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H. UEDA
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UNICITY THEOREMS FOR MEROMORPHIC OR
ENTIRE FUNCTIONS

By HipEHARU UEDA

1. Let f and g be meromorphic functions. We denote the order of f by p,.
In what follows we use the notation f=a—g=a in the following sense: Z, is a
zero of g—a of order at least v(n) whenever Z, is a zero of f—a of order v(n).
If % is a positive integer or oo, let E(qa, k, f)={z=C:z is a zero of f—a of order
<k}, where C is the complex plane. If a belongs to C=C\U {0}, we denote by
fiy(r, a, f) the number of distinct zeros of order<k of f—a in |z| =7 (each zero
of order=*% is counted only once irrespective of its multiplicity). And we set

Btr, a, pr=] PGS0 0 0) 440, 0, pr1cg 7

0 t

Further we denote by n{’(r, a; f, g) the number of common zeros of order<=# of
f—a and g—a in |z| =7, and we set

) . W .
N, a; f, g):S n$(t, a; f, ©—nu@, a; f, g>dt+né“<0, a:f, @logr.

0 t

In this paper we shall prove some unicity theorems for meromorphic or entire
functions.

2. Gopalakrishna and Bhoosnurmath have proved the following theorem in [1].

THEOREM A. Let f and g be transcendental mervomorphic functions. Assume

that theve exist distinct elements a,, -+, an n C such that E(a,, k., f)=E(a,, k., &)
Sor 1=1, -+, m; where each k, 1s a positive integer or oo with k= - Zky, and
{E}™ satisfies
n ok, ky
e > D

Then f=g.

From Theorem A several consequences including a theorem of Nevanlinna
[4] are deduced.

THEOREM A,. Let f and g be transcendental meromorphic functions. If there
Received November 8, 1979
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458 HIDEHARU UEDA

exist distinct seven elements a;, -+, aq wn C such that E(a,, 1, f)=E(a, 1, g), then
/=g
THEOREM A,. Let f and g be transcendental meromorphic functions. If there

exist distinct six elements a;, -+, a5 in C such that E(a,, 2, f)=F(a,, 2, 9, then

/=g
THEOREM A;. Let f and g be transcendental meromorphic functions. If there

exist distinct five elements ay, -+, a5 in C such that E(a,, p, f)=E(a,, p, &), where
b is a positwe integer=3 or oo, then f=g.

We first remark that the assumption on the number of distinct elements
ay, -, am in C satisfying E(a,, k,, f)=E(a., k., g) cannot be improved in the
above each theorem A, (1=1, 2, 3). This fact is clear in the case of Theorem A,.
In order to see this in the cases of Theorems A, and A, we may consider the
following examples. Set

e=gaw)=|" (L=t rar (n=3, 4.

Then ¢,(w) maps the unit disc onto an equilateral triangle z,z,2,, where z;=g,(1),
zz=0s(w), and z;=¢,(w®), where w is a cubic root of 1. And ¢,(w) maps the unit
disc onto a square z,2,2:;2,, where z;=¢,(1), z2:=¢1), z;=¢.(—1), and 2= (—1).
The inverse function of z=¢,(w) (n=3, 4) can be analytically continued over the
whole plane as a one-valued meromorphic function by Schwarz’s reflection principle
and the resulting function w=j,(z) is doubly periodic. In the case of n=3, we
put a,=1, a,=wo, ¢;=? a,=0 and as=oo. Then all the zeros of f—a, (:=1, 2, 3)
are taken with multiplicity 3. In the case of n=4, we put a,=1, a,=1, a,=—1,
a,=—1, a;=0 and agg=co0. Then all the zeros of f—a, t=1, 2, 3, 4) are taken with
multiplicity 2. Therefore if we set g,=wf; and g,=:-f,, we have E(a,, 2, fy)=
Ea,, 2, g;) =1, ---, 5) and E(a,, 1, f)=E(a,, 1, g,) (2=1, ---6). And it is clear

that 35 d(a,, fi)= 3 3(a,, g)=0 and 333(a,, f)=3 d(a, g)=0.

Secondly we note that in Theorem A, the Nevanlinna deficiencies of fand g
are not taken into consideration. With respect to this point we shall prove

THEOREM 1. Let f and g be transcendental meromorphic functions. Assume
that there exist distinct elements ay, -+, am in C such that E(a,, k., f)=E(a,, k., g)
for 1=1, -« m; where each k, 1S a positwe nteger or o with k= - Zk,, and
the sequence {k;} 7 satisfies

m ok, ky

Ez ki1 ki1

—2=0.

Then the nequality :

_l‘

¢ 35 min @(a,, ), oa, o>+t

1=

-
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mmplies f=g. Especially, 1f the right hand side of (*) 1s equal to zero, “min” 1n
the condition (*) can be replaced by “max”. Further 1f both py and pg are finite,
“6" wn the condition (*) can be replaced by “4” (Valiron deficiency).

From this, we deduce several consequences which include the following three

results.
1° Let f and g be transcendental meromorphic functions. Assume that there

exist distinct six elements ay, -, g in C such that E(a,, 1, f)=F(a,, 1, g) and

3 max (a., /), da,, £)>0.

Then f=g.
2° Let f and g be transcendental meromorphic functions. Assume that there

exist distinct five elements a;, -, a5 in € such that E(a., 2, f)=E(a,, 2, g) and

3 max (3(a, £), 3a., £)>0.

Then f=g.
3° Let f and g be transcendental meromorphic functions. Assume that there

exist distinct five elements a;, -+, a5 in C such that E(a,, 1, /)=E(a,, 1, g) and
3% min (3(a,, £), 3a,, g)>1.
Then f=g.

COROLLARY 1 (of 3°) Let f and g be transcendental entire functions. Assume
that therve exist distinct four complex numbers ay, -, a, such that E(a, 1, /)=
E(aly ]-} g) and

S max (3(a,, /), 8a., g)>0.

1=1

Then f=g. In the case of py, pe<co, “0” in the assumption can be replaced by
“A”.

COROLLARY 2 (of 3°) Let f and g be transcendental entirve functions of
order>1/2. Assume that there exist distinct four complex numbers a,, - a4 Such

that Ea,, 1, f)=E(a,, 1, g). Further assume that all the zeros of f—a; lie on the
negative real axis and that they have a finite exponent of convergence. Then f=g.

Proof of Theorem 1. First suppose that a,, ---, a, are all finite. By the
second fundamental theorem, we have

@1 m=2{T@r, H+T(r, g} éi (M, a,, )+Nr, a., @} +S, H+Sr, g,

where S(r, H=0o(T(r, 1), Str, 2)=o(T(r, g)) as r—co outside a set E of finite linear
measure. For brevity, we put S()=S(r, /)-+S(r, g). Here we use the following
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obvious inequalities :
RN (r, ay, NG, a,, f)
ki1

These inequalities hold also when we replace f by g. Substituting these into (2.1),
we have

NG, a,, [)E

(=1, =+, m).

ky

@2) m={T(r, H+T(r, g)}éi[ b1

(N, a, NN (7, as, 2}

g NG, @y DENG, @ 2} ]+50)

2k, = & . mo ]
kl_l_l 1211\]0 (7’; a, ;f} g)+1§1 kz"l’l

IiA

{N@, a,, /)+Nr, a,, g)}+S5r),

where we used the fact that k,/(k,+1)= - Zkn/(ke+1) and N, (@, a,, /)=
Nki(r: Qs g):Nékﬂ(r’ a ;f’ g)'

Now suppose that f#£g. For a=C, each common zero of f—a and g—aisa
zero of f—g. Since a,, -, a, are all distinct, we have

@3 SNE(, ausf, 9N, O, f—@) ST, f—g)+0L)
<T(r, A+T(, g+0).

From (2.2) and (2.3), we obtain

2}31

(2.4) (m—Z— s

VTG, H+T(r, 2)

<3 WO, @ DG, 0 21450

By the definition of the Nevanlinna deficiency, for any >0, there exists 7, (>0)
such that r=r,implies N(r, a,, /)-+Nr, a,, 8)<(1—d(a,, H+e)T(r, /H+1—d(a, g)
+e)T(r, g) =1, ---, m). Hence we have from (2.4)

2k, 1
ki1 zz=)1 ki1

2 [0y, N)=e)T(r, )+(0(a,, g)—e)T(r, g)
- El{ k,+1

@5) (m—2— )T, NT, &)

f=se.

Here we note that

2% a1 ke N ko
kit 1 Ezki—i—l-(;gzki—i—l) i 220

and the second term of the left hand side of (2.5)=

m—2



UNICITY THEOREMS 461

(2% min @lay, 1), 8., )—me}(T(r, TG, £).

B+l =
Thus as r(e& E)—oo we have
L R T IR e
<§2T1+1 S| 2)—|- kil El min (6(a,, f), 6(a,, g)—me=0.

This inequality contradicts the condition (*). Hence we have f=g.

Suppose now that some a, is co. Then let a be a complex number different
from ay, -+, @n. Then (a;—a)™?, -, (an—a) ' are all distinct and finite. If we
put F=1/(f—a) and G=1/(g—a), we have E(a,, k., /)=E(a,, k,, 99 2E{(a;—a)™?,
k., F)=E((a,—a)™", k., G), and d(a,, f)=0(a;—a)"’, F), 6a,, g)=d(a;—a)", G)
(i=1, -+, m). Hence f and g satisfy the assumptions in Theorem 1. & F and G
satisfy the assumptions in Theorem 1 when we replace a by (a;—a)™'. Thus by
what we have proved above, F=G, that is, f=g.

Next, we consider the case of

k. ky
12:2 ki+1  Ry41

—2=0.

In this case we have

L_ Tt f)

EET0 o = (re& E, »: large enough),

where K is a positive constant (>1) depending only on m. This is clear if f=g.
If f=£=g, we note that the following inequality holds: For any positive number
<1, there exists », (>0) such that r=r, implies

m

(2.6) 2NFO(r, ays f, @ >c{Te, H+Te, g (ree E, 7 large enough).

1=1

If this were not the case, we would have a positive constant 7,<1 and a monotone
increasing sequence {r,} tending to oo as n—oo such that{r.} "E=¢ and

glj\fgkl)(rn’ av; [, )=t {T(rw, )+T(ra, g)}.

Substituting this into (2.2) we would have instead of (2.5),

(-

2ty & 1
2 ) (T DT, )

n (0(ay, f)—e)T(ra, /)+H(0(a, g)—e)T(r,, g
tz us|

=S5(ra).

However, since m—2—22'0k1/(k1+1)—}il(ki+1)‘1>0 in this case, the above in-

equality is absurd. Hence (2.6) holds. From this we obtain



462 HIDEHARU UEDA

(e, ), mTir, 92BN, auif, > (T, H+Tr, @) (= E).

This implies

T T(r, ) < m—z

| h).
p— T 2 (r& E, v: large enough)

Now, in order to see that “min” in (*) can be replaced by “max” in this case,
we may prove that

3% min (3(a,, 1), d(a,, g)=0= 3 max (3(a., £, o(a., £)=0.

=1

Assume that there occur both

3 min (5(a,, f), 8(a,, 2)=0

-
=

and

Mz

max (0(a., 1), 6(a., g)>0.

-
I
-

For example, we may assume that d(a,, f)>0=d(a,;, g). In this case, we have
by (2.5),

m

(Bl .5t 16, pEso+e(S )10 9

(re¢ E, r: large enough).

Taking r (& E) large enough, {}>0 holds. Dividing the both hand sides by
T(r, g), we have
mo ]
fim T, 1) < 67;1 ki1
e T ™ e ) & 1
k41 =1 k1

Since ¢}is arbitrary, this implies

lim -2 T) g

e T(r, g)

which is a contradiction.
Finally we consider the case of

np, k, B
gém+1 m+1ﬁ2’0

and py, pg<co. In this case, we have E=¢, and

. 2k b
m k1+1 kl"i’l .

m
=2
1=1
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Hence, if f#£g, we have by (2.4),

(m—2=- 220, P4TC, ) =8 NG, @ NG, 0, 9)+50)

1 2k,

ki +1

Thus N(r, a,, /)~T(r, f) and N(r, a,, g)~T(r, g) (r—co) (i=1, ---, m). These
imply 4(a,, f)=4(a,, g)=0 (=1, ---, m). This completes the proof.

(TG, N+T(, O +S0)=(m—=2— 2T, N+T(, D +S0).

Proof of Corollaries 1 and 2. From 3°, in this case,
33 min (3(a, /), d(a., €)>0

implies f=g. However, as in the proof of Theorem 1, we can replace “min” by
“max”. And further if p;, p,<oo, we can replace “J” by “4” as in the proof of
Theorem 1. The details will be ommitted.

Now, we shall prove Corollary 2. If p,=co0, we have by the assumption
0(a,, f)=1. Hence from Corollary 1 we have f=g. Let p be the genus of the
canonical product formed with the sequence of zeros of f—a, If 1<p,<co and
p=1, a well known theorem due to Edrei and Fuchs [2] implies d(a,, f)>0.
Hence from Corollary 1 we have f=g. If 1<p,;<cc and p==0, we have d(a,, f)
=1. Hence we again have f=g. If 1/2<p,=1, a theorem of Shea [8] yields
d(a,, f)y=1—sinzp;>0. So if p,<oo, Corollary 1 gives this proof. However if
pg=0o0, then d(a,, g)=1. This also yields f=g by Corollary 1. This completes
the proof.

3. Nevanlinna [4] proved the following result.

THEOREM B. Suppose that f and g are transcendental meromorphic in the
plane and let {a;}t be four distinct elements in C. Then if f=a, = g—a, (1=
1,2, 3 4), f=g, or g=S(f), where S(z) is one of the linear transformations which
fix two elements in {a;}t and permute the other two elements in {a;}1.

In this section, we shall improve the above theorem in the case that fand g
are entire functions. Our results may be stated as follows.

THEOREM 2. Let f and g be non-constant enlire functions such that =02
g=0 and f=122g=1. Further assume that there exists a complex number a
(#0, 1) satisfying E(a, k, /)=E(q, k, g), where k is a positive integer (=2) or co.
Then f and g must satisfy one of the following four relations.

i) f=g (ii) (f——%)(g——%)z% (This occurs only for a=1/2.)

(i) fg=1 (This occurs only for a=-—1.)

iv) (F—W(g—D=1 (This occurs only for a=2.)
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THEOREM 3. Let f and g be non-constant enfirve functions such that f=02
g=0 and f=122g==1. Further suppose that there exists a complex number a (+0, 1)
satisfying f=a—g=a. Then f and g must satisfy one of the follouwng four
relations.

0 f=g

(i) f=e*+a, g=(1—a){l+ae *} (a 18 a non-constant entire function.)

(ili) fg=1 (This occurs only for a=—1.)

(iv) (f—IXg—L=1 (This occurs only for a=2.)

We shall prove Theorems 2 and 3 from the following result.

LeMMA. Define f as (3.1) with two non-constant entire functions f§ and 7.
1—ef
3.1 =
(3. =i
Then 1f f 1s a non-constant entive function, for any complex number a (#0, 1),

T N<Ty a, f)
(3.2) 111;2;" i, ]»[-)\>O,

where E 15 the set of fimte linear measure depending only on f.

Proof. The proof proceeds in two stages. In the first stage, we prove under

the assumptions of the lemma,

— N
(3.3) im0 D gec—10 1)),

T2z m(r, f)
We assume (3.3) to be false for some a (0, 1) and seek a contradiction. This
assumption implies that f has many zeros. And we note that the following in-
equalities hold:

(3.4) o< lim " €0) i milr, €%)
' Tazp mlr, @) T g m(r, @)

To prove the first inequality, we make use of the argument of the impossibility
of Borel’s identity. The detail is as follows. In view of (3.1) we have ef—fe’

+f=1. Put ¢, =¢e?, p,=—f¢" and ¢;=f. Then ¢;+p,+¢,=1, and @+ 5+
=0 (n=1, 2). Further put

1 1 1 / )
0/ 2 03/ s
(3.5) A=\ ¢i/o 0i/0s iles |, A=

04/ 02 05/ 05
07 /@1 08/ 02 O/ s

Assume that 4=0. In this case, we have 4’=0. This implies ¢,=Cqp;+D (C, D:

constants), 1. e., —fe’=Cf+D. Since f is entire, C must vanish. Hence f=-—De¢’

(D+0). This contradicts our assumption. So, we deduce 4z£0. In this case, we
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have from (3.5)
(3.6) pr=ef=4'/4.
Thus
@7 mlr, ef)smr, )Fmlr, 47)+0DZEmlr, 4)+mlr, 4)+N(r, oo, 4).

Here we estimate m(r, 4°) and m(r, 4). From (3.1) we have N(r, 0, /)=N(r, 1, ¢#)
—N(r, 1, N=0. This yields m{r, eH =1 —o())m(r, &) (r& E, r—o0). Hence
m(r, e)=m(r, ef)+mlr, )+ 0D)=2+o()mir, ef) ¢E E, r— o), and mlr, p)=
mlr, f)+mr, e)+0L)Z@+o))mr, ef) v E, r—o0). Thus m(r, 4)=0(og rm
(r, e®)) (r& E, r—o0) and m(r, 4)=0(og rm(r, e?)) (r& E, r —c0). Substituting
these into (3.7) we deduce

(3.8) N(r, oo, H=1—o1))m(r, ef) (r& E, r — c0).

However direct computation of 4 shows that N(r, co, /)=2N(r, 0, f). It follows
from this and (3.8) that 2N(r, 1, e®)=(1—o(1)m(r, ef)+2N(r, 1, ¢"). From this we
easily obtain

— m(r, ) - 1

lim TS
oo =
e m(r, e°) 2

This proves the first inequality of (3.4). Next, to prove the last inequality of
(3.4), assume that this is not the case. Then there exists a sequence {r,}7C
(0, 00)—FE tending to oo such that

m(ry, ef) _
new 1V y, €7)

In view of (3.1) we have

l—a—ef+ae _ F(z)
1—e" T 1—e

Then using a result of Nevanlinna [3, p47], we have
m(rn, eV YSN(r,, 0, e#)+N(ry, oo, e#)+N(r,, 0, F)+S(ra, ¢f)
=Nz, 0, F)+Sra, e®)<(1+o(1))m(r,, ef).  (n— co)

This shows that N, 0, F)=(14+oW))m(r,, /) (n—o0). Hence N(r,, a, f)=
N(rp, 0, F)—N(ry, 1, eN=1+o(1))m(r,, ef) (n—c0). On the other hand, we easily
obtain m(r,, f)=1-+o(1))m(r,, ef) (n— o) from (3.1). Thus

NGy, a, f)

lim =1,

new  M(¥y, )
a contradiction. This proves the last inequality of (3.4).
Next, we observe the following equality :
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]
(3.10) fim €Dy

- R
2 m(r, 1)

By the second fundamental theorem, we have
N, 0, f)

}+N(r, a, [)+N, oo, f)+S{, ).
N, 1, )

m(r, f)é{

Hence by our assumption we deduce
N, 0,F) o Ny L)

lim 2 2 gy N D S
g mlr, ) e m(r, f)
Thus
. N, 0, )—N@, 1, f) .. N 1, ef)—N(@r, 1, -7
1 = =0.
Pt m(r, f) g m(r, ) 0

T&E
However, since m(r, ef)+mlr, e")+ON)=Z(3/2-+0(1))mlr, ef) (r& E, r— o0), we have

By -7
lim N, 1, e")=N(r, 1, e"77) _

. 8
rar m(r, e°)

Therefore (3.10) follows.

Now, from our assumption, (3.9) and (3.4) we deduce (1 —o(1))m{r, e )=<N(r, 0, F)
Z(+o(Wmlr, e +olmlr, =1+o)m(r, e+olm(r, e#))=1+o1)m(r, &) (re&
FE, r —o0). This implies

0.

(3.11) N@r, 0, F)y=(1+o(l)m(r, &) (r&E, r —o0).
Then, in view of (3.9), (3.4), (3.10) and (3.11), we have
m(r, F)=N(r, 0, F)+N(r, oo, F)-+N(r, 1—a, F)—N(r, 0, F)+S(r, F)
=(U-+o0)ntr, VNGr, a, ¢7)=N(r, 0, ¢ 1=} S(r, F)

=1+om(r, eN+1+oL)m(r, ef7)—(1+o(1))mlr, e?77)
+o(m(r, ef)+mlr, e)

=(1+o(W)mlr, &)-+o(mlr, e )+o(mlr, e®)+m(r, &)
=1+o(1)mlr, &) (r&E, r—oc0).

It follows from this and (3.11) that

(3.12) m(r, F)={1+o(1))m(r, €).

On the other hand, we deduce from (3.10) and (3.4)

(3.13) m(r, F)2(1—o)m(r, ae’—ef)=(1—o(1)N(r, 0, ae’—e)
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=1—o(1))N(r, a, efT)=1—o1)ym(r, e*7)
=1—o)m(r, eF)=@2—o)m(r, )  (r&E, r — o0).

(3.12) and (3.13) lead to a contradiction. This proves (3.3). In the second stage,
we prove (3.2). Assume first

J— 8 B

i eT) — (i KT n, er) _
rae m(r, &) e m(rs,, )

In this case, we have m(r,, )=1+o)m{r,, e®) (n—oo), and N, a, )=
(+o(1))mlr,, e?) (n—o0). This implies that

N, a, f)

lim ———+=1.

e mr, f)
Next, assume that

I 8

lim mir, e’) <o

R
Let {z,} be all the roots of f=a with multiplicity=3. Then {z,} are the roots
of F'(z)=e"{ay’— B’ ef 7} =0 with multiplicity=2. Here note that we may assume
B
mir, e”) -,

e ry =%
aE m(r, e')

If not, the above argument shows that 4=0. This implies f=—De’ (D+0). In
this case, it is clear that (3.2) holds. Therefore we assume (3.4). This yields
mir, ef )= m(r, ef)+mlr, €)+00)=(3/2+o()m(r, f) (r& E, r—co) and m(r, ef7)
zmr, e®)—mlr, e+ 0= /2—o())m(r, e®) (r& E, ¥ — o). Hence we have
B14)  mlr, v tmlr, B)=o(m(r, &)+m(r, e®))=o(m(r, e#77)) (r&E, r— o).
Noting (3.14), and applying the second fundamental theorem to G=ay —j’e?7,
we have

(I+oWym(r, GYEN(r, 0, G)+N(r, o0, G)+N(r, 0, f'ef)+S(r, G),
which implies m(r, G)=1+o(INN(, 0, G)=1+o(1)Nr, 0, G) (r& E, r—co). Hence

lim Ny(r, O,GG) —lim Ny(r, 0;9_?) —lim Ny(r, O’ﬁG):O.
r2= m(r, G) ras m(r, €°77) e m(r, e”)

Since m(r, f)=mr, ef)—mlr, e)+01)=(1/2—o(1))mlr, e®), we deduce

i M, 0, G) _
e mlr, f) )

Thus we easily obtain

(3'15) N(T, a, f)Zé—{N(?‘, a, f)—Nl(T: O) G)}:";—]V(?’, a, f)—o(m(7’} f))
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(re E, r—o0),
Substituting (3.15) into (3.3), (3.2) follows. This completes the proof of Lemma.

Proof of Theorem 2. By assumption, we have with two entire functions «
and 8

(3.16) f=etg, [f—1=ef(g—1).

(A) Suppose that ef=c (#0). If f has a zero, ¢c=1. Hence f=g. If f has
no zeros and c+#1, we have f—cg=1—c (#0). Using a result of Niino and
Ozawa [5], we obtain 2=4d(0, f)+0(0, g)=1, a contradiction.

(B) Suppose that ef-*=c¢ (+#0). If c=1, we have f=g. If ¢#1, we have

. f . _éd—c ~ l—ce 7
= d—arre Timo L

3.17)

(7 : a non-constant entire function).

Assume first that a=—c¢/(1—c¢). Then E(a, k, g)=FE(a, k, [)=¢(k=2). Hence
by (3.17) we deduce a=1/(1—c¢). So, we obtain —¢/(1—¢)=1/(1—¢), t.e., c=—1.
Substituting this into (3.17), we deduce

G O o T

Assume next that a#—c/(1—c¢). In this case, /=« has infinitely many simple
roots. Hence we have a=a/{a(l—c)+c} i.e., a=1, a contradiction.
(C) Suppose neither ef nor ¢f-“ are constants. In this case, we have by
(3.16)
1—ef 1—ef
(3.18) f———l_eﬂ_a , §=1 5t

-—a

Using our lemma to f, we have

— N, a, )

i 1 >0.
(3.19) ;g% m(r, f)

Now, let {w,} be all the common roots of f=a and g=a. From (3.18) we
have e*@w =¢f@n =1 Hence

e —Be—w)t
-(ﬂ/(wn)~a/(wn))(z—wn)+ e

This shows that {w,} are the roots of
(3.20) aa’(2)+(1—a)f'(2)=0.

Also let {z,} be all the roots of f=a with multiplicity =3. The argument in
the above lemma shows
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3.21) N(r, {z:})=0(m(r, f)) (r&E, r—o0).
If f bas a zero, we have

mr, ¢f) .,
roe m(r, ef~) T
TEE ’

This implies m(r, e#)=0(m(r, [)) and m(r, ')+ m(r, f)=o(m(r, e®)) (r& E, r—oo).
Hence unless (3.20) is an identity, we combine (3.20) with (3.21) to deduce N(r, a, f)
olm(r, ) (r& E, r—o0), which contradicts (3.19). If (3.20) is an identity, we have

3.22) B)y=a(B(z)—a(z))+C  (C: a constant).

Since fS—a is a non-constant entire function, it is easy to see that ¢ is an
integer, and so, C is an integral multiple of 2zi. Further we note that ¢ #0, 1, —1
by our assumptions.

If ¢=2, we have from (3.1) and (3.22) f=1+ef/?=1+¢%-*, On the other hand,
g=fe ?=e F%(1+ePf')=1-+e 72 Thus (f—1)Xg—1)=1. If a=3,

f:1+eﬁ-a+ e fgla-DB-a
{ g=l—|—e'(ﬂ"“)+ _|_e—<a—1)</i—a) .

If a=£-2,
f=—gmlelBm @ (] 4 pfma L. 4 pGal-n(B-m)

{ gz—eﬂ'“{l—i—eﬂ‘“—i— _|_eua1—1)<,9_a>} .

In these cases, f and g do not satisfy E(a, &, f)=E(a, k, g). Finally we consider
the case that f has no zeros. It follows from (3.1) that

1—e? 5 . . .
W:e (0 : a non-constant entire function), i.e.,

(3.23) @ —pf-atdppf=1,

Using again the result due to Niino and Ozawa, we have ef-***=—1. Hence
f=e’=—e*F=—¢f. On the other hand, g=fe *=—ef *=—¢f Thus fg=1.
This can be occurred in the case of a=—1. This completes the proof of Theorem 2.

Remark 1. The proof of Theorem 3 are essentially contained by the above
proof. So, we omit the proof of Theorem 3.

Remark 2. Theorem 2 does not hold in the case of £=1. For instance, we
may put f=1+4e"+e¥ and g=1+e7"+e¢ ¥, where 7 is a non-constant entire
function. Then if a=3/4, f—a=(e’+1/2)* and g—a=(e7+1/2)®. This shows
that f=02g=0, f=12g=1 and E(qa, 1, f)=E(q, 1, g) (=¢), but it is clear that
f and g do not satisfy any relations (i)-(iv) in Theorem 2.

Remark 3. Combining Corollary 1 with the proof of Theorem 2, we have
the following result.
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THEOREM 2'. Let f and g be non-consltant entire funchtions satisfying the
Sfollowwng conditions (1)-(iii);

(i) 3 fi-limM0el)
cEo ;:ég m(r, f)

(i) f=0=g=0, f=12g=1,

(iii) There exist two distinct complex numbers ay, a; (#0, 1) such that
E(al: 1) f):E(au ]-, g) (7’:1) 2)-

Then f=g.

}>0,

4. Ozawa [7] has proved the following result.

THEOREM C. Let f and g be entire functions of finite non-integral ovder
such that f=022g=0 and f=1—g=1. Then f=g.

In this section, we shall prove the following results.

THEOREM 4. Let f and g be entire functions of non-integral order such that
f=02g=0. Further assume that theve exist two distinct complex numbers a,, dz
(#0) satisfving E(a., k, f)=E(a,, k, g) =1, 2), where k 1s a positive integer
(=2) or co. Then f=g.

THEOREM 5. Let f and g be entire functions of finite non-integral orvder
satisfying the following conditions (1)-(iii);
(i) f=02g=0,

(il) There exist two distinct complex numbers a, a, (+0) such that E(a,, 1, f)
=E(a,, 1, g),

(i) a0, f+0(a,, f)+d(as, £)>0.
Then f=g.

First we remark that the condition (iii) of Theorem 5 cannot be dropped.
Example: f=cos(2)*'%, g=—7F, a,=1, a,=—1. (n: an odd integer =3) Next we
remark that the assumption of non-integrity of o, cannot also be dropped. For
example, we may put f=e® and g=¢7* (a,=1, a,=-1).

The method of proof of the above two theorems is essentially the same, so
we shall prove only Theorem 5.

Proof of Theorem 5. By the assumption (i), we have with a polynomial «
4.1D f=e“g.
Non-integrity of p,, p, and (4.1) imply
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{4.2) pr=pgs>dega (=p).

(A) Assume that p=1. Let {w,} be all the simple roots of f=a,. From
the condition (i) we have a,=e*®nq,, ie, e*¥m=1. Hence N(r, {wa})
=N, 1, e)=(A+oD)mlr, e*)=0(?). On the other hand, a well known theorem
of Borel yields pwo.op, p=p;>p. Thus O(a,, /)=1/2. Inthe same way we have
O(a,, f)=1/2. Here we use the condition (iii). If (0, /)>0, then ©(0, /)>0.
Hence O(a,, /)+6(a, /)+6O, f/)>1. This is impossible. If d(a;, /)>0, the
above argument implies

. _.— N(T, aly f) _i_‘ IV(”; alr f)
Ola,, N=1=lim—" =5 =l—5lim—" )

1 1
:1—‘2—(1—5(01, N> R

Hence 6(a,, /)+6(a,, f)>1. This is impossible.

(B) Assume that p=0. If we put e*=c¢ (#0), f=cg. Suppose first that
E(a,, 1, )=E(a,, 1, @)#¢ for i=1 or 2. In this case we have ¢=1. Hence
f=g. Suppose next E(a, 1, )=FE(a, 1, g)=¢ for i=1,2. In this case, the
same argument as (A) derives a contradiction. This completes the proof of
Theorem 5.
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