) phase transition (Eftaxias et al., 2009b).
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Fig. 2. (a) We observed the presence of a sequence of strong EM

impulsive bursts at 10 kHz on 4 April 2009. (b) These anomalies

were launched during a quiescent period in the detection of EM

disturbances in the kHz band. A segment from the EM background

(N) and three excerpts of the emerged strong kHz EM activity (B1,

B2, B3) from this time series are indicated. The vertical axis shows

the output of sensor (in mV) that measures the magnetic field.

2.2 kHz EM anomalies

A sequence of strong multi-peaked EM bursts, with sharp

onsets and ends, were simultaneously recorded by the 3 kHz

and 10 kHz loop antennas on 4 April 2009. Figure 2a shows

the EM anomalies recorded by the 10 kHz (E-W) loop an-

tenna. These anomalies were launched over a quiescent

period concerning the detection of EM disturbances at the

kHz frequency band (Fig. 2b). Figure 3 depicts magnified

images of the excerpts N, B1, B2, and B3 that are shown in

Fig. 2a.

2.3 ULF EM anomaly

The daily pattern of the ULF recordings during the normal

period, i.e., far from the EQ occurrence, follows a rather pe-

riodical variation which is characterized by the existence of

a clear minimum during the day time (Fig. 4). One finds

a clear alteration of the normal daily profile as the shock

approaches. The ULF EM anomaly continuously appeared

from 29 March 2009 up to 2 April 2009. The curve returns

to its normal shape on 7 April 2009. In Part 2 we will show

that this anomaly may be originated in seismo-ionospheric

anomalous states which produce changes on EM wave prop-

agation. Importantly, based on very low frequency (kHz) ra-

dio sounding, Biagi et al. (2009) and Rozhnoi et al. (2009)

have observed ionospheric perturbations in the time interval

2–8 days before the L’Aquila EQ.

We note that all of the recorded EM anomalies we report

here have been obtained during a quiet period in terms of

magnetic storm, solar flares and atmospheric activity. In ad-

dition, the consecutive appearance of ULF, MHz and kHz

Fig. 3. Magnified images of the excerpts N, B1, B2, and B3 that are

shown in Fig. 2.

EM anomalies in a time interval of a few days prior to the

L’Aquila EQ occurrence excludes the possibility that they

were man-made.

3 Theoretical background

In this section we briefly introduce concepts of entropy and

tools of information theory which will be used in the present

study.

3.1 Fundamentals of symbolic dynamics

For the scale of completeness and for later use, we compile

here the basic points of symbolic dynamics. Symbolic time

series analysis is a useful tool for modelling and characteri-

zation of nonlinear dynamical systems (Voss et al., 1996). It

provides a rigorous way of looking at “real” dynamics with

finite precision (Hao, 1989, 1991; Kitchens, 1998; Kara-

manos and Nicolis, 1999). Briefly, it is a way of coarse-

graining or simplifying the description.

The basic idea is quite simple. One divides the phase

space into a finite number of partitions and labels each parti-

tion with a symbol (e.g. a letter from some alphabet). In-

stead of representing the trajectories by infinite sequences

of numbers-iterates from a discrete map or sampled points

along the trajectories of a continuous flow, one watches the

alteration of symbols. Of course, in so doing one loses an

amount of detailed information, but some of the invariant,

robust properties of the dynamics may be kept, e.g. periodic-

ity, symmetry, or the chaotic nature of an orbit (Hao, 1991).

In the framework of symbolic dynamics, time series are

transformed into a series of symbols by using an appro-

priate partition which results in relatively few symbols.

After symbolization, the next step is the construction of

“symbol sequences” (“words” in the language symbolic

dynamics) from the symbol series by collecting groups of

symbols together in temporal order.

Nat. Hazards Earth Syst. Sci., 9, 1953–1971, 2009 www.nat-hazards-earth-syst-sci.net/9/1953/2009/
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Fig. 4. The time series of the ULF electric field strength, as recorded

by the STWA sensors. The vertical axis shows the output of sensor

(in mV) that measures the electric field.

To be more precise, the simplest possible coarse-graining

of a time series is given by choosing a threshold C (usu-

ally the mean value of the data considered) and assign-

ing the symbols “1” and “0” to the signal, depending on

whether it is above or below the threshold (binary partition).

Thus, we generate a symbolic time series from a 2-letter

(λ=2) alphabet (0, 1), e.g. 0110100110010110.... We usually

read this symbolic sequence in terms of distinct consecutive

“blocks” (words) of length n = 2. In this case one obtains

01/10/10/01/10/01/01/10/.... We call this reading proce-

dure “lumping”.

The number of all possible kinds of words is λn=22=4,

namely 00, 01, 10, 11. The required probabilities for the es-

timation of an entropy, p00, p01, p10, p11 are the fractions

of the blocks (words) 00, 01, 10, 11 in the symbolic time se-

ries, namely, 0, 4/16, 4/16, and 0, correspondingly. Based on

these probabilities we can estimate, for example, the proba-

bilistic entropy measure HS introduced by Shannon (1948),

HS = −
∑

pi lnpi (1)

where pi are the probabilities associated with the micro-

scopic configurations.

Various tools of information theory and entropy concepts

are used to identify statistical patterns in the symbolic se-

quences, onto which the dynamics of the original system un-

der analysis has been projected. For detection of an anomaly,

it suffices that a detectable change in the pattern represents a

deviation of the system from nominal behaviour (Graben and

Kurths, 2003). Recent published work has reported novel

methods for detection of anomalies in complex dynamical

systems, which rely on symbolic time series analysis. En-

tropies depending on the word-frequency distribution in sym-

bolic sequences are of special interest, extending Shannon’s

classical definition of the entropy and providing a link be-

tween dynamical systems and information theory. These en-

tropies take a large/small value if there are many/few kinds

of patterns, i.e. they decrease while the organization of pat-

terns is increasing. In this way, these entropies can measure

the complexity of a signal.

It is important to note that one cannot find an optimum

organization or complexity measure (Kurths et al., 1995).

We think that a combination of some such quantities which

refer to different aspects, such as structural or dynamical

properties, is the most promising way. In this way sev-

eral well-known techniques have been applied to extract EM

precursors hidden in kHz EM time series.

3.2 The concept of dynamical (Shannon-like)

n-block entropies

Block entropies, depending on the word-frequency distribu-

tion, are of special interest, extending Shannon’s classical

definition of the entropy of a single state to the entropy of a

succession of states (Nicolis and Gaspard, 1994).

Symbolic sequences, {A1...An...AL}, are composed

of letters from an alphabet consisting of λ letters

{A(1),A(2)...A(λ)}. An English text for example, is written

on an alphabet consisting of 26 letters {A,B,C...X,Y,Z}.

A word of length n<L, {A1...An}, is defined by a sub-

string of length n taken from {A1...An...AL}. The total num-

ber of different words of length n which exists in the alphabet

is

Nλn = λn.

We specify that the symbolic sequence is to be read in terms

of distinct consecutive “blocks” (words) of length n,

...A1...An
︸ ︷︷ ︸

B1

An+1...A2n
︸ ︷︷ ︸

B2

...Ajn+1...A(j+1)n
︸ ︷︷ ︸

Bj+1

... (2)

As stated previously, we call this reading procedure lump-

ing. Gliding is the reading of the symbolic sequence using

a moving frame. It has been suggested that, at least in some

cases, the entropy analysis by lumping is much more sen-

sitive than classical entropy analysis (gliding) (Karamanos,

2000, 2001).

The probability p(n)(A1,...,An) of occurrence of a block

A1...An is defined by the fraction,

No. of blocks, A1...An, encountered when lumping

total No. of blocks
(3)

starting from the beginning of the sequence.

The following quantities characterize the information con-

tent of the symbolic sequence (Khinchin, 1957; Ebeling and

Nicolis, 1992).

3.2.1 The Shannon n-block entropy

Following Shannon’s approach (Shannon, 1948) the n-block

entropy, H(n), is given by

H(n) = −
∑

(A1,...,An)

p(n)(A1,...,An) · lnp(n)(A1,...,An). (4)

The entropy H(n) is a measure of uncertainty and gives the

average amount of information necessary to predict a sub-

sequence of length n.
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3.2.2 The Shannon n-block entropy per letter

From the Shannon n-block entropy we derive the n-block

entropy per letter

h(n) =
H(n)

n
. (5)

This entropy may be interpreted as the average uncertainty

per letter of an n-block.

3.2.3 The conditional entropy

From the Shannon n-block entropies we derive the condi-

tional (dynamic) entropies by the definition

h(n) = H(n+1)−H(n). (6)

The conditional entropy h(n) measures the uncertainty of

predicting a state one step into the future, provided a history

of the preceding n states.

Predictability is measured by conditional entropies. For

Bernoulli sequences we have the maximal uncertainty

h(n) = log(λ). (7)

Therefore we define the difference

rn = log(λ)−h(n) (8)

as the average predictability of the state following a mea-

sured n-trajectory. In other words, predictability is the infor-

mation we get by exploration of the next state in comparison

to the available knowledge.

We use, in most cases, λ as the base of the logarithms.

Using this base the maximal uncertainty/predictability is one

(Ebeling, 1997).

In general our expectation is that any long-range memory

decreases the conditional entropies and improves our chances

for prediction.

(iv) The entropy of the source or limit entropy

A quantity of particular interest is the entropy of the

source, defined as

h = lim
n→∞

h(n) = lim
n→∞

h(n) (9)

It is the average amount of information necessary to pre-

dict the next symbol when being informed about the complete

pre-history of the system.

The limit entropy h is the discrete analog of Kolmogorov-

Sinai entropy. Since positive Kolmogorov-Sinai entropy im-

plies the existence of a positive Lyapunov exponent, it is an

important measure of chaos.

3.3 Principles of non-extensive Tsallis entropy

In the Introduction we explained why physical systems that

are characterized by long-range interactions or long-term

memories, or are of a multi-fractal nature, are best described

by a generalized statistical-mechanical formalism proposed

by Tsallis (1988, 2009). More precisely, inspired by multi-

fractals concepts, he introduced an entropic expression char-

acterized by an index q which leads to non-extensive statis-

tics (1988, 2009):

Sq = k
1

q −1

(

1−

W∑

i=1

p
q
i

)

, (10)

where pi are probabilities associated with the microscopic

configurations, W is their total number, q is a real number

and k is Boltzmann’s constant.

The entropic index q describes the deviation of Tsallis en-

tropy from the standard Boltzmann-Gibbs one. Indeed, using

p
(q−1)
i =e(q−1)ln(pi )∼1+(q−1)ln(pi) in the limit q→1, we

recover the usual Boltzmann-Gibbs entropy

S1 = −k

W∑

i=1

pi ln(pi). (11)

The entropic index q characterizes the degree of non-

extensivity reflected in the following pseudo-additivity rule:

Sq(A+B) = Sq(A)+Sq(B)+
1−q

k
Sq(A)Sq(B). (12)

For subsystems that have special probability correlations,

extensivity

SB−G = SB−G(A)+SB−G(B) (13)

is not valid for SB−G, but may occur for Sq with a particular

value of the index q. Such systems are sometimes referred to

as non-extensive (Tsallis, 1988, 2009).

The cases q>1 and q<1, correspond to sub-additivity, or

super-additivity, respectively. We may think of q as a bias-

parameter: q<1 privileges rare events, while q>1 privileges

prominent events (Zunino et al., 2008).

We clarify that the parameter q itself is not a measure of

the complexity of the system but measures the degree of non-

extensivity of the system. It is the time variations of the

Tsallis entropy for a given q, (Sq ), that quantify the dynamic

changes of the complexity of the system. Lower Sq values

characterize the portions of the signal with lower complex-

ity.

In terms of symbolic dynamics the Tsallis entropy for the

word length n is (Kalimeri et al., 2008):

Sq(n) = k
1

q −1

(

1−
∑

(A1,A2,...,An)

[p(n)A1,A2,...,An ]
q

)

. (14)

3.4 T -entropy of a string

T -entropy is a novel grammar-based complexity/information

measure defined for finite strings of symbols (Ebeling et al.,

2001; Tichener et al., 2005). It is a weighted count of the

number of production steps required to construct a string
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from its alphabet. Briefly, it is based on the intellectual econ-

omy one makes when rewriting a string according to some

rules.

An example of an actual calculation of the T -complexity

for a finite string is given by Ebeling et al. (2001). We briefly

describe how the T -complexity is computed for finite strings.

The T -complexity of a string is defined by the use of one re-

cursive hierarchical pattern copying (RHPC) algorithm. It

computes the effective number of T -augmentation steps re-

quired to generate the string. The T -complexity may thus be

computed effectively from any string and the resultant value

is unique.

The string x(n) is parsed to derive constituent patterns

pi∈A+ and associated copy-exponents ki∈N+,i=1,2,...,q,

where q∈N+ satisfying:

x = p
kq
q p

kq−1

q−1 ...p
ki

i ...p
k1

1 α0, α0 ∈ A. (15)

Each pattern pi is further constrained to satisfy:

pi = p
mi,i−1

i−1 p
mi,i−2

i−2 ...p
mi,j

j ...p
mi,1

1 αi, (16)

αi∈A and = 0 ≤ mi,j ≤ kj . (17)

The T -complexity CT (x(n)) is defined in terms of the

copy-exponents ki :

CT (x(n)) =

q∑

i

ln(ki +1). (18)

One may verify that CT (x(n)) is minimal for a string com-

prising a single repeating character.

The T -information IT (x(n)) of the string x(n) is defined

as the inverse logarithmic integral, li−1, of the T -complexity

divided by a scaling constant ln2:

IT (x(n)) = li−1

(
CT (x(n))

ln2

)

. (19)

In the limit n→∞ we have that IT (x(n))≤ln(#An).

The form of the right-hand side may be recognizable as

the maximum possible n-block entropy of Shannon’s defi-

nition. The Naperian logarithm implicitly gives to the T -

information the units of nats. IT (x(n)) is the T -information

of string x(n). The average T -information rate per symbol,

referred to here as the average T -entropy of x(n) and denoted

by hT (x(n)), is defined along similar lines,

hT (x(n)) =
IT (x(n))

n
(nats/symbol). (20)

3.5 Approximate entropy

Related to time series analysis, the approximate entropy,

ApEn, provides a measure of the degree of irregularity or

randomness within a series of data (of length N ). ApEn was

pioneered by Pincus as a measure of system complexity (Pin-

cus, 1991). It was introduced as a quantification of regularity

in relatively short and noisy data. It is rooted in the work of

Grassberger and Procaccia (1983) and has been widely ap-

plied to biological systems (Pincus and Goldberger, 1994;

Pincus and Singer, 1996, and references therein).

The approximate entropy examines time series for similar

epochs: more similar and more frequent epochs lead to lower

values of ApEn.

For a qualitative point of view, given N points, the ApEn-

like statistics is approximately equal to the negative loga-

rithm of the conditional probability that two sequences that

are similar for m points remain similar, that is, within a tol-

erance r , at the next point. Smaller ApEn-values indicate a

greater chance that a set of data will be followed by sim-

ilar data (regularity), thus, smaller values indicate greater

regularity. Conversely, a greater value for ApEn signifies

a lesser chance of similar data being repeated (irregularity),

hence, greater values convey more disorder, randomness and

system complexity. Thus a low/high value of ApEn re-

flects a high/low degree of regularity. Notably, ApEn de-

tects changes in underlying episodic behaviour not reflected

in peak occurrences or amplitudes (Pincus and Keefe, 1992).

The following is a short description of the calculation of

ApEn. A more comprehensive description of ApEn may be

found in (Pincus, 1991; Pincus and Goldberger, 1994; Pincus

and Singer, 1996).

Given any sequence of data points u(i) from i=1 to N , it

is possible to define vector sequences x(i), which consists of

length m and are made up of consecutive u(i), specifically

defined by the following:

x(i)= (u[i],u[i +1],...,u[i +m−1]). (21)

In order to estimate the frequency that vectors x(i) repeat

themselves throughout the data set within a tolerance r , the

distance d(x[i],x[j ]) is defined as the maximum difference

between the scalar components x(i) and x(j). Explicitly,

two vectors x(i) and x(j) are “similar” within the tolerance

or filter r , namely d(x[i],x[j ])≤r , if the difference between

any two values for u(i) and u(j) within runs of length m

does not exceed r (i.e. |u(i+k)−u(j +k)| ≤ r for 0≤k≤m).

Subsequently, the correlation sum of vector x(i) is

Cm
i (r) =

[number of j such that d(x[i],x[j ]) ≤ r]

(N −m+1)
,

where j ≤ (N −m+1).

The Cm
i (r) values measure, within a tolerance r , the reg-

ularity (frequency) of patterns similar to a given one of win-

dow length m. The parameter r acts like a filter value: within

resolution r , the numerator count the number of vectors that

are approximately the same as a given vector x(i). The quan-

tity Cm
i (r) is called the correlation sum because it quantifies

the summed (or global) correlation of vector x(i) with all

other vectors.
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Taking the natural logarithm of Cm
i (r), the mean logarith-

mic correlation sum of all vectors is defined as:

8m(r) =
∑

i

lnCm
i (r)/(N −m+1) (22)

where
∑

i is a sum from i = 1 to (N −m+ 1). 8m(r) is

a measure of the prevalence of repetitive patterns of length

m within the filter r . Briefly, 8m(r) represents the average

frequency of all the m-point patterns in the sequence remain

close to each other.

Finally, approximate entropy, or ApEn(m,r,N), is de-

fined as the natural logarithm of the relative prevalence of

repetitive patterns of length m as compared with those of

length m+1:

ApEn(m,r,N) = 8m(r)−8m+1(r). (23)

Thus, ApEn(m,r,N) measures the logarithmic frequency

that similar runs (within the filter r) of length m also remain

similar when the length of the run is increased by 1. Small

values of ApEn indicate regularity, given that increasing run

length m by 1 does not decrease the value of 8m(r) sig-

nificantly (i.e., regularity connotes that 8m[r] ≈ 8m+1[r]).

ApEn(m,r,N) is expressed as a difference, but in essence it

represents a ratio; note that 8m[r] is a logarithm of the aver-

aged Cm
i (r), and the ratio of logarithms is equivalent to their

difference.

In summary, ApEn is a “regularity statistics” that quanti-

fies the unpredictability of fluctuations in a time series. The

presence of repetitive patterns of fluctuation in a time series

renders it more predictable than a time series in which such

patterns are absent. A time series containing many repetitive

patterns has a relatively small ApEn; a less predictable (i.e.,

more complex) process has a higher ApEn.

3.6 Fractal spectral analysis

It is well known that during the complex process of EQ

preparation, linkages between space and time produce char-

acteristic fractal structures. It is expected that these fractal

structures are included in signals rooted in the EQ genera-

tion process.

If a time series is a temporal fractal then a power-law of

the form S(f ) ∝ f −β is obeyed, with S(f ) the power spec-

tral density and f the frequency. The spectral scaling expo-

nent β is a measure of the strength of time correlations. The

goodness of the power law fit to a time series is represented

by a linear correlation coefficient, r .

Our attention is directed to whether distinct changes in

the scaling exponent β emerge in kHz EM bursts. For this

purpose, we applied the wavelet analysis technique to derive

the coefficients of its power spectrum. The wavelet trans-

form provides a representation of the signal in both the time

and frequency domains. In contrast to the Fourier transform,

which provides a description of the overall regularity of sig-

nals, the wavelet transform identifies the temporal evolution

of various frequencies in a time-frequency plane that indi-

cates the frequency content of a signal a given time. The

decomposition pattern of the time-frequency plane is deter-

mined by the choice of basis functions. In the present study,

we used the continuous wavelet transform with the Morlet

wavelet as basis function. The results were checked for con-

sistency using the Paul and DOG mother functions (Torrence

and Compo, 1998).

3.7 Rescaled Range Analysis: the Hurst exponent

The Rescaled Range Analysis (R/S), which was introduced

by Hurst (1951), attempts to find patterns that might repeat in

the future. There are two main variables used in this method,

the range of the data (as measured by the highest and lowest

values in the time period) and the standard deviation of the

data.

Hurst, in his analysis, first transformed the natural records

in time X(N) = x(1),x(2),...,x(N), into a new variable

y(n,N), the so-called accumulated departure of the natural

record in time in a given year n(n = 1,2,...N), from the av-

erage, < x(n), over a period of N years. The transformation

follows the formula

y(n,N) =

n∑

i=1

(x(i)−〈x〉) (24)

Then, he introduced the rescaled range

R/S =
R(N)

S(N)
(25)

in which the range R(N) is defined as a distance between the

minimum and maximum value of y by

R(N) = ymax −ymin (26)

and the standard deviation S(N) by

S(N) =

√
√
√
√

1

N

N∑

i=1

[y(i)−〈x〉]2 (27)

R/S is expected to show a power-law dependence on the

bin size n:

R(n)/S(n)∼ nH , (28)

where H is the Hurst exponent.

3.8 Detrended Fluctuation Analysis

Often experimental data are affected by non-stationary be-

havior, and strong trends in the data can lead to a false de-

tection of long-range correlations if the results are not care-

fully interpreted. Detrended Fluctuation Analysis (DFA),

proposed by Peng et al. (1993, 1994, and 1995) and based

on random walk theory, is a well-established method for de-

termining the scaling behaviour of noisy data in the presence

of trends without knowing their origin and shape.

Nat. Hazards Earth Syst. Sci., 9, 1953–1971, 2009 www.nat-hazards-earth-syst-sci.net/9/1953/2009/



K. Eftaxias et al.: Characterizing ULF, kHZ and MHz EM anomalies 1961

We briefly introduce the DFA method, which involves the

following six steps.

(i) We consider a time series i = 1,...,N of length N . In

most applications, the index i will correspond to the time of

measurements. We are interested in the correlation of the

values xi and xi+k for different time lags, i.e. correlations

over different time scales k. In the first step, we determine

the integrated profile

y(k) =

k∑

i=1

(x(i)−〈x〉),i = 1,...,N (29)

where 〈...〉 denotes the mean.

(ii) The integrated signal y(k) is divided into non-

overlapping bins of equal length n.

(iii) In each bin of length n, we fit y(k), using a polynomial

function of order l, which represents the trend in that box. We

usually use a linear fit. The y coordinate of the fit line in each

box is denoted by yn(k).

(iv) The integrated signal y(k) is detrended by subtracting

the local trend yn(k). Then we define the detrended time

series for bins of duration n, by yn(k) = y(k)−yn(k).

(v) For a given bin size n, the root-mean-square (rms) fluc-

tuations for this integrated and detrended signal is calculated:

F(n) =

√
√
√
√

1

N

N∑

k=1

{y(k)−n(k)}2 (30)

(vi) The aforementioned computation is repeated for a

broad range of scales box sizes (n) to provide a relationship

between F(n) and the box size n.

A power-law relation between the average root-mean

square fluctuation F(n) and the bin size n indicates the pres-

ence of scaling:

F(n) ∼ nα (31)

The scaling exponent α quantifies the strength of the long-

range power-law correlations in the time series.

4 Application to the data

In this section, we apply all the methods described in section

3 to the kHz EM time series under study.

4.1 Dynamical characteristics of pre-seismic kHz EM

activity in terms of block entropies

The upper panel in Fig. 5 shows the entropies obtained by

lumping. The lower panel depicts the entropies estimated by

gliding. We mentioned that lumping is the reading of the

symbolic sequence by taking portions, as opposed to gliding

where one has essentially a moving frame. We conclude that

both methods of reading lead to consistent results.

Fig. 5. The Shannon n-block entropy H(n) (a), Shannon n-block

entropy per letter H(n)/n (b), conditional entropy H(n+1)−H(n)

(c), and Kolmogorov entropy h/ln2 (d) in the background noise

(N) and the three candidate precursory EM bursts B1, B2, B3 for

lumping (upper panel) and gliding (lower panel). All these symbolic

entropies, for either reading technique, show a significant drop of

complexity in the EM bursts compared to the noise.

4.1.1 The Shannon n-block entropy

Figure 5a depict the Shannon n-block entropy, H(n), as a

function of the word length n for the time windows N, B1,

B2, and B3 (see Fig. 3). We observe that the noise N is char-

acterized by significantly larger H(n)-values.

This finding means that the average amount of information

necessary to predict a sub-sequence of length n is larger in

the noise than in the bursts B1, B2, and B3 is.

4.1.2 The Shannon n-block entropy per letter

Figure 5b show that the average uncertainty per letter of an

n-block is larger in the noise than in the bursts B1, B2, and

B3 is.
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4.1.3 The conditional entropy

Figsure 5c illustrate the conditional entropies, h(n), as a func-

tion of the word length n for the excerpts under study. The

noise N has significantly higher h(n)-values.

This result means that the uncertainty of predicting one

step in the future, provided a history of the present state and

the previous n-1 states, is higher in the case of noise N or, in

terms of predictability, the average predictability of the state

following after a measured n-trajectory is higher in the bursts

B1, B2, and B3. We recall that any long-range memory de-

creases the conditional entropies and improves the chances

for predictions.

4.1.4 The entropy of the source

One important conjecture, due essentially to Ebeling and

Nicolis (1992), is that the most general (asymptotic) scaling

of the block entropies takes the form

H(n) = e+nh+gnµ0(lnn)µ1 (32)

where e and g are constants and µ0 and µ1 are constant ex-

ponents.

Because of the rather linear scaling observed in Fig. 5a, we

approximate the former equation by the simple linear relation

H(n) = e+nh (33)

With this approximation, the slops of the lines in Fig. 5a

can be considered as the entropy of the source, which is the

discrete analog of the Kolmogorov-Sinai entropy. Since the

source entropy lies between zero and ln2 we can express it as

a percentage by multiplying by (100/ln2).

Figure 5a (upper panel) shows that there is a clear dis-

tinction of the values of the slopes, leading to a significant

difference in the corresponding Kolmogorov-Sinai entropies

(Fig. 5d, upper panel).

Now lets focus on the entropies estimated by gliding

(Fig. 5, lower panel). In this lower panel we show the

Kolmogorov-Sinai entropy (Fig. 5d, solid columns) esti-

mated by:

(i) The slope of H(n) versus n. The associated values

of Kolmogorov-Sinai entropy are shown by the solid

columns in Fig. 5d.

(ii) Using the relation

h = lim
n→∞

h(n) (34)

via the asymptotic behaviour of the Shannon n-block

entropy per letter depicted in Fig. 5b. The corre-

sponding Kolmogorov-Sinai-entropy values are shown

in Fig. 5d by the dotted columns. For both estimates we

observe a systematic drop of the entropy of the source

in the bursts B1, B2 and B3.

The observed behaviour implies that the average amount

of information necessary to predict the next symbol, when

being informed about the complete pre-history of the sys-

tem, significantly decreases in the emerged candidate kHz

EM precursor with respect to the noise.

The question arises as to whether the observed asymptotic

linear scaling in Figs. 5a is a law of nature. This is an open

problem.

Brief conclusion. The various block entropies, which

quantify dynamic aspects of a time series in a statistical man-

ner, can recognize and discriminate the emerged strong EM

precursors from the background noise. They suggest that the

memory (or compressibility) in the bursts B1, B2, and B3 is

significantly larger in comparison to that of the noise N.

4.2 Dynamical characteristics of pre-seismic kHz EM

activity in terms of Tsallis entropy

Tsallis entropies are computed using the technique of lump-

ing for binary partition (with the mean value as threshold)

and block (word) length n = 2. A detailed calculation of

Tsallis entropies by means of symbolic dynamics is given

in Kalimeri et al. (2008).

As Tsallis (1988) has pointed out, the results depend upon

the entropic index q and it is expected that, in every spe-

cific case, better discrimination is achieved with appropriate

ranges of values of q. The appropriate choice of this param-

eter remains an open problem which we will focus on here.

Recently, Sotolongo-Costa and Posadas (2004) introduced

a model for EQ dynamics rooted in a nonextensive frame-

work starting from first principles. They obtained the fol-

lowing analytic expression for the distribution of EQ magni-

tudes:

log(N(m >))= logN +

(
2−q

1−q

)

×

log
[

1+α(q −1)×(2−q)(1−q)/(q−2)102m
]

(35)

where N is the total number of EQs, N(m >) the number

of EQs with magnitude larger than m, and m ≈ log(ε). This

is not a trivial result, and incorporates the characteristics of

nonextensivity into the magnitude distribution of EQs. The

parameter α is the constant of proportionality between the

EQ energy and the size of fragment, r . Vilar et al. (2007)

have revised the fragment-asperity interaction model intro-

duced by Sotolongo-Costa and Posadas by considering a dif-

ferent definition for mean values in the context of Tsallis

nonextensive statistics and introducing a new scale between

the EQ energy and the size of fragments.

Sotolongo-Costa and Posadas (2004), Silva et al. (2006)

and Vilar et al. (2007) successfully tested the viability of this

distribution function with data in various different areas. The

associated nonextensive parameter found to be distributed in

a narrow range from 1.60 to 1.71.
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Notice, we have shown (Papadimitriou et al., 2008) that

the above mentioned nonextensive models also describe the

sequence of pre-seismic kHz EM fluctuations detected prior

to the Athens EQ (M = 5.9) of 7 September 1999. The as-

sociated parameter q is 1.80. In Part 2 of this contribution

(Eftaxias et al., 2009b) we will show that the recorded kHz

EM fluctuations prior to the L’Aquila EQ can also be de-

scribed by the revised nonextensive fragment-asperity inter-

action model (Silva et al., 2006, with a q-value of 1.82.

It is very interesting to observe the similarity in the q-

values for all the groupings of EQs used, as well as for the

precursory sequences of kHz EM bursts associated with the

activation of the Athens and L’Aquila faults. This finding is

in full agreement with the well documented self-affine nature

of faulting and fracture.

Based on the concepts discussed above, we estimate the

Tsallis entropies, with a q-value of 1.8. Figure 6 shows that

the Tsallis entropies in the emerged strong EM bursts drop to

lower values in comparison to that of the noise. This suggests

that in the noise there are many kinds of patterns, while in the

bursts there are fewer patterns.

Figure 7b compares the Tsallis and Shannon entropies for

the excerpts under study. Both entropies give comparable re-

sults and clearly discriminate the anomalies from the noise.

However, the Shannon entropy makes no connection with the

possible physical mechanism involved. The Tsallis entropies

at least allow for the possible effects of long-range interac-

tion, long-time memories or multi-fractals.

4.3 Dynamical characteristics of pre-seismic kHz EM

activity in terms of T -entropy

Figure 8 shows that the average T -entropies in the emerged

kHz EM activity dramatically drop to lower values.

This experimental finding indicates that a significantly

lower number of production steps are required in order to

construct the string from its alphabet into the emerged strong

EM bursts: the bursts are characterized by a considerably

lower complexity in comparison to that of the normal epoch

(EM background).

Brief conclusion. All the tools we have used here, rooted

in the notion of symbolic dynamics, discriminate and distin-

guish in a sensitive way the kHz EM anomalies from the EM

background. All the methods we have applied lead to the

conclusion that the kHz EM bursts that emerged a few tens

of hours prior to the L’Aquila EQ are characterized by a sig-

nificantly lower complexity (or higher organization, higher

predictability, lower uncertainty, and higher compressibility)

with respect to that of the EM background (noise).

We consider whether other tools, referring only to the raw

data and not to corresponding symbolic sequences, also lead

to this conclusion. An answer is given in the following sec-

tion, where we analyze the data by means of approximate

entropy.

Fig. 6. The normalized Tsallis entropy has significantly lower val-

ues in the candidate EM precursors B1, B2, and B3 in comparison

to that of the noise N. We conclude that the bursts B1, B2, and B3

are characterized by higher organization compared to the noise N.
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Fig. 7. For reasons of comparison, we present the values of ApEn,

the Hurst exponent estimated by R/S analysis, and Tsallis entropy

and Shannon entropy for B1, B2, B3 and N.

4.4 Dynamical characteristics of pre-seismic kHz EM

activity in terms of approximate entropy

Figure 7a shows that the approximate entropy in the three

emerged kHz EM bursts prior to the L’Aquila EQ clearly

drops to lower values in comparison to that of the noise.

The above mentioned result suggests that the candidate

kHz EM precursors are governed by the presence of repeti-

tive patterns, which render them more predictable than noise

in which such repetitive patterns are absent. Thus, the ap-

plication of approximate entropy verifies the conclusions ex-

tracted by the tools of symbolic dynamics.

In order to extract more and perhaps different information

that may be hidden in the recorded kHz EM anomaly, we

shall study the data in terms of fractal spectral analysis in the

next section.

4.5 Dynamical characteristics of pre-seismic kHz EM

activity in terms of fractal spectral analysis

The power spectral densities were estimated using a moving

window of 256 samples and an overlap of 255 samples. The

spectral parameters r and β were calculated for each window.

Figure 9 shows that in the strong kHz EM bursts which

emerged on 4 April 2009, the coefficient r takes values very

close to 1, i.e., the fit to the power-law is excellent. This is

a strong indicator of the fractal character of the underlying

processes and structures.

The β exponent takes on high values, i.e. between 2 and 3,

in the strong EM fluctuations. This fact implies the follow-

ing:

(i) The EM bursts have long-range temporal correlations,

i.e. strong memory: the current value of the precursory

signal is correlated not only with its most recent values

but also with its long-term history in a scale-invariant,

Fig. 8. Values of normalized T -entropy for time intervals A and

B (upper and lower panels, respectively). Time intervals A and B

are defined in Fig. 6. In the case of bursts we observe that less

production steps are required in order to construct the string from

its alphabet.

fractal manner. In short, the data indicate an underling

mechanism of high organization. Such a mechanism is

compatible with the last stage of EQ generation.

(ii) The spectrum manifests more power at lower frequen-

cies than at high frequencies. The enhancement of lower

frequency power physically reveals a predominance of

larger fracture events. This footprint is also in harmony

with the final step of EQ preparation.

(iii) Two classes of signal have been widely used to model

stochastic fractal time series, fractional Gaussian (fGn)

and fractional Brownian motion (fBm) (Heneghan and

McDarby, 2000). For the case of the fGn-model the

scaling exponent β lies between −1 and 1, while

the fBm regime is indicated by β values from 1 to

3 (Heneghan and McDarby, 2000). The β expo-

nent successfully distinguishes the candidate precursory
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Fig. 9. From top to bottom are shown the 10 kHz time series, spectral exponents β, linear correlation coefficients r , and the wavelet power

spectrum from 12:00:00 3 April 2009 to 12:00:00 5 April 2009, correspondingly. The red dashed line in the β plot marks the transition

between anti-persistent and persistent behavior.

activities from the EM noise. Indeed, the β values in the

EM background are between 1 and 2 indicating that the

time profile of the EM time series during the quiet peri-

ods is qualitatively analogous to the fGn class. On the

contrary, the β values in the candidate EM precursors

are between 2 and 3, suggesting that the profile of the

time series associated with the candidate precursors is

qualitatively analogous to the fBm class.

Let’s look at the implications of these results.

(i) Theoretical and laboratory experiments support the con-

sideration that both temporal and spatial activity can be

described as different cuts in the same underlying frac-

tal (Maslov et al., 1994; Ponomarev et al., 1997). A

time series of a major historical event could have both

temporal and spatial correlations.

(ii) It has been pointed out that fracture surfaces can be

represented by self-affine fractional Brownian surfaces

over a wide range (Huang and Turcotte, 1988).

Statements (i) and (ii) lead to the hypothesis that the fBm-

type profile of the precursory EM time series reflects the slip-

ping of two rough, rigid Brownian profiles one over the other

that led to the L’Aquila EQ nucleation. In Part 2 of this pa-

per this consideration is investigated in detail (Eftaxias et al.,

2009b).

The β exponent is related to the Hurst exponent H (Hurst,

1951) by the formula (Turcotte, 1997):

β = 2H +1 (36)

with 0<H<1 (1<β<3) for the fractional Brownian motion

(fBm) model (Heneghan and McDarby, 2000). The expo-

nent H characterizes the persistent/anti-persistent properties

of the signal.

The range 0.5<H<1 (2<β<3) indicates persistency,

which means that if the amplitude of the fluctuations in-

creases in a time interval it is likely to continue increasing

in the next interval. We recall that we found β values in

the candidate EM precursors to lie between 2 and 3. The

H values are close to 0.7 in the strong segments of the kHz

EM activity. This means that their EM fluctuations are posi-

tively correlated or persistent, which suggests that the under-

lying dynamics is governed by a positive feedback mecha-

nism. External influences would then tend to lead the system

out of equilibrium (Telesca and Lasaponara, 2006). The sys-

tem acquires a self-regulating character and, to a great extent,

the property of irreversibility, one of the important compo-

nents of prediction reliability (Morgounov, 2001). Sammis

and Sornette (2002) have recently presented the most impor-

tant positive feedback mechanisms.

Remark: the H exponent also reveals the “roughness”

of the time series. We draw attention to the fact that the
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H values in the strong kHz EM fluctuations are close to the

value 0.7. Fracture surfaces were found to be self-affine

over a wide range of length scales (Mandelbrot, 1982). The

Hurst exponent H∼0.75 has been interpreted as a univer-

sal indicator of surface roughness, weakly dependent on the

nature of the material and on the failure mode (Lopez and

Schmittbuhl, 1998; Hansen and Schmittbuhl, 2003; Ponson

et al., 2006). So, the roughness of the temporal profile of

strong pre-seismic kHz anomalies that emerged prior to the

L’Aquila EQ reflects the universal spatial roughness of frac-

ture surfaces. In Part 2 we especially focus on this crucial

point.

Hurst (1951) proposed the R/S method in order to identify,

through the H exponent, whether the dynamics is persistent,

anti-persistent or uncorrelated. We consider whether the R/S

method verifies the values of the H exponent estimated by

fractal spectral analysis.

4.6 Dynamical characteristics of pre-seismic kHz EM

activity in terms of R/S analysis

Figure 7a shows that the R/S technique applied directly to the

raw data may be of use in distinguishing “candidate patho-

logical” from “healthy” data sets in terms of the H expo-

nent. The “healthy” data (EM background) are characterized

by antipersistency. In contrast, the “candidate pathological”

data sets are characterized by strong persistency.

We emphasize, that the H exponents derived from the re-

lation β=2H+1, follow quite nicely those estimated by the

R/S analysis. Notice, the relation β=2H+1 is valid for the

fBm-model. The observed consistency supports the hypoth-

esis that the candidate EM precursors follow the persistent

fBm-model. In the next section we examine whether the DFA

analysis verifies or not the former hypothesis.

4.7 Dynamical characteristics of pre-seismic kHz EM

activity in terms of DFA analysis

We fit the experimental time series by the function F(n) ∼

nα . In a logF(n)− logn representation this function is a line

with slope α. We note that the scaling exponent α is not

always constant (independent of scale) and crossovers often

exist, i.e., the value of α differs for long and short time scales.

In order to examine the probable existence of crossover be-

haviour, both the short-term and long-term scaling exponents

α1 and α2 were included in the fits for the noise N and the

bursts B1, B2, and B3.

Following Peng et al. (1995), we show in Fig. 10 the scat-

ter plot of scaling exponents α1 and α2. The behaviour of

these two exponents clearly separates the EM noise from

candidate EM precursors. The three bursts are character-

ized by much larger α1 and α2 values. More precisely, in

the noise the two exponents have values close to 1 indicat-

ing an underlying 1/f -type noise, whereas the three bursts

0.9 1 1.1 1.2 1.3 1.4 1.5
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Fig. 10. The scatter plot of scaling exponents α1 and α2 clearly

separates the EM noise N (denoted by a star) from candidate EM

precursors B1 (square), B2 (triangle), and B3 (circle). In the noise

the two exponents have values close to 1, indicative of an under-

lying 1/f -type noise. In contrast, the three bursts show exponents

between 1.3 and 1.5, fairly close to that of fBm (α2∼1.5).

have both exponents fairly close (1.5) to that of a fBm-model

(Peng et al., 1995).

This finding: (i) supports the conclusion that kHz EM

impulsive fluctuations are governed by strong long-range

power-law correlations; (ii) indicates an underlying positive

feedback mechanism, which, under external influences, has

the propensity to lead the system out of equilibrium; (iii) ver-

ifies that the strong kHz activity follows the persistent fBm-

model.

Notice, the DFA-analysis shows that the candidate EM

precursor do not exhibit a clear crossover in scaling be-

haviour. Indeed, both the α1 and α2 exponents have values

pretty close to that (1.5) of a persistent fBm-model.

5 View of candidate precursory patterns in terms of

complexity theory

The field of study of complex systems holds that the dynam-

ics of complex systems is founded on universal principles

that may be used to describe disparate problems ranging from

particle physics to the economies of societies (Stanley, 1999,

2000; Stanley et al., 2000; Vicsek, 2001, 2002).

The study of complex system in a unified framework

has become recognized in recent years as a new scientific

discipline, the ultimate of interdisciplinary fields. For ex-

ample, de Arcangelis et al. (2006) presented evidence for

universality in solar flares and EQ occurrences. Picoli et

al. (2007) reported similarities between the dynamics of

geomagnetic signals and heartbeat intervals. Kossobokov

and Keilis-Borok (2000) have explored similarities of mul-

tiple fracturing on a neutron star and on the Earth, in-

cluding power-law energy distributions, clustering, and the
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symptoms of transition to a major rupture. Sornette and

Helmstetter (2002) have presented occurrence of finite-time

singularities in epidemics, of rupture earthquakes and star-

quakes. Kapiris et al. (2005) and Eftaxias et al. (2006) re-

ported similarities in precursory features in seismic shocks

and epileptic seizures. Osario et al. (2007) have suggested

that an epileptic seizure could be considered as a quake of

the brain. Fukuda et al. (2003) reported similarities between

communication dynamics on the Internet and the automatic

nervous system. A common denominator of the various ex-

amples of crises is that they emerge from a collective pro-

cess: the repetitive actions of interactive nonlinear influences

on many scales lead to a progressive built-up of large-scale

correlations and ultimately to the crisis.

Breaking down the barriers between physics, chemistry,

biology and the so-called soft sciences of psychology, soci-

ology, economics, and anthropology, this approach explores

the universal physical and mathematical principles that gov-

ern the emergence of complex systems from simple compo-

nents (Bar-Yan, 1997; Sornette, 2002; Rundle et al., 1995).

One of the issues that we will need to address is whether

the crucial pathological symptoms of low complexity and

persistency included in the candidate kHz EM precursor also

characterize other catastrophic events, albeit different in na-

ture.

We investigate the probable presence of such pathological

symptoms in epileptic seizures, magnetic storms and solar

flares.

5.1 Similarities between the dynamics of magnetic

storms and EM precursors

Intense magnetic storms are undoubtedly among the most

important phenomena in space physics, involving the solar

wind, the magnetosphere the ionosphere, the atmosphere and

occasionally the Earth’s crust (Daglis, 2001; Daglis et al.,

2003). The Dst index is a geomagnetic index which mon-

itors the world-wide magnetic storm level. It is based on

the average value of the horizontal component of the Earth’s

magnetic field measured hourly at four near-equatorial geo-

magnetic observatories.

Recently, Balasis et al. (2006, 2008, 2009a, b) studied Dst

data which included intense magnetic storms, as well as a

number of smaller events. They have applied the majority of

the techniques used in the present work to these events. The

results show that all the crucial features extracted from the

kHz EM activity in the present paper, including (e.g., long-

range correlations, persistency, and the appearance of fluc-

tuations at all scales with a simultaneous predominance of

large events), are also contained in intense magnetic storms.

We suggested that the development of both intense magnetic

storms and kHz EM precursors can study within the unified

framework of Intermittent Criticality. Intermittent Criticality

has a more general character than classical Self-Organized

Criticality, since it implies the predictability of impending

catastrophic events.

In Part 2 of this paper more quantitative evidence of

universal behaviour between the kHz EM precursors under

study and intense magnetic storms is presented. We empha-

size that, based on previously detected kHz EM pre-seismic

anomalies, we have already shown that kHz EM precursors

and magnetic storms share common scale-invariant natures

(Papadimitriou et al., 2008; Balasis et al., 2009a). The rele-

vant analysis is based on the nonextensive model of EQ dy-

namics presented by Sotolongo-Costa and Posadas (2004).

5.2 Similarities between epileptic seizures and

EM precursors

Theoretical studies suggest that EQs and neural-seizure dy-

namics should have many similar features and could be ana-

lyzed within similar mathematical frameworks (Hopfield et

al., 1994; Rudle et al., 1995; Herz and Hopfield, 1995).

Recently, we studied the temporal evolution of the fractal

spectral characteristics in: (i) electroencephalograph (EEG)

recordings in rat experiments, including epileptic shocks,

and (ii) pre-seismic kHz EM time series detected prior to

the Athens EQ. We showed that similar distinctive symp-

toms (including high organization and persistency) appear

in epileptic seizures and kHz EM precursors (Kapiris et al.,

2005; Eftaxias et al., 2006). We proposed that these two ob-

servations also find a unifying explanation within “Intermit-

tent Criticality”.

5.3 Similarities between solar flares and EM precursors

In a recent work Koulouras et al. (2009) investigated MHz

EM radiations rooted in solar flares. A comparative study

show that these emissions include all the precursory features

extracted from the kHz EM emission under study via frac-

tal spectral analysis. Significantly, the solar activity follows

the “persistent fBm model”, while persistent behaviour is

not found in quiet Sun observations. Schwarz et al. (1998)

showed that the time profiles of solar mm-wave bursts are

qualitatively analogous to fBm-model, showing persistent

behaviour. De Arcangelis et al. (2006) presented evidence

for universality in solar flares and EQ occurrences, while Pa-

padimitriou et al. (2008) reported indications for universality

in kHz pre-seismic EM activities and EQs.

In a forthcoming paper we report a successful test of the

universal hypothesis on solar flares and the kHz EM anoma-

lies detected prior to the L’Aquila EQ. The relevant analysis

is based in part on the nonextensive model of EQ dynamics

presented by (Solotongo-Costa and Posadas, 2004).

In summary, the kHz EM precursors under study, epileptic

seizures, solar flares, and magnetic storms contain “univer-

sal” symptoms in their internal structural patterns. These

symptoms clearly distinguish these catastrophic events from

the corresponding normal state.
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6 Discussion and conclusions

A sequence of ULF, kHz and MHz EM anomalies were

recorded at Zante station, from 26 March 2009 up to 4 April

2009, prior to the L’Aquila EQ that occurred on 6 April 2009.

“Are there credible earthquake precursors?” is a question de-

bated in the science community. This paper focuses on the

question of whether the recorded anomalies are seismogenic

or not. Our approach is based on the following key open

questions: (i) How can we recognize an EM observation as

a pre-seismic one? (ii) How can we link an individual EM

precursor with a distinctive stage of the EQ preparation pro-

cess? (iii) How can we identify precursory symptoms in EM

observations that indicate that the occurrence of the EQ is

unavoidable? We study the possible seismogenic origin of

the anomalies recorded prior to the L’Aquila EQ within the

frame work of these open questions. The entire procedure

unfolds in two consecutive parts. Here, in Part 1 of our con-

tribution, we restrict ourselves to the study of the kHz EM

anomalies, which have a crucial role in addressing the above

three challenges. More precisely, we focus on the question

whether the recorded kHz EM anomalies are seismogenic or

not.

In order to develop a quantitative identification of a kHz

EM anomaly, measures of entropy and tools of information

theory have been used to identify statistical patterns; a sig-

nificant change of these patterns represents a deviation from

normal behaviour, revealing the presence of an anomaly. In

principle one cannot find an optimum tool for anomaly detec-

tion. A combination of various tools seems to be the best way

to get a more precise characterization of a recorded anomaly

as pre-seismic.

We analyzed the kHz EM time series in terms of Shannon

n-block entropy, Shannon n-block entropy per letter, condi-

tional entropy, entropy of the source, nonextensive Tsallis

entropy and T -entropy, which refer to a transformed sym-

bolic sequence. For the purpose of comparison we applied

one more tool, approximate entropy which refers directly to

the raw data. We conclude that all the methods applied are

sensitive in distinguishing the launched candidate kHz radi-

ation from the normal background state (noise). the kHz EM

anomalies are characterized by a considerably lower com-

plexity (higher organization, lower uncertainty, higher pre-

dictability and higher compressibility) in comparison to that

of the background.

The spectral fractal technique further distinguishes the

candidate kHz EM precursor from the background. The for-

mer follows the persistent fractional Brownian motion model,

while the noise the fractional Gaussian noise model. We ver-

ify the existence of persistency in the anomalies by R/S anal-

ysis. The indication that the candidate precursor follows the

fractional Brownian motion model is verified by means of

detrended fractal analysis.

The fact that the launch of anomalies from the normal state

is combined by a simultaneous appearance of: (i) a signifi-

cantly higher level of organization, and (ii) persistency, indi-

cates that the process, in which the anomalies are rooted, is

governed by a positive feedback mechanism. Such a mecha-

nism is consistent with the anomalies being a candidate pre-

cursor. The existence of a positive feedback mechanism ex-

presses a positive circular causality that acts as a growth-

generating phenomenon and therefore drives unstable pat-

terns (Telesca and Lasaponara, 2006). It can be the result

of stress transfer from damaged to intact entities or it can re-

sult from the effect of damage in lowering the local elastic

stiffness (Sammis and Sornette, 2002). The appearance of

the property of irreversibility in a probable precursor is one

of the important components of predictive capability (Mor-

gounov, 2001).

In this field of research, the reproducibility of results is

desirable. Significantly, the catastrophic symptoms found in

the candidate kHz EM precursors under study are also found

in rather well established kHz EM precursors associated with

significant EQ that recently occurred in Greece (e.g. Kapiris

et al., 2004; Contoyiannis et al., 2005; Eftaxias et al., 2007;

2008; Kalimeri et al., 2008).

The study of complex systems holds that the dynamics

found in such systems is rooted in universal principles that

may be used to describe disparate problems ranging from

particle physics to the economies of societies. Evidence has

shown that high organization and persistency footprints are

also included in other catastrophic events, such as neural-

seizures, magnetic storms, and solar flares. Part 2 of this

communication further supports the hypothesis that such

phenomena can be investigated in a unified framework (Ef-

taxias et al., 2009b).

We consider whether the clear discrimination of the kHz

EM anomalies that emerged from the normal state prior to

the L’Aquila EQ, even based on a combination of (i) a rather

strong statistical analysis and (ii) striking similarities with

other complex catastrophic events, leads reliably to the con-

clusion that these anomalies were rooted in the preparation

of the L’Aquila EQ.

Our view is that such an analysis by itself cannot establish

an anomaly as a precursor. It likely offers necessary but not

sufficient criteria in order to recognize an EM anomaly as

pre-seismic.

Much remains to be done to tackle precursors systemat-

ically. It is a difficult task to rebate two events separated

in time, such as a candidate EM precursor and the ensuing

EQ. It remains to be established whether different approaches

could provide additional information that would allow one

to accept the seismogenic origin of the recorded kHz EM

anomalies and link these to a corresponding stage of EQ gen-

eration.

In Part 2 (Eftaxias et al., 2009b), based on the strategy

described in the Introduction, we complete our study. We

support the seismogenic origin of the detected kHz-MHz EM

anomalies. In particular, we focus on the questions: How

can we link an individual EM precursor with a distinctive
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stage of the EQ preparation process? How can we identify

precursory symptoms in EM observations that indicate that

the occurrence of the EQ is unavoidable? We will argue that:

(i) The kHz EM anomalies were associated with the

fracture of asperities that were distributed along the

L’Aquila fault sustaining the system. The aspect of self-

affine nature of faulting and fracture is widely docu-

mented from both, field observations and laboratory ex-

periments, and studies of failure precursors on the small

(laboratory) and large (earthquake) scale. It is expected

that this fundamental aspect bridges the regional seis-

micity with activation of a single fault, on one hand,

and the activation of a single fault with laboratory seis-

micity, on the other hand. We verify this prospect in

terms of the detected kHz EM precursor. We show that

the activation the L’Aquila is a reduced self-affine im-

age of the regional seismicity and a magnified image of

laboratory seismicity. Furthermore, ample experimental

and theoretical evidence especially support the hypoth-

esis that natural rock surfaces can be represented by a

fractional Brownian motion scheme over a wide range.

We show that the universal fractional Brownian motion

spatial profile of the L’Aquila fault has been mirrored

into the candidate precursory kHz EM activity. We paid

attention to the fact that the surface roughness has been

interpreted as a universal indicator of surface fracture,

weakly dependent on the nature of the material and on

the failure mode. We conclude that the universal spa-

tial roughness of fracture surfaces pretty coincides with

the roughness of the temporal profile of the kHz EM

anomaly that emerged a few tens of hours prior to the

L’Aquila EQ.

(ii) The MHz EM anomalies could be triggered by frac-

tures in the highly disordered system that surrounded

the backbone of asperities of the activated fault. Frac-

ture process in heterogeneous materials is characterized

by antipersistency, and can be described in analogy with

a thermal continuous second order phase transition. We

show that these two crucial features are mirrored on the

MHz EM candidate precursor.

(iii) We clearly state that the detection of a MHz EM pre-

cursor does not mean that the occurrence of EQ is un-

avoidable The abrupt emergence of kHz EM emissions

indicate the fracture of asperities.
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