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Unidimensional Calibrations and Interpretations of
Composite Traits for Multidimensional Tests
Richard M. Luecht and Timothy R. Miiler

American College Testing

A two-stage process that considers the multi-
dimensionality of tests under the framework of
unidimensional item response theory (IRT) is
described and evaluated. In the first stage, items
are clustered in a multidimensional latent space
with respect to their direction of maximum dis-
crimination. The separate item clusters are
subsequently calibrated using a unidimensional IRT
model to provide item parameter and trait
estimates for composite traits in the context of the
multidimensional trait space. This application is
proposed as a workable compromise to some of

problems that affect the direct use of multi-
dimensional IRT procedures for item calibration
and trait estimation. The findings of a study based
on simulated multidimensional data indicate that
there are identifiable gains in estimation robustness
and score interpretation with almost no sacrifice in
goodness-of-fit using this two-stage approach to
modeling composite latent traits.  Index terms:
item response theory, model fit, multidimensionality,
parameter estimation; model fit; multidimensionality
in IRT; parameter estimation; person fit; reference
composites; trait estimation.

the estimation, indeterminacy, and interpretation

In recent years, there has been a growing concern about the inherent multidimensional nature of
tests. That concern arises from the perspective that the number and type of cognitive or psychological
processes of examinees responding to test items may vary considerably (Ansley & Forsyth, 1985;
Reckase, Carlson, Ackerman, & Spray, 1986). In reaction to that concern, a number of researchers
have proposed multidimensional response-based models. These multidimensional models tend to follow
the parametric forms of some of the more typical unidimensional item response theory (IRT) models.
For example, Reckase (1985) and Reckase & McKinley (1991} proposed a logistic two-parameter
multidimensional item response theory (MIRT) model that characterizes the probability of a correct
response as

119a,d) = [1 + exp(-al8, + d)]"' , )]

where

d; is a scalar location parameter representing the difficulty of the ith item;
a, denotes a vector of item discriminations; and

8, is a vector of latent traits for the jth examinee.

The order of these vectors corresponds to the number of dimensions in the model. Alternative
models also have been proposed (Samejima, 1974; Sympson, 1978). The common conceptual
framework for all of these multidimensional models is that the response surface may span M = 1
dimensions, because the items provide simultaneous or collateral information about one or more
latent traits.

Most existing methods for estimating multidimensional item parameters and examinee traits use
either nonlinear factor analysis or full information factor analysis applied to the covariances or
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tetrachoric correlations derived from a dichotomous data matrix (e.g., Bock & Aiken, 1981; Carlson,
1987; Fraser, 1986; McDonald, 1982; Muraki & Engelhard, 1985; Wilson, Wood, & Gibbons, 1984).
However, despite the development of these MIRT calibration methods, there have been few practical
applications of the theory or its methods.

This lack of MIRT applications arises from a variety of nontrivial problems. For example, there
appears to be little consensus on any ‘‘best’” method(s) for determining and interpreting the dimen-
sionality of the trait space with respect to both psychometric and psychological criteria (e.g., Berger,
1990; Reckase et al., 1986; Stout, 1987, 1990; Way, 1990). This problem is complicated further when
an exploratory approach is used to determine the structure of the latent space. Under exploratory
factor analysis, the dimensionality problem is compounded by the need to resolve issues such as fac-
tor invariance and rotational indeterminacy (e.g., Gorsuch, 1983; McDoenald, 1982).

Recent research has suggested that, for tests of less than 100 items, MIRT models may not be as
capable of discriminating among examinee traits as unidimensional models (e.g., Davey & Hirsch,
1990}. This problem is related, in part, to the increased parameterization of the MIRT models. That
is, the increased dimensionality greatly complicates the identifiability and the estimability of the ad-
ditional structural and incidental parameters (e.g., Holland, 1990; McDonald, 1982).

These types of problems have hindered the development of practical applications involving MIRT
models. In many instances, multidimensionality is ignored completely in favor of applying a less com-
plex unidimensional IRT model. However, this approach conceivably sacrifices information about the
trait levels of examinees and also confounds interpretation of the ensuing latent trait metric. An alter-
native approach to MIRT is suggested here that makes use of unidimensional IRT models in a
multidimensional context. This method is referred to as the composite traits approach.

An Overview of the Composite Traits Approach

The composite traits approach is a two-stage process of test calibration and metric interpretation.
It assumes that the latent structure is known or capable of being confirmed by the data. By taking
this confirmatory approach, issues such as the number of trait dimensions and factor invariance are
at least subject to empirical verification through confirmatory factor analysis (e.g., Dillon & Gold-
stein, 1984; Joreskog & Sorbom, 1986; Kenny, 1979; Muthén, 1983).

In Stage 1, a factor analysis or MIRT analysis is performed on either the matrix of item covariances
or tetrachorics. One advantage of the confirmatory approach is that the number of factors and the
correlation between factors can be constrained to fixed values because the latent structure is assumed
to be known. For convenience, it is assumed that the latent space is orthogonal.

Following the factor analysis or MIRT analysis, the factor loadings of the items (item discrimina-
tions under traditional MIRT analyses) are converted to direction cosines (Reckase, 1985; Reckase &
McKinley, 1991). The use of direction cosines removes any confounding of the item location parameters
with the discriminations and provides an angular measure of the direction of maximum discriminating
power of each item with respect to the latent axes. Those direction cosines are given by

cos(t,,) = G , (2)

M 1%
2
2 G

for M = 1 dimensions, where a,, denctes the factor loading or MIRT discrimination parameter estimate
associated with the mth trait factor.

A hierarchical cluster analysis then is performed on the direction cosine differences to identify
item subsets having similar orientations in the multidimensional latent space. Miller & Hirsch (1990)
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previously demonstrated a successful implementation of this type of cluster analysis of multidimen-
sional item direction cosines. The basic procedure involves the generation of a dissimilarity matrix
of the angular distances between the items in the latent space, represented by the differences between
the direction cosines. A hierarchical cluster analysis then is used to identify the subsets of items that
share a similar direction of maximum discrimination or information in the latent space (Miller &
Hirsch, 1990).

In Stage 2, each cluster or subset of items is calibrated using a unidimensional IRT model. This
process essentially projects a reference composite through each item cluster. This reference composite
becomes the unidimensional latent trait metric axis (Wang, 1986). In a cognitive or psychological
sense, the composite traits being measured by each item cluster may be multidimensional, depending
on the orientation of the reference composite in the latent space. However, in a psychometric sense,
a unidimensional IRT model should fit the data, because the clustered items all provide the maximum
amount of discrimination in the same general direction.

This clustering of items into subsets in terms of their directions of maximum information is a
direct extension of Wang’s (1986) original conception of a single reference composite being fit to
the entire test. That concept is extended here by capitalizing on the direction of maximum informa-
tion for blocks of items, in an effort to minimize the loss of valid collateral information that a given
item theoretically may provide about more than one trait. The orientation of the reference composite
(essentially the mean of the directional cosines for a given item cluster), therefore, provides the meaning
of the trait metric with respect to the a priori latent space. This proposed approach is conceptually
similar to Levine & Drasgow’s (1982} idea of item ‘“blocking’ in an attempt to account for variable
examinee traits throughout a test.

In a factor analytic sense, this two-stage approach is similar to obtaining a common factor solu-
tion, rotated to oblique simple structure. However, the distinguishing features are that: (1) use of the
unidimensional model reduces the number of structural and incidental parameters that are estimated;
(2) the rotation to simple structure is implicit in the procedure and does not depend on multidimensional
structural model constraints; and (3) once the item clusters are formed, the correlation(s) among the
latent axes are no longer of concern.

Rationale for the Empirical Study

One rationale for this study was to empirically test the traditional presumption that ‘‘more com-
plex’’ models are always better. It is tempting to argue that MIRT models should fit multidimensional
data better than unidimensional models. Yet, that theoretical argument ignores several important issues.
For example, the accuracy and stability of empirical item parameter estimates, as well as concerns
about the estimates and interpretation of the latent traits, are also valid criteria for judging the utility
of an approach. In this study, the nature and extent of trade offs with respect to these types of criteria
were evaluated systematically.

The present study was designed to demonstrate that this approach provides advantages over using
MIRT models to estimate multidimensional traits and item operating characteristics. Therefore, a MIRT
model was directly contrasted with a corresponding unidimensional IRT composite traits model ap-
plied to simulated multidimensional data. Results were evaluated in terms of parameter estimation
error and bias, trait estimation issues, and model fit in response pattern predictions.

Method
Data Generation

Simulated dichotomous datasets were generated to conform to an orthogonal two-dimensional latent
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structure comprised of 8, and 6,. Each dataset contained the simulated responses of 2,000 examinees
to 50 test items. The 50 items were distributed equally in two clusters, where each cluster of 25 items
was oriented with respect to an underlying reference composite. That is, each reference composite
denoted the principal direction of item discriminations in the two-dimensional latent space, for the
corresponding 25-item cluster. In addition, three conditions were introduced to represent different
amounts of variation in the within-cluster angular dispersion of the items about the reference
composites.

The two underlying reference composites were oriented, respectively, at 20° and 70° from the 6,
axis. These particular orientations were selected strictly to maintain positive manifold in the response
functions and to sufficiently distinguish the two item clusters in the latent space.

Under the three conditions of within-cluster angular dispersion, the standard deviation (SD) of
o, was varied. (o, denotes the angle from the 6, axis at which each item was most discriminating.)
For the first condition, SD, was set to 0° This condition forced the 25 items in each cluster to be
most discriminating along the corresponding reference composite. The second condition used a within-
cluster SD, of 5° This condition allowed the 25 items in each cluster to vary somewhat from the
preassigned orientation of the reference composite. The final condition set the within-cluster angular
SD at 10° In these last two conditions, the two item clusters could overlap slightly, making the
correspondence of items to reference composites (and clusters) less evident. Because the exact angular
sampling distribution of item vectors was not known, a normal distribution (with mean 0 and sSD,)
was used for sampling the item angles within the two clusters of 25 items.

Given «,,, a multidimensional (MD} three-parameter normal ogive model was used to generate the
simulated dichotomous response data. This normal ogive response model,

P, = Plu; = 1168,,8,5a,,an,d,,c) = ¢, + (1-¢)® (.; A + d) , 3)
is similar to the model in Equation 1, but adds a lower asymptote parameter, ¢,. 4,, is the mth ele-
ment of the item discrimination vector, a, and 4, is item difficulty. For each item, an a,, was ran-
domly sampled from a log normal distribution where Ln(a;,) had a mean of 0.0 and SD of .5. The
complementary second discrimination parameter, a,, was determined in closed form, given the tangent
of the item vector angle. That is, ¢,, = a,tan{c;,). (For angles greater than 45°, the reciprocal of the
tangent of the angle was used, and the a, and a, terms were interchanged.) The d; were sampled from
a standard normal distribution with a mean of 0.0 and sD of .75. These particular values of the first
and second moments of the sampled distributions of MIRT item parameters were selected to corres-
pond with the moments (hyperparameters) of the default prior distributions used by PC-BILOG for
the item discriminations and item difficulties (Mislevy & Bock, 1989; see also Mislevy, 1986). In all
cases, the lower asymptote was fixed at a constant value of 1/6 (ie., ¢, = ¢ = .167).

Item vector plots for the 50 items generated under the 0° 5° and 10° conditions are shown in
Figure 1. The angle of each item vector from either 8 axis denotes the direction of maximum discrimina-
tion (i.e., information). The length of each vector graphically depicts the relative amount of discrimina-
tion in that direction. The distance from the origin to the beginning of each vector denotes the item
difficulty in the direction of maximum discrimination. The two reference composites underlying the
item clusters are shown at 20° and 70° in each vector plot. Figures la through Ic demonstrate how
the increased angular dispersion of the items (the SD, moving from 0° to 10°) potentially confound-
ed the item clustering and, subsequently, the unidimensional (UD) composite 6 calibrations involv-
ing the item projections of information onto the reference composites.

Ten samples of 2,000 8, and 8, values were generated under each condition. The pairs of examinee
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0s were sampled from a bivariate normal distribution (u = [0,0}, £ = [L1], 04... = 0). Given the
MIRT item parameters, the response probability, P,, (Equation 3) was computed for each examinee.
F,; then was compared to a uniform random value P} where 0 < P* < 1. A binary item score of

; = 1 was assigned when B, = P* Otherwise, a score of u;, = 0 was assigned. This procedure,
repeated over examinee samples and item dispersion conditions, provided 30 MD dichotomous datasets.

Item Calibrations, Factor Analyses, and Cluster Analyses

Each of the 30 simulated datasets was independently analyzed using NOHARM (Fraser, 1986) on
all 50 items to obtain the MD item parameter estimates. NOHARM approximates a normal ogive MD
item calibration using a variant of harmonic factor analysis described by McDonald (1982). The
NOHARM analyses were constrained to provide a two-factor, orthogonal solution using a varimax
rotation.

Three datasets were sampled randomly from each dispersion condition, and were analyzed further
using a principal axis factor analysis of the interitem phi coefficients constrained to a two-factor
solution. The nine dissimilarity matrices were constructed using the direction cosines computed from
both the NOHARM discrimination estimates and from the factor loadings (vielding 18 matrices). The
dissimilarity matrices then were analyzed using hierarchical cluster analysis with complete linkage
as described by Miller & Hirsch (1990). Although the ““true’ clustering of items was known and used
for the subsequent UD item composite calibrations, these cluster analyses were performed to verify
the integrity of the complete linkage method in identifying the item clusters using factor loadings
or MD discrimination parameters. Because the ‘“true’’ clusters of items were known, the pertinent
criterion was how well each method replicated the ““true’’ clusters of items in terms of cluster orien-
tation in the 8 space and identification of items.

UD IRT calibration analyses were performed on each cluster of 25 items within each of the 30
datasets, using PC-BILOG (Mislevy & Bock, 1989). The default normal ogive approximation was used
for appropriately scaling the discrimination parameters. The distributions of beta hyperparameters
on the lower asymptote were constrained to be extremely leptokurtic, thus essentially fixing ¢ at .167
for all items.

Results
Entegrity of the Stage 1 Clustering Procedure

The range of between-cluster average angle differences was 43° to 63° across the nine datasets
in which the dissimilarity matrices were based on the NOBARM discrimination estimates. These average
angle differences were computed by calculating the mean angle of each item cluster using the direc-
tion cosines (Equation 2}, and then computing the difference in mean angles. In contrast, the range
of between-cluster average angle differences for the dissimilarity matrices based on the factor loadings
was 32° to 59° In this latter case, there was also a minor rotational shift toward the 8, axis. This
shift is somewhat apparent given the reported range. However, both sets of results seemed to be con-
sistent with the actual 50° difference angle between the underlying 20° and 70° reference composites
used to generate the items. In practice, either method probably would be acceptable for interpreting
the relative orientation of the item clusters.

In the 0° and 5° conditions, the cluster analysis was able to replicate the “‘true’’ cluster-item
mappings without error. That was not the case for the 10° condition. Under the 10° condition, the
accuracy in identifying the ““true’ item clusters ranged from 92% to 98% (for the three analyzed
matrices).
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Robustness of Item Parameter Estimates

Contrasts between the MD NOHARM and UD PC-BILOG item calibrations for the 30 datasets required
a comparable set of estimators denoting location and slope. The MD discrimination estimates, here
limited to &, and a, for two dimensions, could not be compared directly to the UD discrimination
parameter estimates, a,. Instead, the UD discrimination parameters were compared with a MD scalar
discrimination index, MDISC (Reckase, 1985). MDISC is the norm of the vector of the MD discrimina-
tion parameter estimates. Therefore, for this two-dimensional case,

MDISC, = <Z ) . (4)

To compensate for the confounding of direction and location present in the MD model parameter
d, MDIFF (Reckase, 1985) was used as the comparative difficulty or location parameter estimate cor-
responding to the UD b, estimate, where
-d,

MDIFF, = —_%
MDISC,

&)

MDISC and MDIFF were calculated from the NOHARM MIRT parameter estimates.

Table 1 provides means and SDs of the MDISC, and MDIFF, indices along with their corresponding
UD 4, and b, parameter estimates. There was a slight downward bias in the 4, estimates compared
to the ““true’”” MDISC,; values. There was less apparent bias in the estimated MDISC; indices. This find-
ing is consistent with a discussion by Wang (1986), concerning the projections of the item vectors
onto a UD reference composite. At the same time, there appears to be less bias in the b, than in the
MDIFF, estimates. Correlations between the various UD and MD estimators and the “‘true’’ values were
consistently greater than .96.

Table 1
Mean and SD of UD and MD Item Parameter Estimates
Rased on 10 Replications of 50 Items With N = 2,000
per Replication, at Three Levels of Angular Dispersion

0° 5° 10°

Parameter Mean SD Mean . SD Mean SD
MDISC

True 1.102  .438 1.066 446 1.165  .408

Estimated 1.130 512 1.054 .449 1.176  .435
MDIFF

True 065 797 -.025 1.033 -.008 .667

Estimated 052 .804 -.056 1.078 -.024 673
UD

b 063 765 -.031 .984 -.019  .689

a 1.026  .363 1.016 408 1.071  .350

Table 2 presents the means, medians, SDs, and minimum/maximum values of the empirical stan-
dard errors (SEs) of the parameter estimates, taken across replications and summarized over items.
These data indicate that the SEs of the UD parameter estimates tend to be smaller than their MIRT
counterparts. This reduction in SEs is most evident in terms of the item discriminations. Also
noticeable are the larger SDs of the SEs for the MDIFF,, taken across items.
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Table 2
Descriptive Statistics for Empirical SEs of UD and
MD Item Parameter Estimates Across Replications
and Items for Three Levels of Angular Dispersion

Dispersion Discrimination Difficulty
and Statistic  MDISC UDa&  MDIFF UDb
00
Mean 122 075 072 074
Median .082 061 .056 .055
SD 126 .033 071 046
Minimum 032 .033 .023 .034
Maximum 747 151 .384 277
50
Mean 109 .086 .106 .074
Median .090 077 .053 057
SD .061 044 .220 060
Minimum .034 023 .013 .024
Maximum .286 .249 382 414
10°
Mean 103 077 053 .059
Median .088 070 .050 .056
SD .062 .034 .020 019
Minimum .026 .018 .018 .029
Maximum 317 .161 112 110

The improvement in stability under the UD composite 8s approach involved only half as many
items per calibration as were used for the MIRT calibrations. Of course, even calibrating only 25 items
with a sample of 2,000 examinees could be expected to produce fairly stable UD parameter estimates
(e.g., Drasgow, 1989). That is, if either cluster had contained poor quality items—items with extreme
operating characteristics or very small numbers of items or examinees—this level of stability prob-
ably would not be seen. However, a MIRT solution would not be expected to perform any better in
those situations.

6 Estimation

Expected a posteriori (EAP) estimates of 6 were derived for all simulated examinees in all 30 datasets
(50 items x 2,000 examinees). For the vectors of MD 0 estimates, a bivariate normal prior distribu-
tion was used, G(6,,6,), and an uncorrelated two-dimensional 8 space was assumed. The elements
of the 0 vector for each examinee were approximated by Bayes mean estimators (Mislevy, 1986) com-
puted marginally over the joint posterior 8 distributions. That is,

Q
80 = X 0fliet) ©)
for ¢, k = 1, ..., O quadrature points along the 0, axis, and
" R
b, = I; LS.t )]
fort,! =1, ..., R quadrature points along the 8, axis. The joint posterior distribution is given by
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L{U| 1, )G, 1)
. ksl ks *i , (8)

Q
X 2 LU]1, )Gt 1)

f(tk’tl) =

where the likelihood, L(U), taken across all 50 items assﬁmes the general form,
50
L<U]tk’tl) = EP(tk’tl)u[[l - P<tk’t1)]l_ui . ©)

Similarly, for each examinee, two independent EAP € estimates corresponding to the two reference
composites also were computed from the two clusters of UD item parameter estimates. For each of
these EAP O estimates, the general form of the UD Bayes mean estimator is

= i tft) (10)

approximated over 1,, k = 1, ..., O quadrature points along the appropriate reference composite,
where

ft) = M (1

L LUI1)G(1)

and
Ll = TLPay[1 - Peo) 1)

for the 25 items in each cluster.

Descriptive statistics for the “‘true’’ 8, and 6, used to generate the simulated data and both the
MD and UD EAP estimates are reported in Table 3. The means in Table 3 represent the mean 8s for
N = 2,000 examinees for all 10 datasets under each simulation condition. The SEs of the means are
the empirical sSDs of the within dataset mean 8s taken over the 10 datasets under each condition (the
expected value was approximately .02 for this sample size). Finally, the median SD is the median of
the within dataset SDs across datasets.

Although Table 3 does not indicate major anomalies in the 8 estimates, the MD EAP estimates had
smaller SEs of the means and smaller median sbs for both 8, and 8,. That apparent reduction in
the variance of the estimated bivariate 8 distribution is relevant in the context of the covariance be-
tween the MD EAP estimates, as discussed below.

Table 4 provides median, minimum, and maximum Pearson product-moment correlations between
the 6, and 8, estimates and their true values for each condition, for both MD and UD EAP estimates.
The nonzero correlations between the MD EAP estimates, combined with the reduced within-sample
SDs of the MD EAP estimates (see Table 3), suggest a discernible bias in the variance-covariance matrix
of the EAP scores. This bias is a function of the collateral information present in the MIRT item
parameter estimates. Muraki & Engelhard (1985) implied that a varimax rotation might resolve this
type of bias for EAP scores (a problem that affects factor scores in general—see Harman, 1976).
However, because the varimax-rotated NOHARM discriminations were used for these EAP scores, it
is obvious that the bias in variance-covariance matrices did not disappear here.

In terms of the UD composite 8s, the observed nonzero correlations between the EAP 8, and 6,

Downloaded from the Digital Conservancy at the University of Minnesota,
May be reproduced with no cost by students and faculty for academic use. Non-academic reproductlon
requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/




Volume 16 Number 3 September 1992
288 APPLIED PSYCHOLOGICAL MEASUREMENT

Tabie 3
Mean, SE of Mean, and Median SD
of True and Estimated UD and
MD EAP 6 Estimates at Three
Levels of Angular Dispersion

Statistic 0° 5° 10°
Mean
True MD 8, ~-.002  0.000 .006
EAP MD 6, -.010 -.001 -.003
EAP UD ¢, .006 .009 .003
True MD 6, .001 002 -.004
EAP MD 6, 008  -.001 -.002
EAP UD ¢, .004 010 -.002
SE of Mean
True MD 6, .016 018 .020
EAP MD 61 007 .002 .003
EAP UD 6, 021 012 014
True MD 6, 035 011 012
EAP MD 6, .005 .002 .002
EAP UD 6, 011 .009 017
Median SD
True MD 8, 1.007 1.000 1.011
EAP MD 8, .890 901 907
EAP UD 8, .962 935 955
True MD 6, 1.005 1.006 1.010
EAP MD 6, .834 .873 .879
EAP UD 6, 933 943 954

are both informative and, in a certain sense, quite consistent with the MD generating structure used
in the simulation. That is, the correlations between the UD EAP 6 estimates tend to closely approx-
imate the cosine of the angle between the cluster-generating reference composites [cos(50°) = .643].
The UD estimates correctly approximated the orientations of the latent 8 axis to which the items were

Table 4
Median, Minimum, and Maximum Correlation
Between True 8, and 68, and Their Estimates
at Three Levels of Angular Dispersion

Dispersion
and Variables Median Minimum Maximum
00
True Os -.008 -.054 .005
MD EAP Est. 199 180 223
UD EAP Est. .666 .651 .682
50
True 8s -.020 -.041 .004
MD EAP Est. 141 120 .163
UD EAP Est. 561 .535 .574
i0°
True 6s -.018 -.039 .006
MD EAP Est, 121 109 .164
UD EAP Est. .601 .591 631
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most sensitive. In fact, the observed correlations of UD EAP estimates in Table 4 are almost identi-
cal to the cosines of the average angular differences between the item clusters. Those cosine differ-
ences were cos[8,qq] = .67, cos[d,s.] = .53 and cos{@,.,] = .60. This is an important finding
that suggests that the composite traits approach unidimensionally achieves a type of oblique
simple structure. However, the correlation between traits can be computed post hoc from the
composite 8 estimates. There is no need to estimate additional structural parameters or transfor-
mation matrices.

Model Fit

Estimation of the UD 0s along the reference composites somewhat complicates the matter of
goodness-of-fit. Due to the oblique reference composites, the UD composite § metrics are not sim-
ply nested subsets of the MD 8 metrics. As a result, the use of likelihood ratio % tests are not valid
here because the latent metrics as well as the parameterizations of the models are different. Instead,
two separate approaches were taken to evaluate the goodness-of-fit of the models to the data.

The first approach was to compute unstandardized root-mean-square residuals (RMSR) between
the observed dichotomous responses and the predicted item ‘“true scores’’ in an adaptation of a model-
fit index described by Wright & Stone (1979). For the MD model, RMSR was computed as

n

=1 i=1

RMSR = { “1n li Y |u, P(@,I,eﬂ)]}% : (13)

<

conditioning the item ‘‘true scores’’ in each examinee’s MD EAP 0 estimates. For the UD model, RMSR
was computed, matching items to the appropriate reference composite, as

N ) N n@) 1
RMSR = {Nglnuljg P (o4, - R(éjl)]z + ,; L (o4, - B(éﬂ)]l} . 14)
The fact that these RMSR indices are susceptible to even minor fluctuations in fit was actually desired,
given these simulation data.

Under the second approach to evaluating model fit, a standardized log likelihood was computed
for each examinee, under both models, using their corresponding MD or UD EAP 8 estimates. Because
this “‘appropriateness’’ index (Drasgow, Levine, & Williams, 1985; Levine & Drasgow, 1982) usually
approximates a normal (0,1) distribution, it was possible to identify as ‘‘aberrant’ those examinees
whose standardized log likelihood exceeded a 95% confidence interval of [, (i.e., |I,| > 1.96) under
the MD model, under the UD model, or under both models. Larger discrepancies in identifying aber-
rant examinees, especially in the case of the UD model, would tend to indicate poor fit.

A summary of the RMSR results is shown in Table 5. One rather clear implication of the RMSR
indices is that there was little difference in fitting the observed responses between the MD and UD
models. The UD model may have fit slightly better under the 0° condition, because that condition
essentially replicated two purely UD, but correlated, subtests. Similarly, as the item sensitivity moved
away from the reference composite (toward 10°), there was a very slight tendency for the MD model
to fit better.

The model-fit summary in Table 6 shows the empirical proportions of examinees identified as
aberrant under the MD model, under the UD model(s), and under both models. These latter results
indicate that no important differences existed between models. In general, both models identified
the same individuals as aberrant. Furthermore, the proportions of cases selected exclusively under
one model or the other were essentially equal.
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Table 5
Mean and SD of RMSR for UD
and MD Fit for Three Degrees
of Angular Dispersion

Dispersion
and Statistic MD Fit UD Fit
OO
Mean .4089 .4080
SD L0011 .0011
50
Mean .4027 4024
SD .0010 .0008
10°
Mean .3999 .4015
SD .0010 L0011

Discussion and Conclusions

The resuits of these simulations indicated that separate unidimensional reference composites in
a two-dimensional orthogonal latent space could be adequately fit to clusters of items having similar
angular orientations in the space, even when there was a fairly large within-cluster angular dispersion
of the item discriminations. When the items within each cluster were calibrated unidimensionally,
the resulting discrimination and difficulty parameters were more accurate and stable than cor-
responding multidimensional parameters.

The unidimensional composite trait model also tended to fit the data quite well, and was essentially
indistinguishable from the multidimensional model in terms of model fit indices. Trait estimation
along the unidimensional reference composite metrics appeared useful for two reasons. First, the
obtained estimates did not show the variance reduction present in the multidimensional trait estimates
(i.e., estimation bias due to a covariance in the multidimensional trait estimates as a function of the
collateral information in the items). Second, the product-moment correlations between the uni-
dimensional trait estimates seemed to adequately represent the underlying structure of the multi-
dimensional tests. To achieve similar results multidimensionally would have required an oblique solution
that would have increased the parameterization of the model by adding a correlation matrix to the
model and created additional sources of potential estimation error.

These results suggest that for tests having identifiable clusters of items, the theoretical case for
MIRT models may actually overestimate the magnitude of information loss and overstate the degrada-
tion in fit under more parsimonious IRT models. This does not, however, imply that multi-
dimensionality can be ignored completely. Rather, by capitalizing on derived knowledge of the direction

Table 6
Proportions of Examinees Identified as Aberrant by the
Model Fit Indices Under the UD, MD, or Both Models
for Three Degrees of Angular Dispersion

Selected by Selected by Selected by
Dispersion Both Models Only MD Model Only UD Model
0° .0185 .0004 .0009
5° 0194 .0010 .0010
10° .0178 .0010 .0009
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of maximum information of items and then clustering items having similar orientations, it was

demonstrated that composite trait metrics could be accurately calibrated while retaining some relation-

ship to the multidimensional structure of the test.
These results are important for three reasons.

1. The study demonstrated that it is feasible to make use of available unidimensional IRT procedures,
as well as available factor and cluster analytic techniques, to calibrate multidimensional test data.
This capability provides some direction toward a practical and workable solution to multi-
dimensional test construction and analysis problems within the framework of existing resources.

2. It was shown that it is possible to retain multidimensional interpretations of composite traits,
even though the test calibrations are conveniently unidimensional. That is, the common problem
of assuming unidimensionality for an entire test is avoided by restricting that assumption to items
shown to directionally cluster together in the multidimensional space. This approach further re-
tains the essential “‘structure’” of a multidimensional test through the item cluster orientations
and correlations between trait estimates.

3. Some empirical evidence was provided that the stability of the unidimensional item parameter
estimates, for tests having well-formed clusters of items, may actually be better than their
multidimensional counterparts, with little degradation in model fit or reduction in the accuracy
of trait estimates, while using fewer items.

Implications for Future Research

Future research should investigate the limitations of this technique. For example, if items cannot
be accurately assigned to clusters or the within-cluster variance becomes quite large, it may be more
appropriate to use a full-information MIRT model. Another research possibility concerns the poten-
tial effect of different levels of correlation between the reference composites. In cases of highly cor-
related reference composites, it is likely that a single composite trait metric, derived using all the test
items, might provide the best results.

Anocther area of application for which the composite trait procedures may be useful is the con-
struction of multidimensional parallel tests. In this application, the composite traits approach might
provide a solution to deriving near-parallel subtests. This follows from recent evidence that multidimen-
sional test parallelism can be achieved unidimensionally (Ackerman, 1991). Ackerman used compu-
terized item selection techniques developed by Luecht & Hirsch (1990, 1991, 1992) for building
unidimensional tests, even though the tests supported a multidimensional trait structure. He then
demonstrated that the resulting test forms achieved a reasonable degree of parallelism in terms of
multidimensional criteria. It is likely that by incorporating the composite traits approach, the relative
degree of multidimensional parallelism might be improved further. Although more work on this topic
is required, Ackerman’s initial results are encouraging.

Another area in which the composite trait procedures may be useful is in linking test calibrations.
The unidimensional treatment of the composite traits seems to simplify some of the problems of
placing trait estimates and item parameters from different forms of multidimensional tests on the
same scale(s). For example, by using anchor items within clusters to establish the composite trait metrics
corresponding to existing base subtest reference composites {(through estimates of the unidimensional
examinee posterior distributions of the composite traits), new nonanchor items measuring similar
composite traits could be individually calibrated to the same metrics. Any remaining parameter scal-
ing would involve a linear transformation of the unidimensional discriminations and difficulties (e.g.,
Mislevy & Bock, 1989).

The results and conclusions suggested by the present study must be tempered with caution. The
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limited simulation in this study and its restriction to an orthogonal, two-dimensional trait space reduce
the generalizability of the results. Nevertheless, the results are encouraging with respect to suggesting
a set of practical solutions for dealing with some of the current problems of muitidimensional tests.
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