Math. Ann. 282, 349-351 (1988)

Corrigendum

Unfoldings in Knot Theory

Walter Neumann¹ and Lee Rudolph²

¹ University of Maryland, College Park, MD 20742, USA, and Ohio State University, Columbus, OH 43210, USA ² Clark University, Worcester, MA 01610, USA

In [N-R] the link at infinity of a hypersurface $V \in \mathbb{C}^N$ defined by a "good" polynomial map $f: \mathbb{C}^N \to \mathbb{C}$ was used as an extended example. f was called "good" if it had only isolated singularities and it was claimed that the link at infinity then always has a "Milnor fibration." This is incorrect (although we have found it to be a common misconception). To correct it, the definition of "good" must be modified as follows.

Definition. The fiber $f^{-1}(c)$ of f is regular ("ordinaire" in [S]) if there exists a neighborhood D of c in \mathbb{C} such that $f|f^{-1}(D):f^{-1}(D)\to D$ is a locally trivial C^{∞} fibration and it is regular at infinity if there exists a neighborhood D of c in \mathbb{C} and a compact set K in \mathbb{C}^N such that $f|f^{-1}(D)-K:f^{-1}(D)-K\to D$ is a locally trivial C^{∞} fibration. The polynomial map $f:\mathbb{C}^N\to\mathbb{C}$ is good if every fiber is regular at infinity. "Regular" is equivalent to "regular at infinity and non-singular." Whether f is good or not, it has at most finitely many irregular fibers. We denote by $\mathscr{K}(f,\infty)$ the link at infinity of any fiber which is regular at infinity; up to isotopy this is independent of the choice of the fiber.

Example. $f(x, y) = x^2y + x$ is a polynomial with no singularities. The fiber $f^{-1}(0)$ is not regular at infinity since it has three components at infinity while nearby fibers only have two. $\mathscr{K}(f, \infty)$ is the 2-component link consisting of an unknot together with a (2, -1) cable on it (so both components are unknotted and they have mutual linking 2); it is not a fiberable link.

With the above correction to terminology (synonyms to "good" – e.g. "having only isolated singularities" – must also be replaced), the results of [N-R] remain ^{CO}rrect, but the proof of 6.1 and the statement and proof of 7.1 need modification. From now on we assume ambient dimension N=2. The statements are:

6.1. Theorem (Converse to Milnor Fibration). If N = 2 and $\mathcal{K}(f, \infty)$ is a fiberable link then f is good.

7.1. Lemma (A Knot at Infinity is Good). If $V \in \mathbb{C}^2$ is a fiber of $f: \mathbb{C}^2 \to \mathbb{C}$ and is reduced and its link at infinity is a knot (V is connected at infinity) then f is good.

We first give a careful construction of the link at infinity, extracted from [N]. Call a manifold pair (Σ, L) an abstract link at infinity for (\mathbb{C}^2, V) if $(\Sigma, L) \times [0, \infty)$ is diffeomorphic to a neighborhood of infinity for the pair (\mathbb{C}^2, V) . Any two abstract links at infinity for (\mathbb{C}^2, V) are diffeomorphic, since they are homotopy equivalent as pairs and one can therefore apply Waldhausen [W].

Let *n* be the degree of *f*. By a linear change of coordinates $w = (x, y) \in \mathbb{C}^2$ we can put f(x, y) in the form

$$f(x, y) = x^{n} + f_{n-1}(y)x^{n-1} + \dots + f_{0}(y)$$

Since f has only finitely many irregular fibers, their images are all contained in the interior of some sufficiently large disk $D^2(s) = \{z \in \mathbb{C} \mid |z| \le s\}$ about the origin $0 \in \mathbb{C}$. Consider the polydisk $D(q,r) = \{(x, y) \in \mathbb{C}^2 \mid |x| \le q, |y| \le r\}$.

Lemma. For s as above sufficiently large, r sufficiently large with respect to s, and q sufficiently large with respect to r and s, the fibers $f^{-1}(z)$ for $z \in \partial D^2(s)$ intersect $\partial D(q, r)$ only in the part |x| < q, |y| = r, and do so transversely – in fact, they intersect each line $y = y_0$ with $|y_0| = r$ transversely.

Proof. If, for given r and s, $f^{-1}(D^2(s))$ intersected $\{|x|=q, |y| \le r\}$ non-trivially for arbitrarily large q, then y=0 would be a point at infinity of the fibers $f^{-1}(z)$. This is not so, so for large q, $f^{-1}(D^2(s))$ only meets the other part $\{|x| < q, |y|=r\}$ of $\partial D(q, r)$.

To see the transversality statement, consider f(x, y) - z as a polynomial in x with coefficients in $\mathbb{C}[y, z]$ and form its discriminant $\Delta \in \mathbb{C}[y, z]$ (Δ is a polynomial in the coefficients of f which vanishes if and only if f = 0 has multiple roots). Then the fiber $f^{-1}(z_0)$ is transverse to the line $y = y_0$ if and only if $\Delta(y_0, z_0) \neq 0$. In particular, the fiber $f^{-1}(z_0)$ is regular at infinity if $\Delta(y, z) \neq 0$ for each z close to z_0 and each y of sufficiently large absolute value. But this fails if and only if $z = z_0$ is tangent to $\Delta(y, z)$ at infinity. In homogeneous coordinates (y, z, w) at infinity, this says that z = w = 0 is a point of $\Delta = 0$ and $z = z_0 w$ is a tangent line to $\Delta = 0$ at this point. This can only happen for finitely many z_0 , so we choose our disk $D^2(s)$ to contain these values in its interior. \Box

Now choose q, r, and s, as in the above lemma. Let $D = f^{-1}(D^2(s)) \cap D(q, r)$. Its boundary is piecewise-smooth and decomposes as $\partial D = S \cup E$ with

$$S = \partial D(q, r) \cap f^{-1}(D^2(s)),$$

$$E = D(q, r) \cap \partial (f^{-1}(D^2(s))).$$

f restricts to a fibration of E over a circle, and a typical fiber $F = f^{-1}(z) \cap E$ of f|Esatisfies: the pair $(\partial D, \partial F)$ is an abstract link at infinity for (\mathbb{C}^2, V) (after smoothing the corner along $\partial S = \partial E$). To see that $(\mathbb{C}^2 - \operatorname{int}(D), f^{-1}(z) - \operatorname{int}(F))$ is homeomorphic (diffeomorphic after smoothing corners) to $(\partial D, \partial F) \times [0, \infty)$ as desired, integrate along a suitable smooth vectorfield v on $\mathbb{C}^2 - \operatorname{int}(D)$ which is transversal inward on ∂D , is tangent to the fibers $f^{-1}(z)$ for $|y| \ge r$ and $z \in \partial D^2(s)$, and whose v-derivative satisfies the following for some small ε : $v(|y|^2) \le -1$ when $|y| \ge r - \varepsilon$ and $|f(x, y)| \le s + \varepsilon$, and $v(|f(x, y)|^2) \le -1$ otherwise. Such a vectorfield is easily constructed locally using the lemma, and a partition of unity then does it globally. If f is good, we can choose r sufficiently large that all fibers $f^{-1}(z)$ with $z \in D^2(s)$ are transverse to |y| = r. Then S is equivalent to a disk tubular neighborhood of the link at infinity, so the construction has given the link at infinity with its Milnor fibration.

Proof of 6.1. Suppose f is not good. The lemma implies that for $|y_0| = r$ the intersection $S_0 = \{(x, y) | y = y_0\} \cap f^{-1}(D^2(s))$ is transverse and $f | S_0 : S_0 \to D^2(s)$ is a holomorphic branched cover with no singularities over $\partial D^2(s)$. On the other hand it certainly does have singularities over int $D^2(s)$ (namely, near any fiber which is irregular at infinity). It follows that the inclusion $\partial F \subset S$ is not an isomorphism in homology. As in [N-R], this implies $\mathscr{K}(f, \infty)$ is not fiberable. \Box

Proof of 7.1. By Suzuki [S], the general fiber of f is also connected at infinity, so $\mathcal{K}(f, \infty)$ is a knot. As described in [N-R], it is an iterated torus knot, hence fiberable, so f is good by Theorem 6.1. \Box

References

- [N-R] Neumann, W., Rudolph, L.: Unfoldings in knot theory. Math. Ann. 278, 409-439 (1987)
- [N] Neumann, W.: Complex algebraic plane curves via their links at infinity. Preprint (1988)
- [S] Suzuki, M.: Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l'espace \mathbb{C}^3 . J. Math. Soc. Japan 26, 241–257 (1974)
- [W] Waldhausen, F.: On irreducible 3-manifolds that are sufficiently large. Ann. Math. 87, 56-88 (1968)

Received April 7, 1988